Fluid Mechanics - MTF053

Lecture 8 -

Niklas Andersson )

Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Mechanics
Gothenburg, Sweden

niklas.andersson@chalmers.se


mailto:niklas.andersson@chalmers.se




Overview

rotation

stream
function

SoRe Differential
vation

relations Relations

Bernoulli

Integral
o Relations
\Zuilely]
relations

Reynolds

The Pi non-
theorem dimensional
equations

modeling
] and
Dimen- similarity

sional
Analysis

Flow
Relations

forces




Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

14 Derive the continuity, momentum and energy equations on differential form
36 Define and explain vorticity

let’s push the control volume approach to the limit ...



Roadmap - Differential Relations ( Rotation and vorticity ]
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[ The substw derivative ]—> 4—[ Integral relations ]




Angular Momentum




Angular Momentum
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Angular Momentum

10 10
Ty — Tyx + Ea(Txy)dX - 5@(7'%)(1)/ dxdydz =

a0
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12p(clxo/yo’z)(clx +dy )W

Neglect higher-order differential terms gives

Txy = Tyx

Analogously, we may obtain 7 ~ 7z and 7z, =~ 7y,



Angular Momentum

Note! there is no differential angular momentum equation ...

the only result from this section is that shear stresses are symmetric: 7; = 7;
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The Energy Equation

Integral formulation:

Q—WS—WV—d(/‘ epdv>+/ <e+p>p(V-n)dA
at \Jev cs P

h=e+p/p
Differential form:

ciz_wyz{8

pr (pe) + g(puh) + g(pvh) + 8(pwh)] adxdydz

Ox oy 0z

Ws = 0 we can not have a infinitesimal shaft protruding the control volume



The Energy Equation

Part I.

ot ot

adxdydz



The Energy Equation

Part Il.
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The Energy Equation

Part II**
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The Energy Equation

reassemble and collect terms:

0 0 0
&(Pe) + a(PUh) + g(PVh) + &(/)Wh)
Plot ™ ox oy T oz
% 1 (V.V)e=2
dp 0 0 0
e {81‘ + &(PU) + @(PW + 82(/?W>] +

continuity equation

pV-V+V.Vp



The Energy Equation
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The Energy Equation - Added Heat

Now, let’s have a look at the added heat term Q

» Only conduction will be considered (no radiation)

> According the Fourier’s law of conduction, the heat flux is proportional to the
temperature gradient

q=—kVT

where k is the thermal conductivity and q is heat transfer per unit area



The Energy Equation - Added Heat

az

Qxdydz  — oy
Face Inlet heat flux Outlet heat flux Rz
X Qxdydz :qx + (?):dx] dydz where gy = —k%
y qyadxdz :qy + a;}//yc/y} dxdz where g, = kg;
z q-axdy :Clz + aaizo’z] dxdy where g, = —kgz

Fe)
> — > (ax + o (qx)dx) dydz
X



The Energy Equation - Added Heat

net added heat:

= — | — 4+ —= + —= = —V - qdxdyd.
Q 8x+8y axdydz V - qdxdydz

or

Q =V - (kVT)dxdydz



The Energy Equation - Viscous Work

The rate of work done by viscous stresses equals the product of the stress
component, its corresponding velocity component and surface area



The Energy Equation - Viscous Work y

Wx = — (UTXX + vy + WTXZ)

az

Wy dydz
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dy ox
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0 0
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The Energy Equation

with the derived expressions for heat and viscous work we end up with

De

VA kVT)+ V- (V7)) = ppp

1PV -V+V-Vp



The Energy Equation

Now, introducing the viscous-dissipation function ¢ for Newtonian fluids and
incompressible flows

V-(V-1j)) =V-(V-75)+ ¢

ou\ 2 ov\?2 ow \ 2
¢:“F<@J w2(5) (%) +

v ouN L (ow v\ (ou ow?
ox oy oy 0z 0z  0Ox

where



The Energy Equation

Note!

"All terms in the viscous-dissipation function are quadratic which means that
in a viscous flow there will always be losses, which is in line with the second
law of thermodynamics”



The Energy Equation

De

Vo (VT) + V- (Vo) + 6 = o

+pV-V+V.Vp

Now, let’s eliminate the term V - (V - 7;) in the energy equation:

Momentum equation:
\%
P =P8-VP+V T

Multiply the momentum equation with the velocity vector (scalar product)

DV
V(Vemy) =pVe 5 —pV-g+V-Vp



The Energy Equation

Energy equation:

De
Poi +V-Vo+pV - V=V -(kVT)+V-(V-75)+ ¢
eliminate V - (V - 7;) using the result from previous slide

De

DV
gV VP +PY V=V (KVT)+pV- o —pV-g+V-Vp+¢

Dt

Doesn’t seem like a very wise move at this stage ...



The Energy Equation

As the next step, express energy per unit mass (e) as the sum of internal energy,
kinetic energy, and potential energy (as we did in Chapter 3)

1
e:u+§v2+gz

or in vector form:

1
e:U—|—§V-V—gr

where g = —(9x , 9y ,g-) is the gravity vector and r = (x, y, z) is the location vector



The Energy Equation

o1
e:U+§VV*gI'

Now, apply the substantial derivative to e

De D 1D D Du
ot ~ ot Tapt Y Vol =tV
—_— ——

:V%—Y* :V‘g*

* details on the following slides



The Energy Equation
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The Energy Equation

Wyvv=tw Y v.ow.v
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The Energy Equation
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The Energy Equation

—(gr) = ;(gr)+ (V- V)(gr) = %(gxx, 9y, 922) +(V - V)(gxx, gyy, 9z2) =

=(0,0,0)

ax “Fox Yoy T o 9%
99x 99y 09z ox Oy oz

) ox 0 dy _0 0z
V< ECLININ Py g,Y zgz+g>:V'(9x,9y79z)=V'g

ox oy o0z T oxTay oz



The Energy Equation

Now, insert

De Du DV
D B I

in the energy equation

Du

DV
por TPV o~V g+ V-Vp+pV -V =

Dt

DV

The highlighted terms cancel each other

Ok, this was why momentum equation was used here ...



The Energy Equation

Da

ph +PV-V=V-(kVT)+¢

Local and convective changes of internal energy are balanced by pressure work,
heat addition and viscous dissipation — viscous dissipation will always increase the
internal energy of the fluid
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Flow Equations on Differential Form

Continuity: % +V-(pV)=0
A%
Momentum: pzif:[g——Vp4_v.m
Du
Energy: pp; TPV V=V-(kVT)+¢

five equations and seven unknowns (p,u,v,w,p, U, T) = two additional relations
needed:

p=npPT), t=0up,T)



Flow Equations on Differential Form

Boundary conditions:
solid wall: no slip, no temperature jump
inlet, outlet
liquid-gas interface
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The Stream Function (for the interested)

fulfill the continuity equation and solve the momentum equation directly for
the single variable



The Stream Function (for the interested) I—1

incompressible, two-dimensional flow

u v,
ox oy
define ¢ (x, y) such that
o (00N 0 [ o\
a (3) * o (“30) =0
and thus
_oy W
Ty T T

or

_|ov oy
V[ay’ ax]



The Stream Function (for the interested)

The rotation of the flow field is calculated using the curl operator

cur(V) =V x V= —V%)e,



The Stream Function (for the interested)

Now, apply the curl operator to the momentum equation

1
V><D—V:ng—foVﬁH-l/VxVQV:uVXVQV
Dt ~—— P ——

Vx%—Y+VX(V~V)V:yVXV2V
oV

i 0 (steady)

=V x (V-V)V=vV3V xV)
vV x V2V = vV?(V x V)



The Stream Function (for the interested)

(V~V)V;V(V-V)—VX(VXV)V<V;>—V><(V><V)

and thus

2
VX(V~V)V:VXV(V2)—VXVX(VXV):VX(VXV)XV

—_———
=0

VXx(VxV)xV=

(V-V)V x V)= (VXV)-V)V4 (VX V)(V-V)+V(V-(VxV)) =

=0 (incompressible) =0

(V-V)(V x V)= ((VxV)- V)V



The Stream Function (for the interested)

(V-V)(VxV)=((VxV)-V)V=vViV xV)

insert the stream function

I TP R I
(VV)(VXV)—(ay, ox’ ) (8X7ay7az)(0707 VQ/))
(0.0 V2. (2 9 0,0¢ 0Y
(V% V)- V)V = 0.0.-9%) - (5 2 (G2 -T2 0) <0
o 0 o0y



Stream Function (for the interested)

(e}

(V) — *@(V%) = vV (V)

oY o 0
oy ox ox
one equation for ¢ that fulfills both the momentum and continuity equations
scalar equation

contains fourth-order derivatives



Stream Function (for the interested)

Definition of a streamline in two dimensions:

ox _dy
u v
or
udy —vdx =0
and thus
o op

or ¢ is constant along a streamline ...

dr is aligned with v

ax ocu
dy v
az oc w



Stream Function (for the interested)

Implication:

Lines of constant « are streamlines of the flow

If we know (X, y), lines of constant v will be streamlines of the flow
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Flow Rotation

> |s the Couette flow irrotational?
> Note the change of the fluid element bisector angle 6



Flow Rotation

A
N ™
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0 15} T 1
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S ent . .
i 957 the angular velocity of the bisector:

é:%(9A+93>



Flow Rotation

uAt

Ay; v+ FAX) At —vAt oy

sin(Afy) = A A aXAZ‘ K
) N
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7 |
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Flow Rotation

From previous slide we get the angular velocity about the z axis
1 /0v oOu
Wz ==\ 5= — &
7 2\ox oy

Using the same reasoning, we can get the angular velocities about the x and y axes

1 (ow
=9 \ay oz

_1fou _ow
W= o \az T ox



Flow Rotation

ool 0 o
21 ox 8y oz
u v oow

The flow vorticity ( is defined as:

¢ =2w = curl(V)

Flows with zero vorticity are called irrotational

—curl(V

)



Frictionless Irrotational Flow

If the flow is both frictionless and irrotational:

1. the momentum equation reduces to Euler’s equation

DV

Ppr =P8 VP

2. the acceleration term can be simplified

DV oV

Dit—ﬁ—i-(V'V)V

where we can use the vector identity

(V-V)V = v%v?)w <V

Doesn’t seem like a
simplification but let’s try ...



Frictionless Flow

1. combine Euler’'s equation with the modified acceleration term

2. divide by p

3. dot product between the entire equation and an arbitrary displacement vector dr
oV

1, 1 B



Frictionless Flow

Now we want to get rid of the term ({ x V) - dr
1. 'V = 0; no flow - not interesting
2. ¢ = 0; irrotational flow
3. dr perpendicular to (¢ x V); strange
4. dr parallel to V; integrate along a streamline



Frictionless Flow
Fourth alternative: integrate along a streamline:
oV

1 1
T4 V(EVH+Vp —gl| -dr =
o + (2 )+p p—g| -dr=0

performing the scalar products gives

—g-dr={g= —ge;} =90z

Ly by b

Vp -dr = aXo’x+ 8ydy+ aZdz_o’/o

V(l\/?) o= 2 8V2dx+av2d +av2dz %
2 "9 Uax dy YT oz =59 (V)



Frictionless Flow

d
da—\; dr + d(\/2)+pp+gdz:()



Frictionless Flow

Integrate between any two points along the streamline

29V 2dp 1, 5 e
et [ P s0i-vhra@-2) =0

The Bernoulli equation for frictionless unsteady flow

Steady incompressible flow gives

1
P4 §V2 + gz = constant
p

Note! for irrotational flow this last results holds in the entire flow field with
the same constant
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Millennium Problems

... PROVING THAT ONE OF THESE FOUR IS UNSOLUABLE,
BUT NOT WHKH. IF ITS ONE OF THESE, IT WOULD OPEN
A HOLE N PERLMAN'S PONCARE. (CNJECTURE. PROOF,

BUT IT WOULD ALSE

- MEAN THAT SOLYNG

| EMHER OF THE OTHER
'\.‘ TWO LIOULD RE-PROVE
| PONCARE, AND IMPLY

\ HuDGE 15 150MORPHIC TO...

SECM‘WY"'

5

RS [
S pomtﬁﬁﬁ

IM TRYING TO MAKE IT S0 THE CLAY MATHEMATICS
INSTITUTE HAS TO OFFER AN EIGHTH PRIZE TO WHOEVER
FIGURES OUT WHO THEIR OTHER PRIZES SHOULD GO TO.
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