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Chapter 7 - Flow Past Immersed Bodies
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

6 Explain what a boundary layer is and when/where/why it appears

21 Explain how the flat plate boundary layer is developed (transition from laminar

to turbulent flow)

22 Explain and use the Blasius equation

23 Define the Reynolds number for a flat plate boundary layer

24 Explain what is characteristic for a turbulent flow

29 Explain flow separation (separated cylinder flow)

30 Explain how to delay or avoid separation

31 Derive the boundary layer formulation of the Navier-Stokes equations

32 Understand and explain displacement thickness and momentum thickness

33 Understand, explain and use the concepts drag, friction drag, pressure drag,

and lift

Let’s take a deep dive into boundary-layer theory
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Complementary Course Material

These lecture notes covers chapter 7 in the course book and additional course

material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf
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https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf
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The Blasius Velocity Profile

For laminar flow, the boundary layer equations can be solved for u and v

Blasius presented a solution 1908 where he had used a coordinate transformation

and showed that
u

U∞
is a function of a single dimensionless variable η = y

√
U∞
νx

The coordinate transformation corresponds to a scaling of the y coordinate with the

boundary layer thickness δ

δ

x
∝ 1√

Rex
⇒ y

δ
∝ y

x/
√
Rex

=
y

x

√
U∞x

ν
= y

√
U∞
νx

= η
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The Blasius Velocity Profile

1. Rewrite the boundary layer equations using the stream function (Chapter 4)

2. Rewrite the equation again Ψ = f(η)
√

νU∞x where η is the scaled wall-normal

coordinate and f(η) is a non-dimensional stream function

3. Lots of math ....

The Navier-Stokes equations are reduced to an ordinary differential equation (ODE)

f ′′′ +
1

2
ff ′′ = 0

with the boundary conditions 
f(0) = f ′(0) = 0

f ′η→∞ → 1.0
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The Blasius Velocity Profile

u

U∞
= f ′(η)

Note! u/U∞ → 1 as y → ∞ and therefore δ is usually defined as the distance from

the wall where u/U∞ = 0.99
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The Blasius Velocity Profile
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The Blasius Velocity Profile

τw = µ
∂u

∂y

∣∣∣∣
y=0

= µU∞

[
d

dη

(
u

U∞

)
dη

dy

]
η=0

η = y

√
U∞
νx

⇒ dη

dy
=

√
U∞
νx

⇒ τw = µU∞

√
U∞
νx

d

dη

(
u

U∞

)
η=0

=
ρU2

∞√
Rex

d

dη

(
u

U∞

)
η=0
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The Blasius Velocity Profile
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close the the wall the velocity profile is linear

η = 0.2 ⇒ u

U∞
≈ 0.0664

d

dη

(
u

U∞

)
η=0

≈ 0.0664

0.2
= 0.332

τw =
ρU2

∞√
Rex

d

dη

(
u

U∞

)
η=0
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ρU2

∞√
Rex
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Laminar Boundary Layer - Blasius

τw(x) ≈
0.332ρ1/2µ1/2U

3/2
∞

x1/2

Note! the wall shear stress drops off with increasing distance due to the boundary

layer growth

Recall for pipe flow, the wall shear stress is independent of x – pipe flow is confined

and the boundary layer height is restricted
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Laminar Boundary Layer - Blasius

wall shear stress:

τw(x) ≈
0.332ρ1/2µ1/2U

3/2
∞

x1/2

drag force:

D(x) = b

ˆ x

0
τw(x)dx ≈ 0.664bρ1/2µ1/2U3/2

∞ x1/2

drag coefficient:

CD =
2D(L)

ρU2
∞bL

≈ 1.328√
ReL
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Laminar Boundary Layer - Blasius

From before we have D(x) = ρb

ˆ δ(x)

0
u(U∞ − u)dy

D(x) = ρbU2
∞

ˆ δ(x)

0

u

U∞

(
1− u

U∞

)
dy︸ ︷︷ ︸

θ(x)

= ρbU2
∞θ(x)

b

ˆ x

0
τw(x)dx = ρbU2

∞θ(x) ≈ 0.664bρ1/2µ1/2U3/2
∞ x1/2 ⇒ θ(x) ≈ 0.664µ1/2x1/2

ρ1/2U
1/2
∞

⇒ θ(x) ≈ 0.664µ1/2x

ρ1/2U
1/2
∞ x1/2

and thus
θ(x)

x
≈ 0.664√

Rex
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Laminar Boundary Layer - Blasius

Displacement thickness:

δ∗ =

ˆ δ

0

(
1− u

U∞

)
dy

δ∗

x
≈ 1.721

Re
1/2
x

Note! since δ∗ is much smaller than x for large values of Rex, the velocity component

in the wall-normal direction will be much smaller than the velocity parallel to the plate
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Laminar Boundary Layer
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Laminar Boundary Layer

description variable laminar flow (Blasius) turbulent flow (Prandtl)

boundary layer thickness
δ

x

5.0√
Rex

displacement thickness
δ∗

x

1.721√
Rex

momentum thickness
θ

x

0.664√
Rex

shape factor H =
δ∗

θ
2.59

wall shear stress τw 0.332
ρU2

∞√
Rex

local skin friction coefficient cf =
2τw
ρU2

∞

0.664√
Rex

drag coefficient CD

1.328√
ReL
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The Blasius Velocity Profile - Self Similarity

u(y) = 0.99U∞
y = δ1

U∞

u(y) = 0.99U∞
y = δ2

U∞
δ(x)

x = x1 x = x2

y, v

x, u

η(x1, δ1) = η(x2, δ2) ⇒ δ1

√
U∞
νx1

= δ2

√
U∞
νx2

x1 < x2 ⇒

√
U∞
νx1

>

√
U∞
νx2

⇒ δ1 < δ2

From before:

η(x, y) = y

√
U∞
νx

u
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Roadmap - Flow Past Immersed Bodies
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Boundary Layer Transition

U∞ U∞ U∞ U∞

laminar transition turbulent

x

xcr

δ

u = 0.99U∞

Rex =
U∞x

ν

Rexcr =
U∞xcr

ν
≈ 5.0 × 10

5
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Boundary Layer Transition

I For low Rex, disturbances in the flow are damped out by viscous forces

I For somewhat higher Reynolds numbers, friction forces are less important and

the flow becomes unstable

I The transition region is short - can be treated as a point (the transition point)
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Boundary Layer Transition

The onset of transition from laminar to turbulent is affected by a number of factors

such as:

I Turbulence in the freestream

I Surface roughness

I Pressure gradient

With a smooth surface, no turbulence in the freestream, and zero pressure gradient,

the onset of transition can be pushed up to Rex ≈ 3.0× 106

As a rule of thumb, we can assume Rexcr ≈ 5.0× 105
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Boundary Layer Transition

Freestream turbulence:

I frestream turbulence reduces the critical Reynolds number

I with high turbulence intensity in the freestream, the transition can start already at

Rex ≈ 3.0× 105 or lower
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Boundary Layer Transition

Surface roughness:

I surface roughness does not affect transition significantly if Reε =
U∞ε

ν
< 680

I if Reε > 680, the extent of the laminar region can be shortened significantly

(Rex ≈ 3.0× 105)

Note! rule of thumb
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Boundary Layer Transition

Negative pressure gradient:

I decreasing pressure in the flow direction has a stabilizing effect on the flow and

can delay transition from laminar to turbulent flow

x

r

flow

dp

dx
> 0 x

r

flow

dp

dx
< 0
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Boundary Layer Transition

Forced transition:

I a trip wire or added surface roughness can make the transition to turbulence

really fast

I the critical Reynolds number is not meaningful if the boundary layer is forced to

transition
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Flat Plate - Turbulent Boundary Layer

A turbulent boundary layer grows faster than a laminar boundary layer

I the velocity fluctuations (u′, v′, w′) leads to increased exchange of momentum

I increased shear stress compared to the laminar case where we only have forces

related to molecular viscosity

I larger portion of the fluid will be decelerated close to the wall

Niklas Andersson - Chalmers 28 / 40



Flat Plate - Turbulent Boundary Layer

The Von Kármán integral relation and the integral estimates are valid for both

laminar and turbulent boundary layers

τw
ρ

=
d

dx

ˆ δ

0
u(U∞ − u)dy

θ =

ˆ δ

0

u

U∞

(
1− u

U∞

)
d

δ∗ =

ˆ δ

0

(
1− u

U∞

)
dy

We need a velocity profile u(y) for turbulent boundary layers to be able to
calculate τw, θ, and δ∗

I Approach 1: the log law
I Approach 2: Prandtl’s power law approximation
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Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

u

u∗
≈ 1

κ
ln
(
yu∗

ν

)
+ B where κ = 0.41 and B = 5.0

u∗ is the friction velocity defined as u∗ =

√
τw
ρ

at the edge of the boundary layer u = U∞ and y = δ and thus

U∞
u∗

≈ 1

κ
ln
(
δu∗

ν

)
+ B
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Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

The skin friction coefficient cf is defined as cf =
2τw
ρU2

∞
⇒ τw = cf

1

2
ρU2

∞

the friction velocity can be expressed as u∗ =

√
τw
ρ

= U∞

√
cf

2

insert in the log-law and we get

√
2

cf
≈ 1

κ
ln

(
Reδ

√
cf

2

)
+ B

rather difficult to work with ...

Niklas Andersson - Chalmers 31 / 40



Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’s power law approximation

Prandtl suggested the following relations:

cf ≈ 0.02Re
−1/6
δ

u

U∞
≈
(y
δ

)1/7
from before we have the following relation: τw = ρU2

∞
dθ

dx
⇒ cf = 2

dθ

dx

calculate the momentum thickness θ =

ˆ δ

0

u

U∞

(
1− u

U∞

)
dy =

7

72
δ
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Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’s power law approximation

Now, combining the two skin friction coefficient relations we see that

0.02Re
−1/6
δ = 2

d

dx

(
7

72
δ

)

and thus Re
−1/6
δ ≈ 9.72

dδ

dx
= 9.72

d(Reδ)

d(Rex)

integration gives Reδ ≈ 0.16Re
6/7
x or

δ

x
≈ 0.16

Re
1/7
x

Note! the turbulent boundary layer grows significantly faster than the laminar

δturb ∝ x6/7 vs δlam ∝ x1/2
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Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’s power law approximation

cf ≈
0.027

Re
1/7
x

τwturb
≈ 0.0135µ1/7ρ6/7U

13/7
∞

x1/7

Note! friction drops slowly with x, increases nearly as ρ and U2
∞, and is rather

insensitive to viscosity

Niklas Andersson - Chalmers 34 / 40



Flat Plate - Turbulent Boundary Layer

description variable laminar flow (Blasius) turbulent flow (Prandtl)

boundary layer thickness
δ

x

5.0√
Rex

0.16

Re
1/7
x

displacement thickness
δ∗

x

1.721√
Rex

0.02

Re
1/7
x

momentum thickness
θ

x

0.664√
Rex

0.016

Re
1/7
x

shape factor H =
δ∗

θ
2.59 1.29

wall shear stress τw 0.332
ρU2

∞√
Rex

0.0135
ρU2

∞

Re
1/7
x

local skin friction coefficient cf =
2τw
ρU2

∞

0.664√
Rex

0.027

Re
1/7
x

drag coefficient CD

1.328√
ReL

0.031

Re
1/7
L
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Flat Plate - Turbulent Boundary Layer

The velocity profile in a turbulent boundary layer is quite far from the Blasius profile

used for laminar boundary layers
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Flat Plate Boundary Layer

U∞ U∞ U∞ U∞

laminar transition turbulent

x

xcr

δ

u = 0.99U∞

Rex =
U∞x

ν

Rexcr =
U∞xcr

ν
≈ 5.0 × 10

5

D = b
1

2
ρU2

[ˆ xcr

>0

0.664

Re
1/2
x

dx +

ˆ L

xcr

0.027

Re
1/7
x

dx

]
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Flat Plate Boundary Layer

x

y

Boundary layer thickness

δ =
5.0x

Re
1/2
x

δ =
0.16x

Re
1/7
x

x

y

Boundary layer thickness

δ =
5.0x

Re
1/2
x

δ =
0.16x

Re
1/7
x

For a long boundary layer the length of the laminar region becomes relatively short in

comparison with the length of the turbulent region
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Wall Roughness
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Wall Roughness
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Wall Roughness
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Recall: smooth surface:

Surface roughness (ε) within

the viscous sublayer
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