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Chapter 6 - Viscous Flow in Ducts



Overview

Fluid Dynamics

Basic

Concepts

Pressure

hydrostatic

forces

buoyancy

Fluid Flow

velocity

field

Reynolds

number

flow

regimes Thermo-

dynamicspressure,

density,

and tem-

perature

state

relations speed of

sound

entropy

Fluid

fluid

concept

continuum

viscosity

Fluid Flow

Com-

pressible

Flow
shock-

expansion

theory

nozzle

flow

normal

shocks

speed of

sound

External

Flow

separation

turbulence

boundary

layer

Reynolds

number

Duct Flow
friction

and losses

turbulent

flow

laminar

flowflow

regimes

Turbulence
Turbu-

lence

Modeling

Turbu-

lence

viscosity

Reynolds

stresses

Reynolds

decom-

position

Flow

Relations

Dimen-

sional

Analysis

modeling

and

similarity

non-

dimensional

equations

The Pi

theorem

Differential

Relations

rotation

stream

function

conser-

vation

relations

Integral

Relations
Bernoulli

conser-

vation

relations
Reynolds

transport

theorem



Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

6 Explain what a boundary layer is and when/where/why it appears

8 Understand and be able to explain the concept shear stress

18 Explain losses appearing in pipe flows

19 Explain the difference between laminar and turbulent pipe flow

20 Solve pipe flow problems using Moody charts

24 Explain what is characteristic for a turbulent flow

25 Explain Reynolds decomposition and derive the RANS equations

26 Understand and explain the Boussinesq assumption and turbulent viscosity

27 Explain the difference between the regions in a boundary layer and what is

characteristic for each of the regions (viscous sub layer, buffer region, log region)

if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)
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Complementary Course Material

These lecture notes covers chapter 6 in the course book and additional course

material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf

Niklas Andersson - Chalmers 5 / 37

https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf


Roadmap - Viscous Flow in Ducts

Governing Flow Equations

Basic Concepts

Laminar Pipe Flow

Turbulent Pipe Flow

Wall Roughness and Friction

Tools for Pipe-Flow Analysis�

Flow Regimes

Reynolds-Averaged

Navier-Stokes

(RANS)

Local Losses

Darcy Friction Factor

Near-Wall Models

Non-circular Ducts

�

�

�

�

�
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Turbulent Pipe Flow - Boundary-Layer Equations

Momentum equation (x-component)

ρ
Du

Dt
≈ −∂p

∂x
+ ρgx +

∂τ

∂y

where

τ = µ
∂u

∂y
− ρu′v′ = (µ+ µt)

∂u

∂y

For boundary-layer flows

ρ

(
u
∂u

dx
+ v

∂u

dy

)
= −dp

dx
+ ρgx + (µ+ µt)

∂u

∂y

(will be discussed in more detail in later lectures)
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Turbulent Pipe Flow - Boundary-Layer Equations

ρ

(
u
∂u

dx
+ v

∂u

dy

)
= −dp

dx
+ ρgx +

∂τ

∂y

y → 0 ⇒

{
u → 0

v → 0
⇒

∂τ

∂y
=

dp

dx
− ρgx
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Turbulent Pipe Flow - Boundary-Layer Equations

∂τ

∂y
=

dp

dx
− ρgx

τ(y) =

(
dp

dx
− ρgx

)
y + C

τ(0) = C = τw ⇒ τ(y) =

(
dp

dx
− ρgx

)
y + τw

Note! with a negative pressure gradient, the shear stress will reduce with increasing

distance from the wall
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Turbulent Pipe Flow - Boundary-Layer Equations

τ(y) =

(
dp

dx
− ρgx

)
y + τw

At the wall, the shear stress is equal to the wall-shear stress

y → 0 ⇒ τ(y) → τw

In fact, assuming that the shear stress (τ ) is constant and equal to the wall-shear

stress (τw) is a valid assumption in the near-wall region (some distance from the

wall but still close) as long as the pressure gradient is moderate.

Outside of the near-wall region, inertial effects has to be accounted for, i.e., Du/Dt
will not be zero and thus the shear stress will not be equal to the wall-shear stress.
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Turbulent Boundary Layers

A turbulent boundary layer may be divided into different regions where the physical

processes leading to shear stress are clearly distinguishable

The viscous sublayer

the shear stress is dominated by molecular viscosity (µ)

The buffer region

molecular viscosity (µ) and turbulent viscosity (µt) are equally
important

The log layer

the shear stress is dominated by turbulent viscosity (µt)

The outer region

inertial effects must be accounted for
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Turbulent Boundary Layers

In the following we will discuss two turbulent boundary layer regions in detail:

The viscous sublayer - the region closest to the wall

The log region - outside of the viscous sublayer but still in the near-wall region
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Viscous Sublayer

At the wall

τ = τw = µ
∂u

∂y
− ρu′v′

y → 0 ⇒

{
u′ → 0

v′ → 0
⇒

τ = µ
∂u

∂y
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Viscous Sublayer

τ = µ
∂u

∂y
⇒ u(y) =

τw
µ
y + C

u(0) = 0 ⇒ C = 0 ⇒

u(y) =
τw
µ
y

Note! in the viscous sublayer, the average velocity increase linearly with the wall

distance
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Viscous Sublayer

Introducing friction velocity defined as

u∗ =

√
τw
ρ

and thus

u(y) =
τw
µ
y =

ρu∗2y

µ
=

u∗2y

ν

which can be rewritten as:

u

u∗︸︷︷︸
u+

=
u∗y

ν︸︷︷︸
y+

valid for y+ ≤ 5− 10
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The Log Region

Now, let’s move a bit further out from the wall

1. τ = const = τw still (we have not moved that far out from the wall)

2. outside of the viscous sublayer µt � µ and thus

τ = τw = µ
∂u

∂y
− ρu′v′ ≈ −ρu′v′ = µt

∂u

∂y

We need an estimate of µt to be able to solve this ...
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The Log Region

Let’s first examine the relation between u′ and v′ (the velocity fluctuations in the
x and y directions)

The illustration below shows a fluid particle in a boundary-layer flow

x

y

z

u(y)

v
′
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The Log Region

x

y

z

u(y)

v
′

A positive v′ fluctuation will lead to a vertical transport of the fluid particle

The fluid particle will end up in a position in the flow where the axial velocity is

higher than where it came from, thus leading to a negative fluctuation in the axial

velocity at that position (u′ < 0)

In the same way, a negative v′ fluctuation will lead to u′ > 0

The product u′v′ will always be negative if ∂u/∂y is positive
in the wall-normal direction

Thus τturb = −ρu′v′ = µt
∂u

∂y
is positive
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The Log Region

What about other type of boundary layers such as for example the flow over a

moving surface

moving wall frame of reference of the wall
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The Log Region

y

u(y)

lm

lm

+

−

Prandtl’s mixing length concept

”the average distance that a small mass of fluid will travel before it

exchanges its momentum with another mass of fluid”

Ludwig Prandtl 1875-1953

u(y + lm) = u(y) + lm
∂u

∂y

u(y − lm) = u(y)− lm
∂u

∂y

Prandtl assumed u′ ≈ lm
∂u

∂y

He further assumed v′ to be of the same size as u′
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The Log Region

Prandtl’s mixing length concept

τt = −ρu′v′ ≈ ρl2m

(
∂u

∂y

)2

−ρu′v′ ≈ µt
∂u

∂y
⇒ µt ≈ ρl2m

∣∣∣∣∂u∂y
∣∣∣∣

νt =
µt
ρ

≈ l2m

∣∣∣∣∂u∂y
∣∣∣∣
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The Log Region

Prandtl’s mixing length concept

Theodore von Kármán 1881-1963

So, how do we estimate the mixing length lm

lm(y) = ao + a1y + a2y
2 + . . .

1. y → 0 ⇒ lm → 0 ⇒ ao = 0

2. small values of y (we are still very close to the wall) ⇒ lm = a1y

lm = κy

where κ is Kármán’s constant κ ≈ 0.41
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The Log Region

µt ≈ ρl2m

∣∣∣∣∂u∂y
∣∣∣∣ = ρκ2y2

∣∣∣∣∂u∂y
∣∣∣∣

τw = µt
∂u

∂y
= ρκ2y2

(
∂u

∂y

)2

= ρu∗2

κ2y2
(
∂u

∂y

)2

= u∗2 ⇒

∂u

∂y
=

u∗

κy
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The Log Region

∂u

∂y
=

u∗

κy
⇒

u(y) =
u∗

κ
ln(y) + C

or in non-dimensional form

u(y)

u∗︸︷︷︸
u+

=
1

κ
ln

(
yu∗

ν

)
︸ ︷︷ ︸

y+

+
C

u∗
− ln

(
u∗

ν

)
︸ ︷︷ ︸

B
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The Log Region

u+ =
1

κ
ln

(
y+

)
+ B

valid for 30 . y+ . 1000

From experiments we have:

κ ≈ 0.41 and 4.9 < B < 5.5

flow over a flat plate (external flow): B ≈ 4.9

duct flow (internal flow): B ≈ 5.3

White: B ≈ 5.0
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Outer region
�

In the outer region it has been found that

U − u

u∗
= f

(y
δ

)
where δ is the thickness of the outer layer and U the velocity at the edge of the outer

layer
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Regions in a Turbulent Boundary Layer

100 101 102 103 104
0

10

20

30

u
+

= y
+

u
+

=
1

κ
ln

(
y
+
)
+ B

I II III IV

y+

u+

I:

II:

III:

IV:

viscous sublayer

buffer layer

log-law region

outer layer

between the viscous sublayer and the

log region, none of the models works

in the outer region, inertial forces

needs to be included

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
6= 0
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Example - Pipe Flow Boundary Layer

Air at 20◦ flows through a 14-cm-diameter pipe. The flow is fully developed and

the centerline velocity is 5.0 m/s

From the provided data, estimate the friction velocity (u∗) and the wall-shear

stress (τw)

Air @ 20◦ ⇒ ρ = 1.2 kg/m3, µ = 1.8× 10−5 kg/(ms)

D = 0.14 m

Umax = 5.0 m/s
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Example - Pipe Flow Boundary Layer

Assume turbulent flow:

Vav =
2Umax

(1 +m)(2 +m)

m = 1/7 gives Vav = 4.08 m/s

ReD =
ρVavD

µ
≈ 38000 � ReDcritical

= 2300

The flow is turbulent
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Example - Pipe Flow Boundary Layer

Assume that the log-law is valid all the way to the center of the pipe

u+ =
1

κ
ln(y+) + B ⇔ 0 =

1

κ
ln(y+) + B− u+

or (at the center of the pipe where y = R and u = Umax )

0 =
1

κ
ln

(
Ru∗

ν

)
+ B− Umax

u∗

where κ = 0.41 and B = 5.0

u∗ =

√
τw
ρ
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Example - Pipe Flow Boundary Layer

Find estimates of u∗ and τw using a Newton-Raphson solver

Using the definitions of y+, u+, and u∗, we can get a function f(τw)

f(τw) =
1

κ
ln

(
R
√
τw√
ρν

)
+ B−

Umax
√
ρ

√
τw

The derivative of f(τw) is obtained as (details on next slide)

f ′(τw) =
(1/κ)

√
τw + Umax

√
ρ

2τ
3/2
w

=
(1/κ) + u+

2τw

Niklas Andersson - Chalmers 31 / 37



Example - Pipe Flow Boundary Layer
�

f(τw) =
1

κ
ln

(
R
√
τw√
ρν

)
+ B−

Umax
√
ρ

√
τw

f ′(τw) =
∂

∂τw

(
1

κ
ln

(
R
√
τw√
ρν

))
− ∂

∂τw

(
Umax

√
ρ

√
τw

)
=

=
∂

∂τw

(
1

κ

[
ln

(
R

√
ρν

)
+ ln (

√
τw)

])
−
(
−1

2

)
Umax

√
ρ

τ
3/2
w

=

=
∂

∂τw

(
1

κ

[
ln

(
R

√
ρν

)
+

1

2
ln (τw)

])
+
Umax

√
ρ

2τ
3/2
w

=

=

(
1

κ

)
1

2τw
+
Umax

√
ρ

2τ
3/2
w

=
(1/κ)

√
τw + Umax

√
ρ

2τ
3/2
w

=
(1/κ) + u+

2τw
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Example - Pipe Flow Boundary Layer

With the functions f(τw) and f ′(τw) defined, we can set up an iterative

Newton-Raphson solver to find τw using

τwn+1 = τwn −
f(τwn)

f ′(τwn)

where n+ 1 and n are iteration numbers. Iterate until converged with the following

convergence criterium:

∣∣∣∣ f(τwn)

f ′(τwn)

∣∣∣∣ ≤ τw × 10−4
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Example - Pipe Flow Boundary Layer

1 import numpy as np
2

3 def calc_yplus_uplus(rho,mu,tau_w,y,U):
4 nu=mu/rho
5 ustar=np.sqrt(tau_w/rho)
6 yplus=y*ustar/nu
7 uplus=U/ustar
8 return yplus,uplus,ustar
9

10 mu = 1.8e-5 # fluid viscosity (dynamic viscosity)
11 rho = 1.2 # fluid density
12 u_max = 5.0 # centerline velocity
13 R = 0.07 # pipe radius
14 kappa = 0.41 # von Kármán constant
15 B = 5.0 # integration constant in the log-law
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Example - Pipe Flow Boundary Layer

17 tau_w = mu*u_max/R # initial guess
18

19 yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
20

21 dtau_w = 10.*tau_w
22

23 while( abs(dtau_w) > 0.0001*tau_w ):
24 f = (1./kappa)*np.log(yplus)-uplus+B
25 df = 0.5*((1./kappa)+uplus)/tau_w
26 dtau_w = -f/df
27 tau_w = tau_w+dtau_w
28 yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
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Example - Pipe Flow Boundary Layer

variable dimension value

y+ 1061

u∗ m/s 0.227

τw N/m2 0.062

Note! y+ = 1061 is actually outside the range of y+ values for which the log-law is

valid - but it is very close to the limit...
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Example - Pipe Flow Boundary Layer
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