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Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

17 Explain about how to use non-dimensional numbers and the 11 theorem

we will learn about how to plan experiments and compare experimental data
using dimensionless numbers



Motivation

"Most practical fluid flow problems are too complex, both geometrically and
physically, to be solved analytically. They must be tested by experiments or
approximated by CFD”

Dimensional analysis:
> Large data sets may be represented by a few curves or even a single curve
> A systematic tool for data reduction
> Experimental/simulation data are more general in dimensionless form



Dimensions

To END MANY YEARS OF CONFUSION,
THE INTERNATIONAL COMMITTEE. FOR
WEIGHTS AND MEASURES HAS JUST
VOTED TO REDEFNE THE. KILOGRAM.

AS OF NEXT MAY, IT WILL
EQUAL EXACTLY ONE POUND:
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Dimensional Analysis - What is it?

Dimensional analysis is a tool for systematic

planning of experiments

similarity between model and prototype
presentation of experimental data

insight into physical relationships
interpretation of measurements

identify important and unimportant parameters



Dimensional Analysis - What is it?

General description:

“If a phenomenon depends on n dimensional variables, dimensional analysis
will reduce the problem to only k dimensionless variables, where the reduc-
tion n — k depends on the problem complexity”

"Generally, n — k equals the number of primary dimensions”



Dimensional Analysis - Example Problem

Problem definition:

Suppose that we know that the force F on a particular body shape in a fluid flow
depends on

The length of the body L
The flow freestream velocity V oY
The fluid density p = F=iGV.pn)

The fluid viscosity



Dimensional Analysis - Example Problem

Let’s say that we need ten data points to define a curve
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Dimensional Analysis - Example Problem

Let’s say that we need ten data points to define a curve

0 20 10 60 80 100

We need to test 10 lengths and for each of those, 10 velocities, ....
For our example problem we need to do 10000 experiments!!

With dimensional analysis, the problem can be reduced as follows

F
pV2[2

—g <PVL> or Cr = g(Re) where g is an unknown function
n

The number of experiments needed have been reduced by a factor of 1000!!



Similarity - Model and Prototype
Let’s go back to the example problem from before
Cr =9(Re)
so if Rey = Rep that means that Cr ,, = Cr, (Where m is model and p prototype)
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The Buckingham II-theorem

Systematic identification of non-dimensional numbers (IT-groups):

“If there is a physically meaningful equation involving a certain number n of
physical variables, then the original equation can be rewritten in terms of a
set of k dimensionless parameters 114, 1o, ..., II,. The reduction, j = n — K,
equals the number of variables that do not form a 11 among themselves and
is always less than or equal to the number of physical dimensions involved”



The Buckingham II-theorem

Systematic identification of non-dimensional numbers (IT-groups):

List and count the number of variables in the problem n
List the dimensions for each of the n variables

Count number of dimensions m

Find the reduction j

4.1 initial guess: j equals the number of dimensions m
4.2 look for j variables that do not form a II

4.3 if not possible reduce j by one and go back to 4.2

5. Select j scaling parameters

6. Add one of the other variables to your j repeating variables and form a power
product

7. Algebraically, find exponents that make the product dimensionless

W



The Buckingham II-theorem - Example

F - f(L7U/ p? lL)
number of variables: n =5
F ‘ L ‘ U ‘ P ‘ 7
oy | |y | ey ey

number of dimensions: m=3
reduction: | < 3

number of dimensionless groups: kK =n —j > 2



The Buckingham II-theorem - Example

Inspecting the variables, we see that L, U, and p cannot form a II-group

only p contains M (mass)
only U contains T (time)

L, U, and p are selected as the j repeating variables
The reduction will bej =3 andthusk =n—j =2

One of the II-groups will contain F and the other will contain



The Buckingham II-theorem - Example

Iy = LAUPp°F = (L)*(LT )P (ML™®)*(MLT %) = M°LOT?

L: a + b — 3¢ + 1 0
M - c + 1 =0
T: — b - 2 =0
which gives
a=-2,b=-2,c=-1
and thus



The Buckingham II-theorem - Example

Hg _ Laubpclufl - (L)a(LTfl)b(ML73)C(ML71T71)71 _ MOLOTO

L: a + b — 3¢ + 1 0
M - c — 1 =0
T: — b + 1 =0
which gives
a=b=c=1
and thus
HQZ&:RG



The Buckingham II-theorem - Example

If F =f(L,V,p, ), the theorem guaranties that, in this case, I1; = g(Ilz)

F UL
pER (pu> or Cr = g(Re)

where g is an unknown function
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Non-dimensionalized Equations

Why would one want to make the governing equations non-dimensional?

> Understand flow physics
> Gives information about under what conditions terms are negligible

> A way to find important non-dimensional groups for a specific flow



Non-dimensionalized Equations

The incompressible flow continuity and momentum equations and corresponding
boundary conditions:

Continuity: V-V=0

DV
Navier-Stokes: ppr = PE—VP+ uViv
Solid surface:  no-slip (V = 0 if fixed surface)

Inlet/outlet: known velocity and pressure



Non-dimensionalized Equations

The variables in the continuity and momentum equations contain three primary
dimensions; M, L, and T

All variables included (p, V, p, X, y,z) can be made non-dimensional using three
constants:

1. density: p
2. reference velocity: U

3. reference length: L

reference properties are constants characteristic for a specific flow



Non-dimensionalized Equations

non-dimensional variables are denoted by an asterisk:

A\ ty
V* — * [
U ! L
V*=LV p*:D*egr
pU?

x5 y5z") =+ (x, ¥, 2)



Non-dimensionalized Equations

DV
P o = PE— VP + ViV

DV*  9V* aV* 9V 9v* L DV
Dt* — ot* Ox* y* oz U? Dt




Non-dimensionalized Equations

DV
Py =P8~ Vp + uv*v

L
—— V(b — pgr) = (Vp — pVer)

V*p :pU

L
pU?

B B ox 99x oy dgy 0z
Ver =V (9xX,9yY,922) = <QX8X HX any +y ) 925,

* L
=(9x, 9y, 9z) =g = —V'p* = ﬁ(pg—VD)



Non-dimensionalized Equations

DV
Ppr = PB— VP + ViV




Non-dimensionalized Equations

Continuity: V-V =0
. . DV* o * % 1 * 2§ 7k
Navier-Stokes: DE = -V'o" + pULv A"

Solid surface:  no-slip (V* = 0 if fixed surface)

Inlet/outlet: known velocity and pressure (V*, p*)



Non-dimensionalized Equations

The Reynolds number appears in the non-dimensional Navier-Stokes equations

DV*_ * %k 1% *2\7*
o = VP oV
Re:&

"

Reynolds number - ratio of inertia and viscosity



Roadmap - Dimensional Analysis and Similarity

[ Dimens%analysis ’
[ The worem ]

Differential equations ]—>i)

[ Non—dimensiwed equations

‘ Dimensionless groups

!

‘ Modeling and similarity




Dimensionless Groups

Definitions and interpretations of
non-dimensional groups
frequently used in fluid mechanics

parameter definition interpretation importance
UL inertia
Reynolds number Re =% —_— almost always
W viscosity
fl
Mach number M= g Lpeed compressible flow
a speed of sound
2 -
Froude number Fr= E |nej|a free-surface flow
gL gravity
2L inerti
Weber number We = Y L@ free-surface flow
T surface tension
: oon
Prandtl number Pr Lf’) 735:;13?:{1';; heat convection
C, enthal
specific heat ratio y=22 __enthalpy _ compressible flow
Cy, internal energy

Strouhal number
roughness ratio
pressure coefficient
lift coefficient

drag coefficient

skin friction coefficient

P —Poo
C, =2 P
© 05002
Fi
C= 0.5p0A
)
Co= 0.5p02A
Cr = Twall

T 0.5pU2

08
wall roughness
body length
static pressure

dynamic pressure

lift force
dynamic force
drag force
dynamic force

wall-shear stress
dynamic pressure

lating flow
turbulent flow
aerodynamics
aerodynamics
aerodynamics

boundary layers




The Reynolds Number

e miner flow
s trouient fow

LU
v




https://www.youtube.com/watch?v=wRaDPnpnx04

Compressible Flow



https://www.youtube.com/watch?v=wRaDPnpnx04

Oscillating Flows

0.4 T
St =
0.3 .

data spread

fL
u

Von Karman vortex street

0 1 \HHH\K\ \HHH\I\\HHH\'\ \HHH\“\ Ll ‘\ wmm_]
108 102 10*° 10" 10° 108 107
Rep




Oscillating Flows




OSC| | | a‘t' ng Fl OWS https://www.youtube.com/watch?v=XggxeuFDaDU

Tacoma bridge collapse 1940

oscillating frequency close to the natural vibration frequency of the bridge structure


https://www.youtube.com/watch?v=XggxeuFDaDU

OSC i | | a‘t i n g Fl OWS https://www.youtube.com/watch?v=ptYrbQGk6DQ



https://www.youtube.com/watch?v=ptYrbQGk6DQ

Example of Successful Dimensional Analysis

collection of data from a large number of experiments

. Fp
cylinder: Cp = ——~—
Y P= Tl
Fp
sphere: Cp = ————
P D= T (I g?
Fp
general: Cp = ———
3PUAp

Ap is the projected area

Cp

)

— Cylinder (2D
— Sphere

0 Ll \\HHH“\\H
100 102 10°

100 100 106

Rep
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Modeling and Similarity

Scaling of experimental results from model scale to prototype scale:

"Flow condlitions for a model test are completely similar if all relevant dimen-
sionless parameters have the same corresponding values for the model and
the prototype”



Geometric Similarity

"A model and prototype are geometrically similar if and only if all body dimen-
sions in all three coordinates have the same linear-scale ratio”

"All angles are preserved in geometric similarity. All flow directions are pre-
served. The orientations of model and prototype with respect to the sur-
roundings must be identical”



Geometric Similarity




Geometric Similarity

Homologous points - points that with the same relative location

[«—08m—>

o
10 Y / 10@,0m
Vo . Vmg 0.1 m

all dimensions should be scaled with the same linear scaling ratio
angle of attach should be the same

scaled nose radius

scaled surface roughness

Call 2V o



Kinematic Similarity

”The motions of two systems are kinematically similar if homologous particles
lie at homologous points at homologous times”

Geometric similarity is probably not sufficient to establish time-scale equivalence

Dynamic considerations:

1. Reynolds number equivalence
2. Mach number equivalence



Kinematic Similarity

“Incompressible frictionless low-speed flows without free surfaces are kine-
matically similar with independent length and time scales”

1
/\ .
Voo = B Voop y y
Vi, = BV, b N
V2m = B \/2p \/ \/Q/
2

prototype



Dynamic Similarity

“Dynamic similarity is achieved when the model and prototype have the same
length scale ratio, time scale ratio, and force scale ratio”

Compressible flow:

Reynolds number equivalence
Mach number equivalence
specific-heat ratio equivalence

Incompressible flow without free surfaces:
Reynolds number equivalence

Incompressible flow with free surfaces:
Reynolds number equivalence
Froude number equivalence (and if necessary Weber number and/or cavitation
number)



Dynamic Similarity

Finertia = Fpressure + Fgravity + Friction

"Dynamic similarity ensures that each of the force components will be in the
same ratio and have the same directions for model and prototype”
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