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Chapter 9 - Compressible Flow
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

37 Understand and explain basic concepts of compressible flows (the gas law,

speed of sound, Mach number, isentropic flow with changing area, normal

shocks, oblique shocks, Prandtl-Meyer expansion)

Let’s go supersonic ...
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Roadmap - Compressible Flow

Thermodynamics
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Isentropic Flow Stagnation Properties

Normal Shocks

Convergent Divergent Nozzle

Tools for Compressible-Flow Analysis�

Flow with Area Changes

Oblique Shocks

Expansion Waves
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Motivation

Compressible flow:

I flows where variations in density are significant

I most often high-speed gas flows (gas dynamics)

I fluids moving at speeds comparable to the speed of sound

I not common in liquids (would require very high pressures)
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Historical Milestones

First supersonic flight - Charles Yeager 1947 Steam turbine with convergent-divergent nozzles - Carl Gustav de Laval 1893
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Compressible Flow Applications
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Compressible Flow Applications
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Compressible Flow Applications

gas cooler

regenerator

gas heater

compression passage

compression cylinderexpansion cylinder

feed tube

feed tube

manifold

manifold
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Governing Equations

I With significant density changes follows substantial changes in pressure and

temperature

I The energy equation must be included

I Four equations:

1. Continuity

2. Momentum

3. Energy

4. Equation of state

I Unknowns: ρ, p, T , and V
I The four equations must be solved simultaneously
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Mach Number Regimes

Incompressible flow

I insignificant density changes

Subsonic flow

I local and global Mach number less than unity

Transonic flow

I subsonic flow with regions of supersonic flow

(local Mach number can be higher than one)
I supersonic flow with regions of subsonic flow

(local Mach number can be less than one)

Supersonic flow

I local and global Mach number higher than one

Hypersonic flow

I Mach number higher than 5.0
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Ratio of Specific Heats

I The ratio of specific heats is important in compressible flow

γ =
Cp

Cv

I γ is a fluid property

I For moderate temperatures γ is a constant

I For higher temperatures γ varies with temperature

I For air, γ = 1.4
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Equation of State

In the following, we will assume that the ideal gas law is applicable and that the

specific heats are constants:

p = ρRT

R = Cp − Cv = const

γ =
Cp

Cv

= const

Auxiliary relations:

Cv =
R

γ − 1
, Cp =

γR

γ − 1
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Internal Energy and Enthalpy

Constant specific heats:

dû = CvdT

dh = CpdT

Variable specific heats:

û =

ˆ
CvdT

h =

ˆ
CpdT
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Isentropic Relations

First law of thermodynamics

δq+ δw = de

For reversible processes: δw = −pdυ (where υ = p/ρ)

h = e+
p

ρ
= e+ pυ ⇒ dh = de+ pdυ + υdp

δq = dh− υdp

Second law of thermodynamics

ds =
δqrev
T

=
δq

T
+ dsirev ⇒ ds ≥ δq

T

Niklas Andersson - Chalmers 17 / 38



Isentropic Relations

compute entropy change from the first and second law of thermodynamics

(assuming reversible heat addition)

Tds = dh− dp

ρ

for perfect gases, dh = CpdT

ˆ 2

1
ds =

ˆ 2

1
Cp

dT

T
− R

ˆ 2

1

dp

p

for constant specific heats (calorically perfect)

s2 − s1 = Cp ln T2

T1
− R ln p2

p1
= Cv ln T2

T1
− R ln ρ2

ρ1
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Isentropic Relations

s2 − s1 = Cp ln T2

T1
− R ln p2

p1
= Cv ln T2

T1
− R ln ρ2

ρ1

for isentropic flow (s2 = s1) we get

p2

p1
=

(
T2

T1

)γ/(γ−1)

=

(
ρ2
ρ1

)γ
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Speed of Sound

I The rate of propagation of a pressure pulse of infinitesimal strength through a

fluid at rest

I Related to the molecular activity of the fluid

I A thermodynamic property
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Speed of Sound
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Speed of Sound

p
ρ
T

V = 0

p + ∆p
ρ + ∆ρ
T + ∆T

V = ∆V

C

frame of reference fixed to fluid

p
ρ
T

V = C

p + ∆p
ρ + ∆ρ
T + ∆T

V = C − ∆V

frame of reference following the wave
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Speed of Sound

p
ρ
T

V = C

p + ∆p
ρ + ∆ρ
T + ∆T

V = C − ∆V

frame of reference following the wave

continuity:

ρAC = (ρ+∆ρ)A(C−∆V)

∆V = C
∆ρ

ρ+∆ρ

Note! there are no gradients in the flow so viscous effects are confined to the interior

of the wave
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Speed of Sound

p
ρ
T

V = C

p + ∆p
ρ + ∆ρ
T + ∆T

V = C − ∆V

frame of reference following the wave

momentum:

pA− (p+∆p)A = (ρAC)(C−∆V − C) ⇒ ∆p = ρC∆V

with ∆V from the continuity equation we get

C2 =
∆p

∆ρ

(
1 +

∆ρ

ρ

)

Note! the larger ∆ρ/ρ, the higher the propagation velocity
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Speed of Sound

In the limit of infinitesimal strength ∆ρ → 0 and thus

C2 = a2 =
∂p

∂ρ

I There is no added heat and thus the process adiabatic

I For weak waves the process can also be assumed to be reversible

a2 =
∂p

∂ρ

∣∣∣∣
s
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Speed of Sound

a2 =
∂p

∂ρ

∣∣∣∣
s

The isentropic relation gives

p = ργ ⇒ ∂p

∂ρ
= γργ−1 = γ

p

ρ
= γRT

and thus

a =
√

γRT
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Stagnation Enthalpy

Consider high-speed gas flow past an insulated wall

h1 +
1

2
V2
1 + gz1 = h2 +

1

2
V2
2 + gz2 − q+wν

I differences in potential energy extremely small

I outside of the boundary layer, heat transfer and viscous work are zero

h1 +
1

2
V2
1 = h2 +

1

2
V2
2 = const
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Stagnation Enthalpy

h+
1

2
V2 = ho

”The maximum enthalpy that the fluid would achieve if brought to rest adia-

batically”
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Stagnation Temperature

For a calorically perfect gas h = CpT

h+
1

2
V2 = ho

CpT +
1

2
V2 = CpTo

Where To is the stagnation temperature
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Mach Number Relations

CpT +
1

2
V2 = CpTo ⇒ 1 +

V2

2CpT
=

To

T

CpT =
γR

γ − 1
T =

γRT

γ − 1
=

a2

γ − 1

To

T
= 1 +

(
γ − 1

2

)
M2
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Mach Number Relations

Since a ∝ T1/2 we get

ao

a
=

(
To

T

)1/2

=

[
1 +

(
γ − 1

2

)
M2

]1/2
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Mach Number Relations

If the flow is adiabatic and reversible (isentropic), we may use the isentropic relations

po

p
=

(
To

T

)γ/(γ−1)

=

[
1 +

(
γ − 1

2

)
M2

]γ/(γ−1)

ρo
ρ

=

(
To

T

)1/(γ−1)

=

[
1 +

(
γ − 1

2

)
M2

]1/(γ−1)
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Stagnation Properties

I po and ρo - the pressure and density that the flow would achieve if brought to

rest isentropically

I All stagnation properties are constants in an isentropic flow

I ho, To, and ao are constants in an adiabatic flow but not necessarily po and ρo

I po and ρo will vary throughout an adiabatic flow as the entropy changes due to

friction or shocks
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Critical Properties

Another useful set of reference variables is the critical properties (sonic conditions)

To

T
= 1 +

(
γ − 1

2

)
M2 = {M = 1.0} = 1 +

(
γ − 1

2

)
=

(
2 + γ − 1

2

)
=

(
γ + 1

2

)
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Critical Properties

T∗

To
=

(
2

γ + 1

)
a∗

ao
=

(
2

γ + 1

)1/2

p∗

po
=

(
2

γ + 1

)γ/(γ−1)

ρ∗

ρo
=

(
2

γ + 1

)1/(γ−1)
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Critical Properties

Air γ = 1.4

T∗

To
=

(
2

γ + 1

)
= 0.8333

a∗

ao
=

(
2

γ + 1

)1/2

= 0.9129

p∗

po
=

(
2

γ + 1

)γ/(γ−1)

= 0.5283

ρ∗

ρo
=

(
2

γ + 1

)1/(γ−1)

= 0.6339
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