Fluid Mechanics - MTF053 Lecture 12

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 6 - Viscous Flow in Ducts

Learning Outcomes

- 3 Define the Reynolds number
- 4 Be **able to categorize** a flow and **have knowledge about** how to select applicable methods for the analysis of a specific flow based on category
- 6 Explain what a boundary layer is and when/where/why it appears
- 8 **Understand** and be able to **explain** the concept shear stress
- 18 Explain losses appearing in pipe flows
- 19 Explain the difference between laminar and turbulent pipe flow
- 20 Solve pipe flow problems using Moody charts
- 24 Explain what is characteristic for a turbulent flow
- 25 Explain Reynolds decomposition and derive the RANS equations
- 26 Understand and explain the Boussinesq assumption and turbulent viscosity
 - 7 **Explain** the difference between the regions in a boundary layer and what is characteristic for each of the regions (viscous sub layer, buffer region, log region)
 - if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)

These lecture notes covers chapter 6 in the course book and additional course material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf

Roadmap - Viscous Flow in Ducts

Momentum equation (x-component)

$$\rho \frac{D\overline{u}}{Dt} \approx -\frac{\partial\overline{\rho}}{\partial x} + \rho g_x + \frac{\partial\tau}{\partial y}$$

where

$$\tau = \mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u'v'} = (\mu + \mu_t) \frac{\partial \overline{u}}{\partial y}$$

For boundary-layer flows

$$\rho\left(\overline{u}\frac{\partial\overline{u}}{\partial x} + \overline{v}\frac{\partial\overline{u}}{\partial y}\right) = -\frac{d\overline{p}}{\partial x} + \rho g_x + (\mu + \mu_t)\frac{\partial\overline{u}}{\partial y}$$

(will be discussed in more detail in later lectures)

$$\rho\left(\overline{u}\frac{\partial\overline{u}}{\partial x}+\overline{v}\frac{\partial\overline{u}}{\partial y}\right)=-\frac{d\overline{\rho}}{\partial x}+\rho g_{x}+\frac{\partial\tau}{\partial y}$$

$$y \to 0 \Rightarrow \begin{cases} \overline{u} \to 0\\ \overline{v} \to 0 \end{cases} \Rightarrow$$

$$\frac{\partial \tau}{\partial y} = \frac{d\overline{\rho}}{dx} - \rho g_x$$

Niklas Andersson - Chalmers

$$\frac{\partial \tau}{\partial y} = \frac{d\overline{\rho}}{dx} - \rho g_x$$

$$\tau(y) = \left(\frac{d\overline{\rho}}{dx} - \rho g_x\right)y + C$$

$$\tau(0) = C = \tau_{W} \Rightarrow \tau(y) = \left(\frac{d\overline{\rho}}{dx} - \rho g_{x}\right)y + \tau_{W}$$

Note! with a negative pressure gradient, the shear stress will reduce with increasing distance from the wall

$$\tau(y) = \left(\frac{d\overline{\rho}}{dx} - \rho g_x\right) y + \tau_w$$

At the wall, the shear stress is equal to the wall-shear stress

$$y \to 0 \Rightarrow \tau(y) \to \tau_w$$

In fact, assuming that the **shear stress** (τ) is **constant** and equal to the wall-shear stress (τ_w) is a valid assumption in the **near-wall region** (some distance from the wall but still close) as long as the pressure gradient is moderate.

Outside of the near-wall region, inertial effects has to be accounted for, i.e., $D\overline{u}/Dt$ will not be zero and thus the shear stress will not be equal to the wall-shear stress.

Turbulent Boundary Layers

A turbulent boundary layer may be divided into different regions where the physical processes leading to shear stress are clearly distinguishable

The viscous sublayer

the shear stress is dominated by molecular viscosity (μ)

The buffer region

molecular viscosity (μ) and turbulent viscosity (μ_t) are equally important

The log layer

the shear stress is dominated by turbulent viscosity (μ_t)

The outer region

inertial effects must be accounted for

In the following we will discuss two turbulent boundary layer regions in detail:

The viscous sublayer - the region closest to the wall

The log region - outside of the viscous sublayer but still in the near-wall region

Viscous Sublayer

At the wall

$$\tau = \tau_{\rm W} = \mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u' v'}$$

$$y \to 0 \Rightarrow \begin{cases} u' \to 0 \\ v' \to 0 \end{cases} \Rightarrow$$

 $\tau = \mu \frac{\partial \overline{u}}{\partial y}$

Viscous Sublayer

$$\tau = \mu \frac{\partial \overline{u}}{\partial y} \Rightarrow \overline{u}(y) = \frac{\tau_w}{\mu} y + C$$

 $\overline{U}(0) = 0 \Rightarrow C = 0 \Rightarrow$

$$\overline{u}(y) = \frac{\tau_w}{\mu} y$$

Note! in the viscous sublayer, the average velocity increase linearly with the wall distance

Viscous Sublayer

Introducing friction velocity defined as

$$\boxed{u^* = \sqrt{\frac{\tau_w}{\rho}}}$$

and thus

$$\overline{u}(y) = \frac{\tau_{\mathsf{W}}}{\mu}y = \frac{\rho u^{*2}y}{\mu} = \frac{u^{*2}y}{\nu}$$

which can be rewritten as:

$$\frac{\overline{u}}{\underbrace{u^*}_{u^+}} = \underbrace{\frac{u^*y}{\nu}}_{v^+} \text{ valid for } y^+ \le 5 - 10$$

Niklas Andersson - Chalmers

Now, let's move a bit further out from the wall

- 1. $\tau = const = \tau_w$ still (we have not moved that far out from the wall)
- 2. outside of the viscous sublayer $\mu_t \gg \mu$ and thus

$$\tau = \tau_{W} = \mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u'v'} \approx -\rho \overline{u'v'} = \mu_t \frac{\partial \overline{u}}{\partial y}$$

We need an estimate of μ_t to be able to solve this ...

Let's first examine the relation between u' and v' (the velocity fluctuations in the x and y directions)

The illustration below shows a fluid particle in a boundary-layer flow

A positive v' fluctuation will lead to a vertical transport of the fluid particle

The fluid particle will end up in a position in the flow where the axial velocity is higher than where it came from, thus leading to a negative fluctuation in the axial velocity at that position (u' < 0)

In the same way, a negative v' fluctuation will lead to u' > 0

The product u'v' will **always** be negative if $\partial \overline{u}/\partial y$ is positive in the wall-normal direction

Thus
$$\tau_{turb} = -\rho \overline{u'v'} = \mu_t \frac{\partial \overline{u}}{\partial y}$$
 is positive

What about other type of boundary layers such as for example the flow over a moving surface

Prandtl's mixing length concept

"the average distance that a small mass of fluid will travel before it exchanges its momentum with another mass of fluid"

Ludwig Prandtl 1875-1953

He further assumed v' to be of the same size as u'

Prandtl's mixing length concept

$$\tau_t = -\rho \overline{u'v'} \approx \rho l_m^2 \left(\frac{\partial \overline{u}}{\partial y}\right)^2$$

$$-\rho \overline{u'v'} \approx \mu_t \frac{\partial \overline{u}}{\partial y} \Rightarrow \mu_t \approx \rho l_m^2 \left| \frac{\partial \overline{u}}{\partial y} \right|$$
$$\nu_t = \frac{\mu_t}{\rho} \approx l_m^2 \left| \frac{\partial \overline{u}}{\partial y} \right|$$

Prandtl's mixing length concept

So, how do we estimate the mixing length I_m

$$I_m(y) = a_0 + a_1 y + a_2 y^2 + .$$

1.
$$y \to 0 \Rightarrow l_m \to 0 \Rightarrow a_o = 0$$

2. small values of y (we are still very close to the wall) $\Rightarrow I_m = a_1 y$

$$l_m = \kappa y$$

where κ is Kármán's constant $\kappa \approx 0.41$

$$\mu_t \approx \rho l_m^2 \left| \frac{\partial \overline{u}}{\partial y} \right| = \rho \kappa^2 y^2 \left| \frac{\partial \overline{u}}{\partial y} \right|$$

$$\tau_{w} = \mu_{t} \frac{\partial \overline{u}}{\partial y} = \rho \kappa^{2} y^{2} \left(\frac{\partial \overline{u}}{\partial y} \right)^{2} = \rho u^{*2}$$

$$\kappa^2 y^2 \left(\frac{\partial \overline{u}}{\partial y}\right)^2 = {u^*}^2 \Rightarrow$$

 $\frac{\partial \overline{u}}{\partial y} = \frac{u^*}{\kappa y}$

Niklas Andersson - Chalmers

$$\frac{\partial \overline{u}}{\partial y} = \frac{u^*}{\kappa y} \Rightarrow$$

$$\overline{u}(y) = \frac{u^*}{\kappa} \ln(y) + C$$

or in non-dimensional form

$$u^{+} = \frac{1}{\kappa} \ln \left(y^{+} \right) + B$$

valid for $30 \lesssim y^+ \lesssim 1000$

From experiments we have:

```
\kappa \approx 0.41 and 4.9 < B < 5.5
```

flow over a flat plate (external flow): $B \approx 4.9$ duct flow (internal flow): $B \approx 5.3$ White: $B \approx 5.0$

In the outer region it has been found that

$$\frac{U-\overline{u}}{u^*} = f\left(\frac{y}{\delta}\right)$$

where δ is the thickness of the outer layer and U the velocity at the edge of the outer layer

Regions in a Turbulent Boundary Layer

between the viscous sublayer and the log region, none of the models works

in the outer region, inertial forces needs to be included

$$\rho\left(\overline{u}\frac{\partial\overline{u}}{\partial x} + \overline{v}\frac{\partial\overline{u}}{\partial y}\right) \neq 0$$

- I: viscous sublayer
- II: buffer layer
- III: log-law region
- IV: outer layer

Air at 20° flows through a 14-cm-diameter pipe. The flow is fully developed and the centerline velocity is 5.0 m/s From the provided data, estimate the friction velocity (u^*) and the wall-shear stress (τ_w)

Air @
$$20^{\circ} \Rightarrow \rho = 1.2 \text{ kg/m}^3$$
, $\mu = 1.8 \times 10^{-5} \text{ kg/(ms)}$
 $D = 0.14 \text{ m}$
 $U_{max} = 5.0 \text{ m/s}$

Assume turbulent flow:

$$V_{av} = \frac{2U_{max}}{(1+m)(2+m)}$$

m = 1/7 gives $V_{av} = 4.08 m/s$

$$Re_D = rac{
ho V_{av}D}{\mu} \approx 38000 \gg Re_{D_{critical}} = 2300$$

The flow is turbulent

Assume that the log-law is valid all the way to the center of the pipe

$$u^{+} = \frac{1}{\kappa} \ln(y^{+}) + B \Leftrightarrow 0 = \frac{1}{\kappa} \ln(y^{+}) + B - u^{+}$$

or (at the center of the pipe where y = R and $u = U_{max}$)

$$0 = \frac{1}{\kappa} \ln \left(\frac{Ru^*}{\nu} \right) + B - \frac{U_{max}}{u^*}$$

where $\kappa = 0.41$ and B = 5.0

$$u^* = \sqrt{\frac{\tau_W}{\rho}}$$

Find estimates of u^* and τ_w using a Newton-Raphson solver

Using the definitions of y^+ , u^+ , and u^* , we can get a function $f(\tau_w)$

$$f(\tau_w) = \frac{1}{\kappa} \ln \left(\frac{R \sqrt{\tau_w}}{\sqrt{\rho}\nu} \right) + B - \frac{U_{max}\sqrt{\rho}}{\sqrt{\tau_w}}$$

The derivative of $f(\tau_w)$ is obtained as (*details on next slide*)

$$f'(\tau_w) = \frac{(1/\kappa)\sqrt{\tau_w} + U_{\max}\sqrt{\rho}}{2\tau_w^{3/2}} = \frac{(1/\kappa) + u^+}{2\tau_w}$$

$$f(\tau_{W}) = \frac{1}{\kappa} \ln\left(\frac{R\sqrt{\tau_{W}}}{\sqrt{\rho}\nu}\right) + B - \frac{U_{max}\sqrt{\rho}}{\sqrt{\tau_{W}}}$$

$$f'(\tau_{W}) = \frac{\partial}{\partial\tau_{W}} \left(\frac{1}{\kappa} \ln\left(\frac{R\sqrt{\tau_{W}}}{\sqrt{\rho}\nu}\right)\right) - \frac{\partial}{\partial\tau_{W}} \left(\frac{U_{max}\sqrt{\rho}}{\sqrt{\tau_{W}}}\right) =$$

$$= \frac{\partial}{\partial\tau_{W}} \left(\frac{1}{\kappa} \left[\ln\left(\frac{R}{\sqrt{\rho}\nu}\right) + \ln\left(\sqrt{\tau_{W}}\right)\right]\right) - \left(-\frac{1}{2}\right) \frac{U_{max}\sqrt{\rho}}{\tau_{W}^{3/2}} =$$

$$= \frac{\partial}{\partial\tau_{W}} \left(\frac{1}{\kappa} \left[\ln\left(\frac{R}{\sqrt{\rho}\nu}\right) + \frac{1}{2}\ln\left(\tau_{W}\right)\right]\right) + \frac{U_{max}\sqrt{\rho}}{2\tau_{W}^{3/2}} =$$

$$= \left(\frac{1}{\kappa}\right) \frac{1}{2\tau_{W}} + \frac{U_{max}\sqrt{\rho}}{2\tau_{W}^{3/2}} = \frac{(1/\kappa)\sqrt{\tau_{W}} + U_{max}\sqrt{\rho}}{2\tau_{W}^{3/2}} = \frac{(1/\kappa)\sqrt{\tau_{W}} + U_{max}\sqrt{\rho}}{2\tau_{W}^{3/2}} =$$

With the functions $f(\tau_w)$ and $f'(\tau_w)$ defined, we can set up an iterative Newton-Raphson solver to find τ_w using

$$\tau_{W_{n+1}} = \tau_{W_n} - \frac{f(\tau_{W_n})}{f'(\tau_{W_n})}$$

where n + 1 and n are iteration numbers. Iterate until converged with the following convergence criterium:

$$\left|\frac{f(\tau_{W_n})}{f'(\tau_{W_n})}\right| \le \tau_W \times 10^{-4}$$

Niklas Andersson - Chalmers

```
import numpy as np
  def calc_yplus_uplus(rho,mu,tau_w,y,U):
З
      nu=mu/rho
4
      ustar=np.sqrt(tau w/rho)
     yplus=y*ustar/nu
6
      uplus=U/ustar
      return vplus.uplus.ustar
8
9
     = 1.8e-5 # fluid viscosity (dynamic viscosity)
10 mu
11 rho
     = 1.2 # fluid density
12 u max = 5.0 # centerline velocity
13 R.
        = 0.07 # pipe radius
14 kappa = 0.41 # von Kármán constant
15 B
        = 5.0
                 # integration constant in the log-law
```

```
17 tau w = mu*u max/R # initial guess
19 yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
  dtau w = 10.*tau w
21
  while( abs(dtau_w) > 0.0001*tau_w ):
    f = (1./kappa)*np.log(vplus)-uplus+B
24
    df = 0.5*((1./kappa)+uplus)/tau w
25
    dtau w = -f/df
26
27
    tau w = tau w+dtau w
    yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
28
```

variable	dimension	value
y^+		1061
U^*	m/s	0.227
$ au_W$	N/m^2	0.062

Note! $y^+ = 1061$ is actually outside the range of y^+ values for which the log-law is valid - but it is very close to the limit...

