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Chapter 6 - Viscous Flow in Ducts
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Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

6 Explain what a boundary layer is and when/where/why it appears

8 Understand and be able to explain the concept shear stress

18 Explain losses appearing in pipe flows

19 Explain the difference between laminar and turbulent pipe flow

20 Solve pipe flow problems using Moody charts

24 Explain what is characteristic for a turbulent flow

25 Explain Reynolds decomposition and derive the RANS equations

26 Understand and explain the Boussinesq assumption and turbulent viscosity

27 Explain the difference between the regions in a boundary layer and what is

characteristic for each of the regions (viscous sub layer, buffer region, log region)

if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)
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Complementary Course Material

These lecture notes covers chapter 6 in the course book and additional course

material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf
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https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf
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Turbulent Pipe Flow
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Turbulent Pipe Flow

As we did for laminar pipe flow, we will now obtain the friction factor for turbulent

pipe flow

τw = fD
ρV2

8
= ρu∗2 ⇒ fD = 8

(
V

u∗

)−2

So, what we need now is an estimate of the average flow velocity in the pipe (V ) ...

There are different ways to do this and here is one example:

1. Assume that we can use the log-law all the way across the pipe

2. Integrate to get the average velocity

3. Insert the calculated average velocity into the relation above
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Turbulent Pipe Flow

fD = 8

(
V

u∗

)−2

u(r)

u∗
≈ 1

κ
ln (R − r)u∗

ν
+ B

V =
Q

A
=

1

πR2

ˆ R

0
u(r)2πrdr

 ⇒ V

u∗
≈ 1

πR2

ˆ R

0

[
1

κ
ln (R − r)u∗

ν
+ B

]
rdr

with κ = 0.41 and B = 5.0 we get

V

u∗
≈ 2.44 ln Ru∗

ν
+ 1.34
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Turbulent Pipe Flow
�

V

u∗
=

2

R2

ˆ R

0

[
r

κ
ln

(
(R − r)u∗

ν

)
+ Br

]
dr =

2

κR2

ˆ R

0

[
ln(R − r) + ln

(
u∗

ν

)
+ Bκ

]
rdr =

=
1

κ

(
ln

(
u∗

ν

)
+ Bκ

)
+

2

κR2

ˆ R

0
r ln(R − r)dr =

=
1

κ
ln

(
u∗

ν

)
+ B+

2

κR2

[
1

4

(
−2(R2 − r2) ln(R − r)− r(2R + r)

)]R
0

=

=
1

κ
ln

(
Ru∗

ν

)
+ B− 3

2κ
= {κ = 0.41, B = 5.0} = 2.44 ln Ru∗

ν
+ 1.34
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Turbulent Pipe Flow

V

u∗
≈ 2.44 ln Ru∗

ν
+ 1.34

The argument of the logarithm can be rewritten as

Ru∗

ν
=

VD

2ν

u∗

V
=

{
ReD =

VD

ν
, fD = 8

(
u∗

V

)2
}

=
1

2
ReD

(
fD

8

)1/2

and thus:

1√
fD

≈ 2.0 log10(ReD
√
fD)− 0.8
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Turbulent Pipe Flow

Alternative 2:

If we assume that
u

u∗
= 8.3

(
u∗y

ν

)1/7

applies all over the cross section we get

fD =
0.3164

Re
1/4
D
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Wall Roughness

101 102 103
5

10

15
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25

u
+

=
1

κ
ln
(
y
+
)
+ B

u
+

=
1

κ
ln
(

y+

ε+

)
+ B + C

∆B =
1

κ
ln
(
ε
+
)
− C

y+

u+

Effects of surface roughness on friction:

I Negligible for laminar pipe flow

I Significant for turbulent flow

I breaks up the viscous sublayer
I modifies the log law (changes the value of the integration constant B)

∆B ∝ (1/κ) ln ε+ where ε+ =
εu∗

ν
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Wall Roughness

εu∗

ν
< 5 hydraulically smooth

no effects of roughness

5 ≤ εu∗

ν
≤ 70 transitional

moderate Reynolds number effects

εu∗

ν
> 70 fully rough

sublayer totally broken up

independent of Reynolds number
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Wall Roughness

εu∗

ν
< 5 hydraulically smooth

no effects of roughness

5 ≤ εu∗

ν
≤ 70 transitional

moderate Reynolds number effects

εu∗

ν
> 70 fully rough

sublayer totally broken up

independent of Reynolds number

0 2 4 6 8 10 12 14

0

10

20

30

viscous sublayer

ε

u(y)

u+

y+

viscous sublayer (y+ = 5)
nominal surface

rough surface

Niklas Andersson - Chalmers 16 / 55



Wall Roughness
�

Ra Roughness Average arithmetic average of the absolute values of the profile heights

Rq RMS Roughness root mean square average of the profile heights

Rp Maximum Profile Peak Height distance between the highest point of the profile and the mean line

Rpm Average Maximum Profile Peak Height average of the successive values of Rp

Rv Maximum Profile Valley Depth distance between the deepest valley of the profile and the mean line

Rt Maximum Height of the Profile vertical distance between the highest and lowest points of the profile

Rz Average Maximum Height of the Profile average of the successive values of Rt
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Wall Roughness

1√
fD

= −2.0 log10
(
ε/D

3.7
+

2.5

ReD
√
fD

)
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The Moody Chart
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The Moody Chart
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The Moody Chart
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The Moody Chart
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Wall Roughness

Material Condition ε [mm] Uncertainty [%]

Steel Sheet metal (new) 0.05 ± 60

Stainless (new) 0.002 ± 50

Commercial (new) 0.046 ± 30

Riveted 3.0 ± 70

Rusted 2.0 ± 50

Iron Cast (new) 0.26 ± 50

Wrought (new) 0.046 ± 20

Galvanized (new) 0.15 ± 40

Asphalted cast 0.12 ± 50

Brass Drawn (new) 0.002 ± 50

Plastic Drawn tubing 0.0015 ± 60

Glass - smooth

Concrete Smoothed 0.04 ± 60

Rough 2.0 ± 50

Rubber Smoothed 0.01 ± 60

Wood Stave 0.5 ± 40
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Non-circular Ducts

Use the same formulas of the Moody chart but replace the pipe diameter D with the

hydraulic diameter Dh

Dh =
4A

P

where A is the cross section area and P is the wetter perimeter

∆pf = fD
L

Dh

ρV2

2
, ReDh

=
VDh

ν
,

ε

Dh
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Non-circular Ducts

a

b

a/b Dh C

0.7 1.17a 65.0

0.5 1.30a 68.0

0.3 1.44a 73.0

0.2 1.50a 78.0

0.1 1.55a 79.0

a

b

b/a Dh C

1.0 1.00a 57.0

1.25 1.11a 57.6

2.0 1.33a 62.0

3.0 1.50a 69.0

4.0 1.60a 73.0

5.0 1.67a 78.0

8.0 1.78a 83.0

10.0 1.82a 85.0

α α

α a

Dh C

0.58a 53.0

do

di

di/do C

di

do
= 0.10 89.2

di

do
= 0.25 94.0

0.5 <
di

do
< 1.0 96.0

Dh = do − di

a

Dh C

2.0a 96.0
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Non-circular Ducts

Laminar flow:

fD =
C

ReDh

(for circular pipes: C = 64 and Dh = D)
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Non-circular Ducts

a

bFlow between parallel plates

I vertical distance between plates: a

I plate width: b

Dh =
4A

P
=

4ab

2a+ 2b

∣∣∣∣
b→∞

=
4ab

2b
= 2a
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Local Losses
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Local Losses

Swirl generated by:

I Inlets or outlets

I Sudden area changes

I Bends

I Valves

I Gradual expansions or contractions

∆pf = K
ρV2

2

∆pftot =
∑
i

fDi

Li

Di

ρV2
i

2
+
∑
j

Kj

ρV2
j

2
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Local Losses

Generated swirl will be damped out by inner friction

Kinetic energy is converted to internal energy, which results in a pressure loss
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Local Losses
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Given data:

Oil with the density ρ = 950.0 kg/m3 and viscosity ν = 2.0× 10−5 m2/s flows
through a L = 100 m long pipe with the diameter D = 0.3 m. The roughness ratio is

ε/D = 2.0× 10−4 and the head loss is hf = 8.0 m.

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find the average flow velocity (V ) and the flow rate (Q)
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

We are given a measure of the head loss (hf ) for the pipe

The definition of the Darcy friction factor gives a relation between head loss

(hf ) and the average velocity (V )

hf = f
V2

2g

L

D

To be able to calculate the average velocity (V ), we need the friction factor (f )

Niklas Andersson - Chalmers 36 / 55



Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook’s formula gives a relation

between friction factor (f ) and average flow velocity (V )

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51

ReD
√
f

)

Use an iterative approach to find the friction factor (f ) using Colebrook’s relation

and

ReD =
VD

ν
, where V =

√
2hfgD

L
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

1 import numpy as np
2

3 def GetVelocity(hf,f,D,L):
4 return np.sqrt((2.*9.81*hf*D)/(f*L))
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Colebrook(f,D,nu,eps,V):
10 # Colebrook friction factor
11 return -2.0*np.log10(((eps/D)/3.7)+(2.51/(GetReynoldsNumber(D,V,nu)*np.

sqrt(f))))-1./np.sqrt(f)
12

13 def GetFlowRate(V,D):
14 return (V*np.pi*D**2)/4.
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 D = 3.0e-1 # pipe diameter [m]
19 L = 1.0e2 # pipe length [m]
20 hf = 8.0 # head loss [m]
21 eps = 2.0e-4*D # surface roughness [m]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 V = GetVelocity(hf,f,D,L)
30 ff = Colebrook(f,D,nu,eps,V)
31 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
32 f = f_old-(ff/dff)
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Result:

Average flow velocity V 4.84 m/s

Flow rate Q 0.342 m3/s
Reynolds number ReD 72585

Friction factor f 0.0201

IFLOW
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1
00
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laminar
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Given data:

Oil with the density ρ = 950.0 kg/m3 and viscosity ν = 2.0× 10−5 m2/s flows
through a L = 100 m long pipe at a flow rate of Q = 0.342 m3/s. The surface
roughness is ε = 0.06 mm and the head loss is hf = 8.0 m.

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find the pipe diameter (D)
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

We are given a measure of the head loss (hf ) for the pipe

The definition of the Darcy friction factor gives a relation between head loss

(hf ) and the pipe diameter (D)

hf = f
V2

2g

L

D
=

{
Q = V

πD2

4

}
= f

8Q2L

π2gD5

To be able to calculate the pipe diameter (D), we need the friction factor (f )
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook’s formula gives a relation

between friction factor (f ) and pipe diameter (D)

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51

ReD
√
f

)

Use an iterative approach to find the friction factor (f ) using Colebrook’s relation

and

ReD =
VD

ν
, where V =

4Q

πD2
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

1 import numpy as np
2

3 def GetDiameter(hf,f,L,Q):
4 return ((8.*f*Q**2*L)/(9.81*np.pi**2*hf))**(1./5.)
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Colebrook(f,D,nu,eps,V):
10 # Colebrook friction factor
11 return -2.0*np.log10(((eps/D)/3.7)+(2.51/(GetReynoldsNumber(D,V,nu)*np.

sqrt(f))))-1./np.sqrt(f)
12

13 def GetVelocity(Q,D):
14 return 4.*Q/(np.pi*D**2)
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 L = 1.0e2 # pipe length [m]
19 hf = 8.0 # head loss [m]
20 eps = 6.0e-5 # surface roughness [m]
21 Q = 3.42e-1 # flow rate [m^3/s]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 D = GetDiameter(hf,f,L,Q)
30 V = GetVelocity(Q,D)
31 ff = Colebrook(f,D,nu,eps,V)
32 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
33 f = f_old-(ff/dff)

Niklas Andersson - Chalmers 45 / 55



Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Result:

Pipe diameter D 0.299 m

Average flow velocity V 4.84 m/s
Reynolds number ReD 72579

Friction factor f 0.0201
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Given data:

A smooth plastic pipe is to be designed to carry Q = 0.25 m3/s of water at 20◦C
through a L = 300 m horizontal pipe with the exit at atmospheric pressure. The

pressure drop is approximated to be ∆p = 1.7 MPa.

Water @ 20◦C: ρ = 998 kg/m3 and µ = 0.001 kg/(ms) (ν = 1.002× 10−6 m2/s)

Assumptions:

steady-state, fully developed, turbulent, incompressible pipe flow

Task:

Find a suitable pipe diameter (D)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The energy equation on integral form gives us a relation between the pressure

drop ∆p and the pipe head loss hf(
p

ρg
+

αV2

2g
+ z

)
1

=

(
p

ρg
+

αV2

2g
+ z

)
2

+ ht − hp + hf

1. Steady-state, incompressible flow (Q1 = Q2 = Q) in a constant-diameter pipe

(D1 = D2 = D) ⇒ V1 = V2 = V

2. Fully-developed turbulent pipe flow with constant average velocity ⇒
α1 = α2 = α

3. No information about elevation change is given so we will assume that

z1 = z2 = z

4. There are no turbines or pumps in the pipe ⇒ ht = hp = 0.

p1 − p2

ρg
=

∆p

ρg
= hf
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Again, we will use the definition of the Darcy friction factor (f ) to get a relation

between the losses and the pipe diameter

hf = f
V2

2g

L

D
⇒

{
hf =

∆p

ρg
,Q = V

πD2

4

}
⇒ f =

π2∆p

8Q2Lρ
D5

To be able to calculate the pipe diameter (D), we need the friction factor (f )
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in smooth pipes, Prandtl’s formula gives a relation between

friction factor (f ) and pipe diameter (D)

1√
f
= 2.0 log

(
ReD

√
f
)
− 0.8

Use an iterative approach to find the friction factor (f ) using Prandtl’s relation and

ReD =
VD

ν
, where V =

4Q

πD2

Niklas Andersson - Chalmers 50 / 55



Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

1 import numpy as np
2

3 def GetDiameter(Dp,rho,f,L,Q):
4 return ((8.*f*Q**2*L*rho)/(np.pi**2*Dp))**(1./5.)
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Prandtl(f,D,nu,V):
10 # Prandtl friction factor
11 return 2.0*np.log10(GetReynoldsNumber(D,V,nu)*np.sqrt(f))-0.8-(1./np.

sqrt(f));
12

13 def GetVelocity(Q,D):
14 return 4.*Q/(np.pi*D**2)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

16 rho = 998.0 # fluid density [kg/m^3]
17 mu = 1.0e-3 # fluid viscosity [kg/ms]
18 nu = mu/rho # fluid viscosity [m^2/s]
19 L = 3.0e2 # pipe length [m]
20 Dp = 1.7e6 # pressure drop [Pa]
21 Q = 2.5e-1 # flow rate [m^3/s]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 D = GetDiameter(Dp,rho,f,L,Q)
30 V = GetVelocity(Q,D)
31 ff = Prandtl(f,D,nu,V)
32 dff = (Prandtl(f+df,D,nu,V)-Prandtl(f-df,D,nu,V))/(2.*df)
33 f = f_old-(ff/dff)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Result:

Pipe diameter D 0.156 m

Average flow velocity V 13.1 m/s
Reynolds number ReD 2036821

Friction factor f 0.01034
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https://onlineflowcalculator.com/pages/IFLOW/calculator.html?json=https://fluidmech.onlineflowcalculator.com/Examples/JSON/IFLOW_DUCT_FLOW_EXAMPLE_3.json
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On-Demand Hyperloop-Style Water Delivery
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