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Chapter 7 - Flow Past Immersed Bodies
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

6 Explain what a boundary layer is and when/where/why it appears

21 Explain how the flat plate boundary layer is developed (transition from laminar

to turbulent flow)

22 Explain and use the Blasius equation

23 Define the Reynolds number for a flat plate boundary layer

24 Explain what is characteristic for a turbulent flow

29 Explain flow separation (separated cylinder flow)

30 Explain how to delay or avoid separation

31 Derive the boundary layer formulation of the Navier-Stokes equations

32 Understand and explain displacement thickness and momentum thickness

33 Understand, explain and use the concepts drag, friction drag, pressure drag,

and lift

Let’s take a deep dive into boundary-layer theory
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Roadmap - Flow Past Immersed Bodies
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Adverse Pressure Gradients and Separation
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Complementary Course Material

These lecture notes covers chapter 7 in the course book and additional course

material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf
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https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf


Motivation

”Understanding the mechanisms behind flow-related forces is a key factor to

success in many engineering applications”



External Flow

Significant viscous effects near the surface of an immersed body

Nearly inviscid far from the body

Unconfined - boundary layers are free to grow

Most often CFD or experiments are needed to analyze an external flow unless

the geometry is very simple
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Reynolds Number Effects
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Note: no simple theory exists for 1 < ReL < 1000
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Reynolds Number Effects
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Note! ReL and the local Reynolds number Rex are not the same
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Boundary Layer Equations

We will derive a set of equations suitable for boundary-layer flow analysis

Starting point: the non-dimensional equations derived in Chapter 5

We will assume two-dimensional, incompressible, steady-state flow

We will do an order-of-magnitude comparison of all the terms in the governing

equations on non-dimensional form and identify terms that can be neglected in

a thin-boundary-layer flow
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Boundary Layer Equations
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Boundary Layer Equations

To be able to find the relative sizes of different terms in the equations, we will first

have a look at the flow parameters and operators

u∗ = u/U∞ ∼ 1

x∗ = x/L ∼ 1

y∗ = y/L ∼ δ∗

δ denotes boundary layer thickness and δ∗ = δ/L

Note! here, u∗ is not the friction velocity and δ∗ is not the displacement thickness
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Boundary Layer Equations

y
∗ → δ

∗ ⇒ u
∗ → 1

y
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δ
∗

What about derivatives?

∂u∗

∂y∗
∼ 1− 0

δ∗
=

1

δ∗

∂2u∗

∂y∗2
=

∂

∂y∗
∂u∗

∂y∗
∼ |0− 1/δ∗|

δ∗
=

1

δ∗2

Note! The sign of terms is not important here, we are only interested in the

order of magnitude
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Boundary Layer Equations

continuity:
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Boundary Layer Equations
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Boundary Layer Equations

x-momentum:

u∗
∂u∗

∂x∗︸ ︷︷ ︸
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+ v∗
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∂y∗︸ ︷︷ ︸
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the boundary layer is assumed to be very thin ⇒ δ∗ � 1 and thus

∂2u∗

∂x∗2
� ∂2u∗

∂y∗2

assuming the inertial forces to be of the same size as the friction forces in the

boundary layer we get: 1/ReL ∼ δ∗2
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Boundary Layer Equations

y-momentum:

u∗
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examining the equation we see that all terms are at most of size δ∗ ⇒ ∂p∗

∂y∗
∼ δ∗

δ∗ is small ⇒ p is independent of y
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Boundary Layer Equations

The pressure can be assumed to be constant in the vertical direction through the

boundary layer and thus p = p(x)

δ(x)

pw

pδ

|p∗δ − p∗w| ≈
∂p∗

∂y∗
δ∗ ∼ δ∗

2
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Boundary Layer Equations

With the knowledge gained, we now move back to the dimensional equations

laminar

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+v

∂u

∂y
= −1

ρ

dp

dx
+ν

∂2u

∂y2

turbulent

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
− ∂

∂y
u′v′
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Boundary Layer Equations

y

x

u
∗

= 1

u
∗ ≈ 0

dx � 1

Limitations

1. The boundary layer equations do not apply close to the start of the

boundary layer where
∂u∗

∂x∗
� 1

2. The equations are derived assuming a thin boundary layer
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Boundary Layer Equations

The pressure derivative can be replaced with a velocity derivative

Outside of the boundary layer the flow is inviscid ⇒ we can use the Bernoulli

equation

p+
1

2
ρU2

∞ = const ⇒ dp

dx
+ ρU∞

dU∞
dx

= 0 ⇒ −1

ρ

dp

dx
= U∞

dU

dx
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Boundary Layer Equations

laminar boundary layer

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ ν
∂2u

∂y2

Two equations and two unknowns ⇒ possible to solve�
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Boundary Layer Equations

Note! the boundary layer equations can be used for curved surfaces if the boundary

layer thickness δ is small compared to the curvature radius r
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