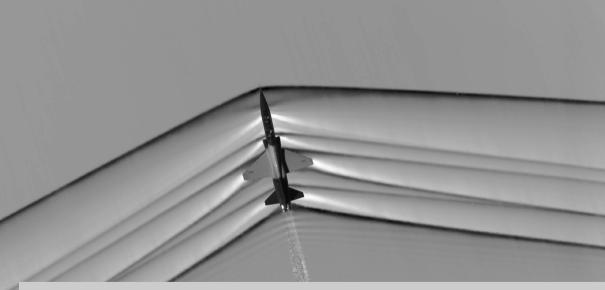
Fluid Mechanics - MTF053 Lecture 18

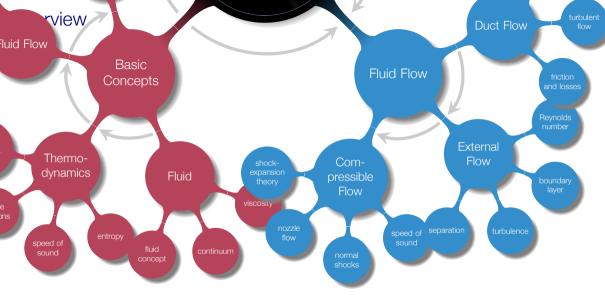
Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se



Chapter 9 - Compressible Flow

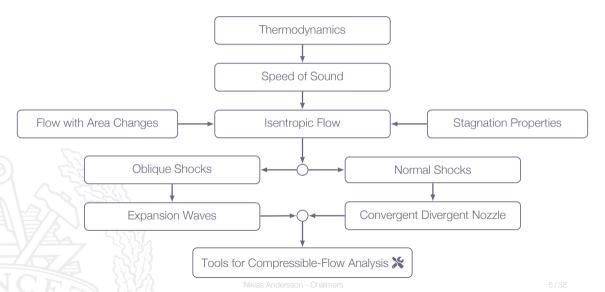


Learning Outcomes

- 4 Be **able to categorize** a flow and **have knowledge about** how to select applicable methods for the analysis of a specific flow based on category
- 37 **Understand and explain** basic concepts of compressible flows (the gas law, speed of sound, Mach number, isentropic flow with changing area, normal shocks, oblique shocks, Prandtl-Meyer expansion)

Let's go supersonic ...

Roadmap - Compressible Flow



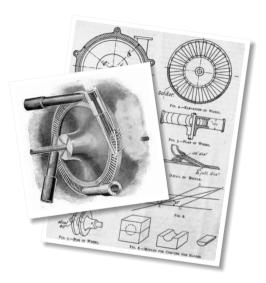
Motivation

Compressible flow:

- flows where variations in density are significant
- most often high-speed gas flows (gas dynamics)
 - fluids moving at speeds comparable to the speed of sound
 - not common in liquids (would require very high pressures)

Historical Milestones

First supersonic flight - Charles Yeager 1947

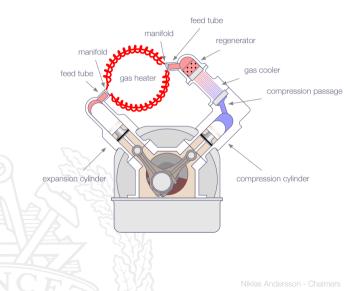


Steam turbine with convergent-divergent nozzles - Carl Gustav de Laval 1893

Compressible Flow Applications

Compressible Flow Applications

Compressible Flow Applications



Governing Equations

- With significant density changes follows substantial changes in pressure and temperature
- ► The energy equation must be included
- ► Four equations:
 - 1. Continuity
 - 2. Momentum
 - 3. Energy
 - 4. Equation of state
- Unknowns: ρ , p, T, and \mathbf{V}
 - The four equations must be solved simultaneously

Mach Number Regimes

Incompressible flow

insignificant density changes

Subsonic flow

local and global Mach number less than unity

Transonic flow

- subsonic flow with regions of supersonic flow (local Mach number can be higher than one)
- supersonic flow with regions of subsonic flow (local Mach number can be less than one)

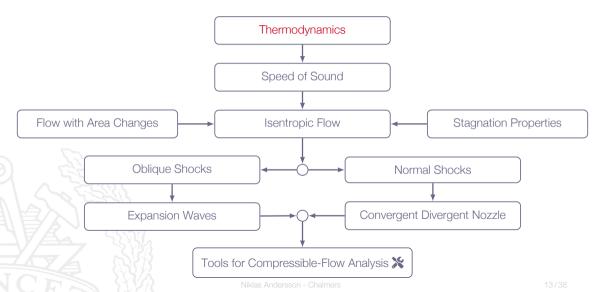
Supersonic flow

Iocal and global Mach number higher than one

Hypersonic flow

Mach number higher than 5.0

Roadmap - Compressible Flow



► The ratio of specific heats is important in compressible flow

$$\gamma = \frac{C_{\rho}}{C_{v}}$$

- $\blacktriangleright \gamma$ is a fluid property
- For moderate temperatures γ is a constant
 - For higher temperatures γ varies with temperature

For air, $\gamma = 1.4$

Equation of State

In the following, we will assume that the ideal gas law is applicable and that the specific heats are constants:

 $p = \rho RT$ $R = C_D - C_V = const$ $\gamma = \frac{C_p}{C_v} = const$ Auxiliary relations: $C_{v} = rac{R}{\gamma - 1}, C_{p} = rac{\gamma R}{\gamma - 1}$

Internal Energy and Enthalpy

Constant specific heats:

 $d\hat{u} = C_v dT$

Variable specific heats:

$$\hat{u} = \int C_v dT$$
$$h = \int C_p dT$$

Isentropic Relations

First law of thermodynamics

 $\delta q + \delta w = de$

For reversible processes: $\delta w = -pdv$ (where $v = p/\rho$)

$$h = e + \frac{p}{\rho} = e + pv \Rightarrow dh = de + pdv + vdp$$

 $\delta q = dh - v dp$

Second law of thermodynamics

$$ds = \frac{\delta q_{rev}}{T} = \frac{\delta q}{T} + ds_{irev} \Rightarrow ds \ge \frac{\delta q}{T}$$

Isentropic Relations

compute entropy change from the first and second law of thermodynamics (assuming reversible heat addition)

$$Tds = dh - \frac{dp}{\rho}$$

for perfect gases, $dh = C_{p}dT$

$$\int_{1}^{2} d\mathbf{s} = \int_{1}^{2} C_{\rho} \frac{dT}{T} - R \int_{1}^{2} \frac{d\rho}{\rho}$$

for constant specific heats (calorically perfect)

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = C_v \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$

Niklas Andersson - Chalme

Isentropic Relations

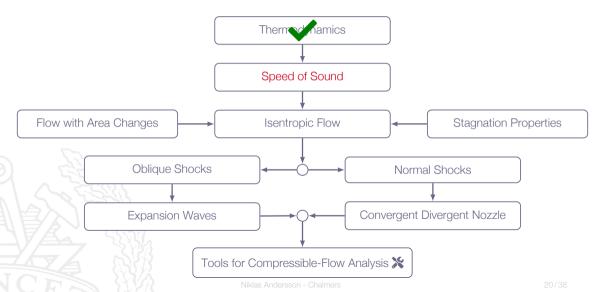
$$\mathbf{s_2} - \mathbf{s_1} = C_{\rho} \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1} = C_{v} \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1}$$

for isentropic flow $(s_2 = s_1)$ we get

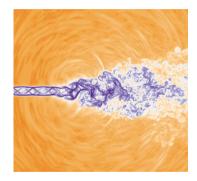
$$\boxed{\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\gamma/(\gamma-1)} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}}$$

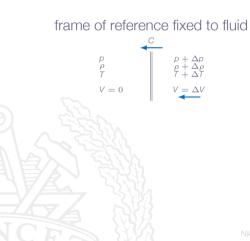
Niklas Andersson - Chalmers

Roadmap - Compressible Flow



- The rate of propagation of a pressure pulse of infinitesimal strength through a fluid at rest
- Related to the molecular activity of the fluid
- A thermodynamic property





frame of reference following the wave

$$\begin{array}{c} \rho \\ \rho \\ T \\ V = C \end{array} \qquad \qquad \begin{array}{c} \rho + \Delta \rho \\ \rho + \Delta \rho \\ T + \Delta T \\ V = C - \Delta V \end{array}$$

frame of reference following the wave

р Р Т		$\begin{array}{c} \rho + \Delta \rho \\ \rho + \Delta \rho \\ T + \Delta T \end{array}$
V = C	i L	$V = C - \Delta V$

$$\rho AC = (\rho + \Delta \rho)A(C - \Delta V)$$

$$\Delta V = C \frac{\Delta \rho}{\rho + \Delta \rho}$$

Note! there are no gradients in the flow so viscous effects are confined to the interior of the wave

frame of reference following the wave

ш

momentum:

$$\begin{array}{c} \rho \\ \rho \\ \rho \\ T \\ V = C \end{array} \qquad \left[\begin{array}{c} \rho + \Delta \rho \\ \rho + \Delta \rho \\ T + \Delta T \\ V = C - \Delta V \end{array} \right]$$

$$\rho A - (\rho + \Delta \rho)A = (\rho AC)(C - \Delta V - C) \Rightarrow \Delta \rho = \rho C \Delta V$$

with ΔV from the continuity equation we get

$$C^{2} = \frac{\Delta \rho}{\Delta \rho} \left(1 + \frac{\Delta \rho}{\rho} \right)$$

Note! the larger $\Delta \rho / \rho$, the higher the propagation velocity

In the limit of infinitesimal strength $\Delta \rho \rightarrow 0$ and thus

$$C^2 = a^2 = \frac{\partial \rho}{\partial \rho}$$

There is no added heat and thus the process adiabatic
 For weak waves the process can also be assumed to be reversible

$$a^2 = \left. \frac{\partial \rho}{\partial \rho} \right|_{s}$$

Niklas Andersson - Chalmers

and thus

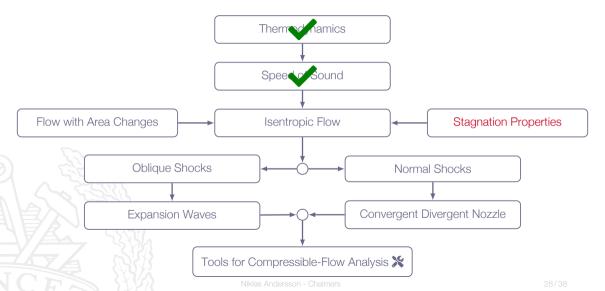
$$a^2 = \left. \frac{\partial \rho}{\partial \rho} \right|_s$$

The isentropic relation gives

$$\rho = \rho^{\gamma} \Rightarrow \frac{\partial \rho}{\partial \rho} = \gamma \rho^{\gamma - 1} = \gamma \frac{\rho}{\rho} = \gamma RT$$

$$a = \sqrt{\gamma RT}$$

Roadmap - Compressible Flow



Stagnation Enthalpy

Consider high-speed gas flow past an insulated wall

$$h_1 + \frac{1}{2}V_1^2 + gz_1 = h_2 + \frac{1}{2}V_2^2 + gz_2 - q + w_{\nu}$$

differences in potential energy extremely small

outside of the boundary layer, heat transfer and viscous work are zero

$$h_1 + \frac{1}{2}V_1^2 = h_2 + \frac{1}{2}V_2^2 = const$$

Stagnation Enthalpy

$$\boxed{h + \frac{1}{2}V^2 = h_o}$$

"The maximum enthalpy that the fluid would achieve if brought to rest adiabatically"

Stagnation Temperature

For a calorically perfect gas $h = C_{\rho}T$

$$h + \frac{1}{2}V^2 = h_0$$

$$C_{
ho}T + rac{1}{2}V^2 = C_{
ho}T_{
ho}$$

Where T_o is the stagnation temperature

Mach Number Relations

$$C_{\rho}T + \frac{1}{2}V^2 = C_{\rho}T_{\rho} \Rightarrow 1 + \frac{V^2}{2C_{\rho}T} = \frac{T_{\rho}}{T}$$

$$C_{\rho}T = rac{\gamma R}{\gamma - 1}T = rac{\gamma RT}{\gamma - 1} = rac{a^2}{\gamma - 1}$$

$$\boxed{\frac{T_o}{T} = 1 + \left(\frac{\gamma - 1}{2}\right)M^2}$$

Niklas Andersson - Chalmers

Mach Number Relations

Since $a \propto T^{1/2}$ we get

$$\frac{a_o}{a} = \left(\frac{T_o}{T}\right)^{1/2} = \left[1 + \left(\frac{\gamma - 1}{2}\right)M^2\right]^{1/2}$$

If the flow is adiabatic and reversible (isentropic), we may use the isentropic relations

$$\frac{p_o}{p} = \left(\frac{T_o}{T}\right)^{\gamma/(\gamma-1)} = \left[1 + \left(\frac{\gamma-1}{2}\right)M^2\right]^{\gamma/(\gamma-1)}$$

$$\frac{\rho_{\rm o}}{\rho} = \left(\frac{T_{\rm o}}{T}\right)^{1/(\gamma-1)} = \left[1 + \left(\frac{\gamma-1}{2}\right)M^2\right]^{1/(\gamma-1)}$$

Stagnation Properties

- *p_o* and *ρ_o* the pressure and density that the flow would achieve if brought to rest isentropically
- All stagnation properties are constants in an isentropic flow
- ► h_o , T_o , and a_o are constants in an adiabatic flow but not necessarily p_o and ρ_o
 - p_o and ρ_o will vary throughout an adiabatic flow as the entropy changes due to friction or shocks

Another useful set of reference variables is the critical properties (sonic conditions)

$$\frac{T_o}{T} = 1 + \left(\frac{\gamma - 1}{2}\right)M^2 = \{M = 1.0\} = 1 + \left(\frac{\gamma - 1}{2}\right) = \left(\frac{2 + \gamma - 1}{2}\right) = \left(\frac{\gamma + 1}{2}\right)$$

Critical Properties

$$\frac{\overline{T}^*}{\overline{T}_o} = \left(\frac{2}{\gamma+1}\right)$$
$$\frac{a^*}{a_o} = \left(\frac{2}{\gamma+1}\right)^{1/2}$$
$$\frac{\rho^*}{\rho_o} = \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)}$$
$$\frac{\rho^*}{\rho_o} = \left(\frac{2}{\gamma+1}\right)^{1/(\gamma-1)}$$

Critical Properties

Air $\gamma=1.4$

$$\begin{aligned} \frac{T^*}{T_o} &= \left(\frac{2}{\gamma+1}\right) = 0.8333\\ \frac{a^*}{a_o} &= \left(\frac{2}{\gamma+1}\right)^{1/2} = 0.9129\\ \frac{\rho^*}{\rho_o} &= \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)} = 0.5283\\ \frac{\rho^*}{\rho_o} &= \left(\frac{2}{\gamma+1}\right)^{1/(\gamma-1)} = 0.6339 \end{aligned}$$
Niklas An