Fluid Mechanics - MTF053

Lecture 13

Niklas Andersson

Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Mechanics
Gothenburg, Sweden
niklas.andersson@chalmers.se

Chapter 6 - Viscous Flow in Ducts

Overview

Reynolds decom-

 position

Learning Outcomes

3 Define the Reynolds number
4 Be able to categorize a flow and have knowledge about how to select applicable methods for the analysis of a specific flow based on category
6 Explain what a boundary layer is and when/where/why it appears
8 Understand and be able to explain the concept shear stress
18 Explain losses appearing in pipe flows
19 Explain the difference between laminar and turbulent pipe flow
20 Solve pipe flow problems using Moody charts
24 Explain what is characteristic for a turbulent flow
25 Explain Reynolds decomposition and derive the RANS equations
26 Understand and explain the Boussinesq assumption and turbulent viscosity
27 Explain the difference between the regions in a boundary layer and what is characteristic for each of the regions (viscous sub layer, buffer region, log region) if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)

Complementary Course Material

These lecture notes covers chapter 6 in the course book and additional course material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf

Roadmap - Viscous Flow in Ducts

Turbulent Pipe Flow

Laminar flow

Turbulent flow

Turbulent Pipe Flow

As we did for laminar pipe flow, we will now obtain the friction factor for turbulent pipe flow

$$
\tau_{w}=f_{D} \frac{\rho V^{2}}{8}=\rho u^{* 2} \Rightarrow f_{D}=8\left(\frac{V}{u^{*}}\right)^{-2}
$$

So, what we need now is an estimate of the average flow velocity in the pipe (V) ...

There are different ways to do this and here is one example:

1. Assume that we can use the log-law all the way across the pipe
2. Integrate to get the average velocity
3. Insert the calculated average velocity into the relation above

Turbulent Pipe Flow

$$
\left.\begin{array}{c}
f_{D}=8\left(\frac{V}{u^{*}}\right)^{-2} \\
\frac{\bar{u}(r)}{u^{*}} \approx \frac{1}{\kappa} \ln \frac{(R-r) u^{*}}{\nu}+B \\
V=\frac{Q}{A}=\frac{1}{\pi R^{2}} \int_{0}^{R} \bar{u}(r) 2 \pi r d r
\end{array}\right\} \Rightarrow \frac{V}{u^{*}} \approx \frac{1}{\pi R^{2}} \int_{0}^{R}\left[\frac{1}{\kappa} \ln \frac{(R-r) u^{*}}{\nu}+B\right] r d r \quad .
$$

with $\kappa=0.41$ and $B=5.0$ we get

$$
\frac{V}{u^{*}} \approx 2.44 \ln \frac{R u^{*}}{\nu}+1.34
$$

$$
\begin{gathered}
\frac{V}{u^{*}}=\frac{2}{R^{2}} \int_{0}^{R}\left[\frac{r}{\kappa} \ln \left(\frac{(R-r) u^{*}}{\nu}\right)+B r\right] d r=\frac{2}{k R^{2}} \int_{0}^{R}\left[\ln (R-r)+\ln \left(\frac{u^{*}}{\nu}\right)+B \kappa\right] r d r= \\
=\frac{1}{\kappa}\left(\ln \left(\frac{u^{*}}{\nu}\right)+B \kappa\right)+\frac{2}{k R^{2}} \int_{0}^{R} r \ln (R-r) d r= \\
=\frac{1}{k} \ln \left(\frac{u^{*}}{\nu}\right)+B+\frac{2}{k R^{2}}\left[\frac{1}{4}\left(-2\left(R^{2}-r^{2}\right) \ln (R-r)-r(2 R+r)\right)\right]_{0}^{R}= \\
=\frac{1}{\kappa} \ln \left(\frac{R u^{*}}{\nu}\right)+B-\frac{3}{2 \kappa}=\{\kappa=0.41, B=5.0\}=2.44 \ln \frac{R u^{*}}{\nu}+1.34
\end{gathered}
$$

Turbulent Pipe Flow

$$
\frac{V}{u^{*}} \approx 2.44 \ln \frac{R u^{*}}{\nu}+1.34
$$

The argument of the logarithm can be rewritten as

$$
\frac{R u^{*}}{\nu}=\frac{V D}{2 \nu} \frac{u^{*}}{V}=\left\{R e_{D}=\frac{V D}{\nu}, f_{D}=8\left(\frac{u^{*}}{V}\right)^{2}\right\}=\frac{1}{2} R e_{D}\left(\frac{f_{D}}{8}\right)^{1 / 2}
$$

and thus:

$$
\frac{1}{\sqrt{f_{D}}} \approx 2.0 \log _{10}\left(R e_{D} \sqrt{f_{D}}\right)-0.8
$$

Turbulent Pipe Flow

Alternative 2:
If we assume that $\frac{\bar{u}}{u^{*}}=8.3\left(\frac{u^{*} y}{\nu}\right)^{1 / 7}$ applies all over the cross section we get

$$
f_{D}=\frac{0.3164}{R e_{D}^{1 / 4}}
$$

Roadmap - Viscous Flow in Ducts

Wall Roughness

Effects of surface roughness on friction:

- Negligible for laminar pipe flow
- Significant for turbulent flow
\rightarrow breaks up the viscous sublayer

\rightarrow modifies the log law (changes the value of the integration constant B)

$$
\Delta B \propto(1 / \kappa) \ln \epsilon^{+} \quad \text { where } \epsilon^{+}=\frac{\epsilon U^{*}}{\nu}
$$

Wall Roughness

$$
\frac{\epsilon U^{*}}{\nu}<5
$$

hydraulically smooth
no effects of roughness
$5 \leq \frac{\epsilon U^{*}}{\nu} \leq 70 \quad$ transitional
moderate Reynolds number effects ${ }^{0.02-}$
$\frac{\epsilon U^{*}}{\nu}>70$
fully rough
sublayer totally broken up
independent of Reynolds number

Wall Roughness

$$
\begin{array}{ll}
\frac{\epsilon U^{*}}{\nu}<5 & \begin{array}{l}
\text { hydraulically smooth } \\
\text { no effects of roughness }
\end{array} \\
5 \leq \frac{\epsilon U^{*}}{\nu} \leq 70 & \begin{array}{l}
\text { transitional } \\
\text { moderate Reynolds number effects }
\end{array} \\
\frac{\epsilon U^{*}}{\nu}>70 & \begin{array}{l}
y^{+} \\
\text {fully rough } \\
\text { sublayer totally broken up } \\
\text { independent of Reynolds number }
\end{array}
\end{array}
$$

Wall Roughness

Ra	Roughness Average
Rq	RMS Roughness
$\mathbf{R p}$	Maximum Profile Peak Height
Rpm	Average Maximum Profile Peak Height
$\mathbf{R v}$	Maximum Profile Valley Depth
$\mathbf{R t}$	Maximum Height of the Profile
$\mathbf{R z}$	Average Maximum Height of the Profile

arithmetic average of the absolute values of the profile heights root mean square average of the profile heights distance between the highest point of the profile and the mean line average of the successive values of $\mathbf{R p}$ distance between the deepest valley of the profile and the mean line vertical distance between the highest and lowest points of the profile average of the successive values of Rt

Wall Roughness

$$
\frac{1}{\sqrt{f_{D}}}=-2.0 \log _{10}\left(\frac{\epsilon / D}{3.7}+\frac{2.5}{R e_{D} \sqrt{f_{D}}}\right)
$$

The Moody Chart

The Moody Chart

The Moody Chart

The Moody Chart

Wall Roughness

Material Condition $\epsilon[\mathrm{mm}] \quad$ Uncertainty [\%]

Steel	Sheet metal (new)	0.05	± 60
	Stainless (new)	0.002	± 50
	Commercial (new)	0.046	± 30
	Riveted	3.0	± 70
	Rusted	2.0	± 50
Iron	Cast (new)	0.26	± 50
	Wrought (new)	0.046	± 40
	Galvanized (new)	0.15	± 50
	Asphalted cast	0.12	± 50
Brass	Drawn (new)	0.002	± 60
Glastic	Drawn tubing	0.0015	± 60
Concrete	Smoothed	0.04	± 50
	Rough	2.0	± 60
Rubber	Smoothed	0.01	± 40
Wood	Stave	0.5	

Roadmap - Viscous Flow in Ducts

Non-circular Ducts

Use the same formulas of the Moody chart but replace the pipe diameter D with the hydraulic diameter D_{h}

$$
D_{h}=\frac{4 A}{\mathcal{P}}
$$

where A is the cross section area and \mathcal{P} is the wetter perimeter

$$
\Delta p_{f}=f_{D} \frac{L}{D_{h}} \frac{\rho V^{2}}{2}, R e_{D_{h}}=\frac{V D_{h}}{\nu}, \frac{\epsilon}{D_{h}}
$$

Non-circular Ducts

a / b	D_{h}	C
0.7	$1.17 a$	65.0
0.5	$1.30 a$	68.0
0.3	$1.44 a$	73.0
0.2	$1.50 a$	78.0
0.1	$1.55 a$	79.0

$$
\begin{array}{cc}
d_{i} / d_{0} & C \\
\hline \frac{d_{i}}{d_{0}}=0.10 & 89.2 \\
\frac{d_{i}}{d_{0}}=0.25 & 94.0 \\
0.5<\frac{d_{i}}{d_{0}}<1.0 & 96.0
\end{array}
$$

$$
D_{h}=d_{o}-d_{i}
$$

Non-circular Ducts

Laminar flow:

$$
f_{D}=\frac{C}{R e_{D_{n}}}
$$

(for circular pipes: $C=64$ and $D_{h}=D$)

Non-circular Ducts

Flow between parallel plates

- vertical distance between plates: a
- plate width: b

$$
D_{h}=\frac{4 A}{\mathcal{P}}=\left.\frac{4 a b}{2 a+2 b}\right|_{b \rightarrow \infty}=\frac{4 a b}{2 b}=2 a
$$

Roadmap - Viscous Flow in Ducts

Local Losses

Local Losses

Swirl generated by:

- Inlets or outlets
- Sudden area changes
- Bends
- Valves

$$
\Delta p_{f_{\text {tot }}}=\sum_{i} f_{D_{i}} \frac{L_{i}}{D_{i}} \frac{\rho V_{i}^{2}}{2}+\sum_{j} K_{j} \frac{\rho V_{j}^{2}}{2}
$$

- Gradual expansions or contractions

Local Losses

Generated swirl will be damped out by inner friction

Kinetic energy is converted to internal energy, which results in a pressure loss

Local Losses

Roadmap - Viscous Flow in Ducts

Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Given data:

Oil with the density $\rho=950.0 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $\nu=2.0 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ flows through a $L=100 \mathrm{~m}$ long pipe with the diameter $D=0.3 \mathrm{~m}$. The roughness ratio is $\varepsilon / D=2.0 \times 10^{-4}$ and the head loss is $h_{f}=8.0 \mathrm{~m}$.

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find the average flow velocity (V) and the flow rate (Q)

Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

We are given a measure of the head loss $\left(h_{f}\right)$ for the pipe

The definition of the Darcy friction factor gives a relation between head loss $\left(h_{f}\right)$ and the average velocity (V)

$$
h_{f}=f \frac{V^{2}}{2 g} \frac{L}{D}
$$

To be able to calculate the average velocity (V), we need the friction factor (f)

Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook's formula gives a relation between friction factor (f) and average flow velocity (V)

$$
\frac{1}{\sqrt{f}}=-2.0 \log \left(\frac{\varepsilon / D}{3.7}+\frac{2.51}{R e_{D} \sqrt{f}}\right)
$$

Use an iterative approach to find the friction factor (f) using Colebrook's relation and

$$
R e_{D}=\frac{V D}{\nu}, \text { where } V=\sqrt{\frac{2 h_{f} g D}{L}}
$$

Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

```
import numpy as np
def GetVelocity(hf,f,D,L):
    return np.sqrt((2.*9.81*hf*D)/(f*L))
def GetReynoldsNumber(D,V,nu):
    return D*V/nu
def Colebrook(f,D,nu,eps,V):
    # Colebrook friction factor
    return -2.0*np.log10(((eps/D)/3.7) +(2.51/(GetReynoldsNumber (D,V,nu)*np.
        sqrt(f)))) -1./np.sqrt(f)
def GetFlowRate(V,D):
    return (V*np.pi*D**2)/4.
```


Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

```
17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 D = 3.0e-1 # pipe diameter [m]
19 L = 1.0e2 # pipe length [m]
20 hf = 8.0 # head loss [m]
21 eps = 2.0e-4*D # surface roughness [m]
22 f = 1.5e-2 # friction factor (inital guess)
24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 V = GetVelocity(hf,f,D,L)
30 ff = Colebrook(f,D,nu,eps,V)
31 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
32 f = f_old-(ff/dff)
```

Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Given data:

Oil with the density $\rho=950.0 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $\nu=2.0 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ flows through a $L=100 \mathrm{~m}$ long pipe at a flow rate of $Q=0.342 \mathrm{~m}^{3} / \mathrm{s}$. The surface roughness is $\varepsilon=0.06 \mathrm{~mm}$ and the head loss is $h_{f}=8.0 \mathrm{~m}$.

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find the pipe diameter (D)

Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

We are given a measure of the head loss $\left(h_{f}\right)$ for the pipe

The definition of the Darcy friction factor gives a relation between head loss $\left(h_{f}\right)$ and the pipe diameter (D)

$$
h_{f}=f \frac{V^{2} L}{2 g} \frac{D}{D}=\left\{Q=V \frac{\pi D^{2}}{4}\right\}=f \frac{8 Q^{2} L}{\pi^{2} g D^{5}}
$$

To be able to calculate the pipe diameter (D), we need the friction factor (f)

Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook's formula gives a relation between friction factor (f) and pipe diameter (D)

$$
\frac{1}{\sqrt{f}}=-2.0 \log \left(\frac{\varepsilon / D}{3.7}+\frac{2.51}{R e_{D} \sqrt{f}}\right)
$$

Use an iterative approach to find the friction factor (f) using Colebrook's relation and

$$
R e_{D}=\frac{V D}{\nu}, \text { where } V=\frac{4 Q}{\pi D^{2}}
$$

Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

```
import numpy as np
def GetDiameter(hf,f,L,Q):
    return ((8.*f*Q**2*L)/(9.81*np.pi**2*hf))**(1./5.)
def GetReynoldsNumber(D,V,nu):
    return D*V/nu
def Colebrook(f,D,nu,eps,V):
    # Colebrook friction factor
    return -2.0*np.log10(((eps/D)/3.7) +(2.51/(GetReynoldsNumber (D,V,nu)*np.
        sqrt(f)))) -1./np.sqrt(f)
def GetVelocity(Q,D):
    return 4.*Q/(np.pi*D**2)
```


Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

```
17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 L = 1.0e2 # pipe length [m]
19 hf = 8.0
20 eps = 6.0e-5 # surface roughness [m]
21Q = 3.42e-1 # flow rate [m^3/s]
22 f = 1.5e-2 # friction factor (inital guess)
23
24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 D = GetDiameter(hf,f,L,Q)
30 V = GetVelocity(Q,D)
31 ff = Colebrook(f,D,nu,eps,V)
32 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
33 f = f_old-(ff/dff)
```


Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Given data:

A smooth plastic pipe is to be designed to carry $Q=0.25 \mathrm{~m}^{3} / \mathrm{s}$ of water at $20^{\circ} \mathrm{C}$ through a $L=300 m$ horizontal pipe with the exit at atmospheric pressure. The pressure drop is approximated to be $\Delta p=1.7 \mathrm{MPa}$.

Water @ $20^{\circ} \mathrm{C}: \rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} /(\mathrm{ms})\left(\nu=1.002 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find a suitable pipe diameter (D)

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The energy equation on integral form gives us a relation between the pressure drop Δp and the pipe head loss h_{f}

$$
\left(\frac{p}{\rho g}+\frac{\alpha V^{2}}{2 g}+z\right)_{1}=\left(\frac{p}{\rho g}+\frac{\alpha V^{2}}{2 g}+z\right)_{2}+h_{t}-h_{p}+h_{f}
$$

1. Steady-state, incompressible flow $\left(Q_{1}=Q_{2}=Q\right)$ in a constant-diameter pipe $\left(D_{1}=D_{2}=D\right) \Rightarrow V_{1}=V_{2}=V$
2. Fully-developed turbulent pipe flow with constant average velocity \Rightarrow $\alpha_{1}=\alpha_{2}=\alpha$
3. No information about elevation change is given so we will assume that $z_{1}=z_{2}=z$
4. There are no turbines or pumps in the pipe $\Rightarrow h_{t}=h_{p}=0$.

$$
\frac{p_{1}-p_{2}}{\rho g}=\frac{\Delta p}{\rho g}=h_{f}
$$

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Again, we will use the definition of the Darcy friction factor (f) to get a relation between the losses and the pipe diameter

$$
h_{f}=f \frac{V^{2}}{2 g} \frac{L}{D} \Rightarrow\left\{h_{f}=\frac{\Delta p}{\rho g}, Q=V \frac{\pi D^{2}}{4}\right\} \Rightarrow f=\frac{\pi^{2} \Delta \rho}{8 Q^{2} L \rho} D^{5}
$$

To be able to calculate the pipe diameter (D), we need the friction factor (f)

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in smooth pipes, Prandtl's formula gives a relation between friction factor (f) and pipe diameter (D)

$$
\frac{1}{\sqrt{f}}=2.0 \log \left(R e_{D} \sqrt{f}\right)-0.8
$$

Use an iterative approach to find the friction factor (f) using Prandtl's relation and

$$
R e_{D}=\frac{V D}{\nu}, \text { where } V=\frac{4 Q}{\pi D^{2}}
$$

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

```
import numpy as np
def GetDiameter(Dp,rho,f,L,Q):
    return ((8.*f*Q**2*L*rho)/(np.pi**2*Dp))**(1./5.)
def GetReynoldsNumber(D,V,nu):
    return D*V/nu
def Prandtl(f,D,nu,V):
    # Prandtl friction factor
    return 2.0*np.log10(GetReynoldsNumber(D,V,nu)*np.sqrt(f))-0.8-(1./np.
        sqrt(f));
def GetVelocity(Q,D):
    return 4.*Q/(np.pi*D**2)
```


Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

```
16 rho = 998.0 # fluid density [kg/m^3]
7 mu = 1.0e-3 # fluid viscosity [kg/ms]
18 nu = mu/rho # fluid viscosity [m^2/s]
19 L = 3.0e2 # pipe length [m]
20 Dp = 1.7e6 # pressure drop [Pa]
21 Q = 2.5e-1 # flow rate [m^3/s]
f = 1.5e-2 # friction factor (inital guess)
23
# Newton-Raphson solver
f_old = 1.0e3
df = 1.0e-6
while np.abs(f-f_old)>1.0e-6*f:
        f_old = f
        D = GetDiameter(Dp,rho,f,L,Q)
        V = GetVelocity(Q,D)
        ff = Prandtl(f,D,nu,V)
        dff = (Prandtl(f+df,D,nu,V)-Prandtl(f-df,D,nu,V))/(2.*df)
        f = f_old-(ff/dff)
```

Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Roadmap - Viscous Flow in Ducts

On-Demand Hyperloop-Style Water Delivery

NOW THAT AMAZON IS ADVERTISING
ONE-HOUR DELIVERY OF BOTTEED WATER,

I VOTE WE START CALLUNG MUNICIPAL PLUMBING "ON-DEMAND HMPERLOOP-STYLE WATER DEUVERY" AND SEE IF WE CAN SELL ANYONE ON THE IDEA.

