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Chapter 5 - Dimensional Analysis and Similarity
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Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

17 Explain about how to use non-dimensional numbers and the Π theorem

we will learn about how to plan experiments and compare experimental data

using dimensionless numbers
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Motivation

”Most practical fluid flow problems are too complex, both geometrically and

physically, to be solved analytically. They must be tested by experiments or

approximated by CFD”

Dimensional analysis:

I Large data sets may be represented by a few curves or even a single curve

I A systematic tool for data reduction

I Experimental/simulation data are more general in dimensionless form
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Dimensions
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Roadmap - Dimensional Analysis and Similarity
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Dimensional Analysis - What is it?

Dimensional analysis is a tool for systematic

1. planning of experiments

similarity between model and prototype

2. presentation of experimental data

insight into physical relationships

3. interpretation of measurements

identify important and unimportant parameters
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Dimensional Analysis - What is it?

General description:

”If a phenomenon depends on n dimensional variables, dimensional analysis

will reduce the problem to only k dimensionless variables, where the reduc-

tion n− k depends on the problem complexity”

”Generally, n− k equals the number of primary dimensions”
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Dimensional Analysis - Example Problem

Problem definition:

Suppose that we know that the force F on a particular body shape in a fluid flow

depends on

1. The length of the body L

2. The flow freestream velocity V

3. The fluid density ρ

4. The fluid viscosity µ

⇒ F = f(L,V , ρ, µ)
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Dimensional Analysis - Example Problem

Let’s say that we need ten data points to define a curve

We need to test 10 lengths and for each of those, 10 velocities, ....

For our example problem we need to do 10000 experiments!!

With dimensional analysis, the problem can be reduced as follows

F

ρV2L2
= g

(
ρVL

µ

)
or CF = g(Re) where g is an unknown function

The number of experiments needed have been reduced by a factor of 1000!!
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Similarity - Model and Prototype

Let’s go back to the example problem from before

CF = g(Re)

so if Rem = Rep that means that CF ,m = CF ,p (where m is model and p prototype)

CF ,m =
Fm

ρmV2
mL

2
m

and CF ,p =
Fp

ρpV2
pL

2
p

Fm

ρmV2
mL

2
m

=
Fp

ρpV2
pL

2
p

⇒ Fp

Fm
=

ρp
ρm

(
Vp

Vm

)2(
Lp

Lm

)2
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Roadmap - Dimensional Analysis and Similarity
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The Buckingham Π-theorem

Systematic identification of non-dimensional numbers (Π-groups):

”If there is a physically meaningful equation involving a certain number n of

physical variables, then the original equation can be rewritten in terms of a

set of k dimensionless parameters Π1, Π2, ..., Πk . The reduction, j = n− k,

equals the number of variables that do not form a Π among themselves and

is always less than or equal to the number of physical dimensions involved”
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The Buckingham Π-theorem

Systematic identification of non-dimensional numbers (Π-groups):

1. List and count the number of variables in the problem n

2. List the dimensions for each of the n variables

3. Count number of dimensions m

4. Find the reduction j

4.1 initial guess: j equals the number of dimensions m

4.2 look for j variables that do not form a Π
4.3 if not possible reduce j by one and go back to 4.2

5. Select j scaling parameters

6. Add one of the other variables to your j repeating variables and form a power

product

7. Algebraically, find exponents that make the product dimensionless
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The Buckingham Π-theorem - Example

F = f(L,U, ρ, µ)

number of variables: n = 5

F L U ρ µ{
MLT−2

}
{L}

{
LT−1

} {
ML−3

} {
ML−1T−1

}
number of dimensions: m=3

reduction: j ≤ 3

number of dimensionless groups: k = n− j ≥ 2
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The Buckingham Π-theorem - Example

1. Inspecting the variables, we see that L, U, and ρ cannot form a Π-group

only ρ contains M (mass)

only U contains T (time)

2. L, U, and ρ are selected as the j repeating variables

3. The reduction will be j = 3 and thus k = n− j = 2

4. One of the Π-groups will contain F and the other will contain µ
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The Buckingham Π-theorem - Example

Π1 = LaUbρcF ⇒ (L)a(LT−1)b(ML−3)c(MLT−2) = M0L0T0

L : a + b − 3c + 1 = 0
M : c + 1 = 0
T : − b − 2 = 0

which gives

a = −2, b = −2, c = −1

and thus

Π1 =
F

ρU2L2
= CF
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The Buckingham Π-theorem - Example

Π2 = LaUbρcµ−1 ⇒ (L)a(LT−1)b(ML−3)c(ML−1T−1)−1 = M0L0T0

L : a + b − 3c + 1 = 0
M : c − 1 = 0
T : − b + 1 = 0

which gives

a = b = c = 1

and thus

Π2 =
ρUL

µ
= Re
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The Buckingham Π-theorem - Example

If F = f(L,V , ρ, µ), the theorem guaranties that, in this case, Π1 = g(Π2)

F

ρU2L2
= g

(
ρUL

µ

)
or CF = g(Re)

where g is an unknown function
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Non-dimensionalized Equations

Why would one want to make the governing equations non-dimensional?

I Understand flow physics

I Gives information about under what conditions terms are negligible

I A way to find important non-dimensional groups for a specific flow
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Non-dimensionalized Equations

The incompressible flow continuity and momentum equations and corresponding

boundary conditions:

Continuity: ∇ · V = 0

Navier-Stokes: ρ
DV
Dt

= ρg −∇p+ µ∇2V

Solid surface: no-slip (V = 0 if fixed surface)

Inlet/outlet: known velocity and pressure
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Non-dimensionalized Equations

The variables in the continuity and momentum equations contain three primary

dimensions; M, L, and T

All variables included (ρ,V,p, x, y, z) can be made non-dimensional using three
constants:

1. density: ρ

2. reference velocity: U

3. reference length: L

reference properties are constants characteristic for a specific flow
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Non-dimensionalized Equations

non-dimensional variables are denoted by an asterisk:

V∗ =
V
U

∇∗ = L∇

(x∗, y∗, z∗) =
1

L
(x, y, z)

t∗ =
tU

L

p∗ =
p− ρgr
ρU2
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Non-dimensionalized Equations

ρ
DV
Dt

= ρg −∇p+ µ∇2V

DV∗

Dt∗
=

∂V∗

∂t∗
+ u∗

∂V∗

∂x∗
+ v∗

∂V∗

∂y∗
+w∗∂V∗

∂z∗
=

L

U2

DV
Dt
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Non-dimensionalized Equations

ρ
DV
Dt

= ρg −∇p+ µ∇2V

∇∗p∗ =
L

ρU2
∇ (p− ρgr) = L

ρU2
(∇p− ρ∇gr)

∇gr = ∇ (gxx,gyy,gzz) =

(
gx

∂x

∂x
+ x

∂gx
∂x

, gy
∂y

∂y
+ y

∂gy
∂y

, gz
∂z

∂z
+ z

∂gz
∂z

)
=

= (gx, gy, gz) = g ⇒ −∇∗p∗ =
L

ρU2
(ρg −∇p)
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Non-dimensionalized Equations

ρ
DV
Dt

= ρg −∇p+ µ∇2V

∇∗2V =
L2

U
∇2V
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Non-dimensionalized Equations

Continuity: ∇∗ · V∗ = 0

Navier-Stokes:
DV∗

Dt∗
= −∇∗p∗ +

µ

ρUL
∇∗2V∗

Solid surface: no-slip (V∗ = 0 if fixed surface)

Inlet/outlet: known velocity and pressure (V∗, p∗)
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Non-dimensionalized Equations

The Reynolds number appears in the non-dimensional Navier-Stokes equations

DV∗

Dt∗
= −∇∗p∗ +

µ

ρUL
∇∗2V∗

Re =
ρUL

µ

Reynolds number - ratio of inertia and viscosity
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Dimensionless Groups

Definitions and interpretations of

non-dimensional groups

frequently used in fluid mechanics

parameter definition interpretation importance

Reynolds number Re =
ρUL

µ

inertia

viscosity
almost always

Mach number M =
U

a

flow speed

speed of sound
compressible flow

Froude number Fr =
U2

gL

inertia

gravity
free-surface flow

Weber number We =
ρU2L

Υ

inertia

surface tension
free-surface flow

Prandtl number Pr =
µCp

k

dissipation

conduction
heat convection

specific heat ratio γ =
Cp

Cv

enthalpy

internal energy
compressible flow

Strouhal number St =
ωL

U

oscillation

mean flow speed
oscillating flow

roughness ratio
ε

L

wall roughness

body length
turbulent flow

pressure coefficient Cp =
p− p∞
0.5ρU2

static pressure

dynamic pressure
aerodynamics

lift coefficient CL =
FL

0.5ρU2A

lift force

dynamic force
aerodynamics

drag coefficient CD =
FD

0.5ρU2A

drag force

dynamic force
aerodynamics

skin friction coefficient Cf =
τwall

0.5ρU2

wall-shear stress

dynamic pressure
boundary layers
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The Reynolds Number

Re =
ρUL

µ
=

UL

ν

laminar flow

turbulent flow
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Compressible Flow

Ma =
U

a
=

U√
γRT

γ =
Cp

Cv

https://www.youtube.com/watch?v=wRaDPnpnx04
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Oscillating Flows

101 102 103 104 105 106 107
0
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St =
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U

ReD =
UD

ν

ReD

St

Von Kármán vortex street
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Oscillating Flows
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Oscillating Flows

Tacoma bridge collapse 1940

oscillating frequency close to the natural vibration frequency of the bridge structure

https://www.youtube.com/watch?v=XggxeuFDaDU
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Oscillating Flows https://www.youtube.com/watch?v=ptYrbQGk6DQ
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Example of Successful Dimensional Analysis

101 102 103 104 105 106 107
0

1

2

3
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5

ReD

CD

Cylinder (2D)

Sphere
cylinder: CD =

FD
1
2ρU

2Ld

sphere: CD =
FD

1
2ρU

2 1
4πd

2

general: CD =
FD

1
2ρU

2Ap

Ap is the projected area

collection of data from a large number of experiments
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Modeling and Similarity

Scaling of experimental results from model scale to prototype scale:

”Flow conditions for a model test are completely similar if all relevant dimen-

sionless parameters have the same corresponding values for the model and

the prototype”
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Geometric Similarity

”A model and prototype are geometrically similar if and only if all body dimen-

sions in all three coordinates have the same linear-scale ratio”

”All angles are preserved in geometric similarity. All flow directions are pre-

served. The orientations of model and prototype with respect to the sur-

roundings must be identical”
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Geometric Similarity
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Geometric Similarity

Homologous points - points that with the same relative location

40 m

8 m

1 m

10
◦

Vp

∗
4.0 m

0.8 m

0.1 m

10
◦

Vm

∗

1. all dimensions should be scaled with the same linear scaling ratio

2. angle of attach should be the same

3. scaled nose radius

4. scaled surface roughness
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Kinematic Similarity

”The motions of two systems are kinematically similar if homologous particles

lie at homologous points at homologous times”

Geometric similarity is probably not sufficient to establish time-scale equivalence

Dynamic considerations:

1. Reynolds number equivalence

2. Mach number equivalence
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Kinematic Similarity

”Incompressible frictionless low-speed flows without free surfaces are kine-

matically similar with independent length and time scales”

Dm = αDp

V∞m = βV∞p

V1m = βV1p

V2m = βV2p

Dp

1

2

V∞

prototype

Dm

1

2

V∞

model
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Dynamic Similarity

”Dynamic similarity is achieved when the model and prototype have the same

length scale ratio, time scale ratio, and force scale ratio”

Compressible flow:

1. Reynolds number equivalence

2. Mach number equivalence

3. specific-heat ratio equivalence

Incompressible flow without free surfaces:

1. Reynolds number equivalence

Incompressible flow with free surfaces:

1. Reynolds number equivalence

2. Froude number equivalence (and if necessary Weber number and/or cavitation

number)
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Dynamic Similarity

Finertia = Fpressure + Fgravity + Ffriction

”Dynamic similarity ensures that each of the force components will be in the

same ratio and have the same directions for model and prototype”
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