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Chapter 9 - Compressible Flow
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

37 Understand and explain basic concepts of compressible flows (the gas law,

speed of sound, Mach number, isentropic flow with changing area, normal

shocks, oblique shocks, Prandtl-Meyer expansion)

Let’s go supersonic ...
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Roadmap - Compressible Flow

Thermodynamics

Speed of Sound

Isentropic Flow Stagnation Properties

Normal Shocks

Convergent Divergent Nozzle

Tools for Compressible-Flow Analysis�

Flow with Area Changes

Oblique Shocks

Expansion Waves
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Expansion Waves

I Gradual change of flow angle

I Increasing flow area

I Increasing Mach number

I Accumulation of infinitesimal flow deflections - isentropic
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Expansion Waves

What is an expansion wave or expansion region?

expansion corner

M > 1

gradual expansion

M > 1
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The Prandtl-Meyer Function

I The change of flow properties over an expansion region can be calculated using

the Prandtl-Meyer function

I The Prandtl-Meyer function derivation is based on the fact that each expansion

wave gives an infinitesimal change in flow angle and flow properties
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Prandtl-Meyer Function Derivation (for the interested)
�

For small deflection angles, linearization of the θ-β-Mach relation gives

dp

p
≈ γM2

(M2 − 1)1/2
dθ

The momentum equation for inviscid flows gives

dp = −d(ρV2) = −ρVdV − V d(ρV)︸ ︷︷ ︸
=0

= −ρVdV = −ρV2dV

V
= −ρa2M2dV

V
⇒

⇒
{
ρa2 = ργRT = γp

}
⇒ dp

p
= −γM2dV

V
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Prandtl-Meyer Function Derivation (for the interested)
�

Now, setting the two expressions for dp/p equal

−γM2dV

V
=

γM2

(M2 − 1)1/2
dθ ⇒ dθ = −(M2 − 1)1/2

dV

V

V = Ma ⇒ dV = adM +Mda ⇒ dV

V
=

dM

M
+

da

a

dθ = −(M2 − 1)1/2
(
dM

M
+

da

a

)
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Prandtl-Meyer Function Derivation (for the interested)
�

dθ = −(M2 − 1)1/2
(
dM

M
+

da

a

)
ao

a
=

(
1 +

γ − 1

2
M2

)1/2

da =

(
1 +

γ − 1

2
M2

)−1/2

dao + aod

[(
1 +

γ − 1

2
M2

)−1/2
]

isentropic ⇒ dao = 0

da

a
=

d

[(
1 + γ−1

2 M2
)−1/2

]
(
1 + γ−1

2 M2
)−1/2

=
−1

2

(
1 + γ−1

2 M2
)−3/2

(γ − 1)MdM(
1 + γ−1

2 M2
)−1/2
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Prandtl-Meyer Function Derivation (for the interested)
�

dθ = −(M2 − 1)1/2
(
dM

M
+

da

a

)

da

a
=

−1
2(γ − 1)MdM

1 + γ−1
2 M2

⇒ dθ = − 2(M2 − 1)1/2

2 + (γ − 1)M2

dM

M

Introducing ω defined such that: dω = −dθ, ω = 0 when M = 1

ˆ ω

0
dω =

ˆ M

1

2(M2 − 1)1/2

2 + (γ − 1)M2

dM

M

ω(M) =

(
γ + 1

γ − 1

)1/2

tan−1

(
M2 − 1

(γ + 1)/(γ − 1)

)1/2

− tan−1(M2 − 1)1/2
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The Prandtl-Meyer Function
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Prandtl-Meyer function (γ = 1.4)

ω(M) =

(
γ + 1

γ − 1

)1/2

tan−1

(
M2 − 1

(γ + 1)/(γ − 1)

)1/2

− tan−1(M2 − 1)1/2

ω(M)|M→∞ = 130.45◦
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Prandtl-Meyer Expansion Waves

Example:

µ1

µ2

∆θ

M1

M2

expansion fan (Mach waves)

1. θ1 = 0, M1 > 1 is given

2. θ2 is given

3. find M2 such that ∆θ = θ2 − θ1 = ω(M2)− ω(M1)
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Prandtl-Meyer Expansion Waves

Since the flow is isentropic, the isentropic relations apply:

(To and po are constant)

Calorically perfect gas:

To

T
=

[
1 +

1

2
(γ − 1)M2

]

po

p
=

[
1 +

1

2
(γ − 1)M2

] γ
γ−1
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Prandtl-Meyer Expansion Waves

since To1 = To2 and po1 = po2

T1

T2
=

To2
To1

T1

T2
=

(
To2
T2

)/(
To1
T1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

]

p1

p2
=

po2

po1

p1

p2
=

(
po2

p2

)/(
po1

p1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

] γ
γ−1
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Diamond-Wedge Airfoil

L

ε
ε

ε
εt

1 2 3 4

M1 > 1

oblique shock oblique shock

expansion fan

symmetric airfoil

(both in x- and

y-planes

Note! symmetric airfoil at zero incidence ⇒ zero lift but what about drag?
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Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M1

2-3 Prandtl-Meyer expansion for flow deflection angle 2ε and upstream Mach

number M2

3-4 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M3
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Diamond-Wedge Airfoil - Wave Drag

Since conditions 2 and 3 are constant in their respective regions, we obtain:

D = 2 [p2L sin(ε)− p3L sin(ε)] = 2(p2 − p3)
t

2
= (p2 − p3)t

For supersonic free stream (M1 > 1), with shocks and expansion fans according to

figure we will always find that p2 > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)
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Flat-Plate Airfoil

1

2

3

4

5

expansion fan

oblique shock

expansion fan

oblique shock

slip lineΦ

α

incidence α

M1 > 1
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Flat-Plate Airfoil

It seems that the angle of the flow downstream of the flat plate would be different

than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from

the plate, shock and expansion waves will interact and eventually sort the

mismatch of flow angles out
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Flat-Plate Airfoil

I Flow states 4 and 5 must satisfy:

I p4 = p5

I flow direction 4 equals flow direction 5 (Φ)

I Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust

themselves to comply with the requirements

I For calculation of lift and drag only states 2 and 3 are needed

I States 2 and 3 can be obtained using standard oblique shock formulas and

Prandtl-Meyer expansion
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Oblique Shocks and Expansion Waves

compression corner

M > 1

expansion corner

M > 1

M decrease

V decrease

p increase

ρ increase

T increase

M increase

V increase

p decrease

ρ decrease

T decrease
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Supersonic Stereo
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