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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

12 Define Reynolds transport theorem using the concepts control volume and
system

13 Derive the control volume formulation of the continuity, momentum, and energy
equations using Reynolds transport theorem and solving problems using those
relations

15 Derive and use the Bernoulli equation (using the relation includes having
knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...
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Linear Momentum

Reynolds transport theorem with B = mV and 5 = dB/dm = d(mV)/dm =V

; ; / ) /
—(MV)gys = F=— VpdV | + Vp(V; -n)dA
o’t( Jsys Z at ( oy P - Pl )

1. Vs the velocity relative to an inertial (non-accelerating) coordinate system

2. Z F is the vector sum of all forces on the system (surface forces and body
forces)

3. the relation is a vector relation (three components)



Linear Momentum

Forces:
solid bodies that protrude through the control volume surface
forces due to pressure and viscous stresses of the surrounding fluid



Surface Pressure Force

F, = /Csp(—n)o’A

Fp = /C (P — Patm)(—m)dA = / Pgage(—
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Surface Pressure Force

A free jet leaving a confined duct and exits into the ambient atmosphere will be at
atmospheric pressure

101.3 kPa

276.0 kPa > —> 101.3 kPa 174.7 kPa —
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Linear Momentum - Example

Steady-state flow: deflection av a water jet without changing its velocity magnitude
> steady-state
> water = incompressible
> atmospheric pressure on all control volume surfaces
> neglect friction

F=myVy —miVy

[Vi| = [Vo| =V

> mass conservation: m; = ms =m = pAV



Linear Momentum - Example

Fx =mV(cosf — 1)
Fy =mVsind

F =mV/(cosf — 1,sin6,0)




Momentum Flux Correction Factor

One-dimensional flow through inlets and outlets is of course not true in reality

Introducing the correction factor ¢

/Vp(V -n)dA = (Vaym

where (for incompressible flow)

1
Vav - A/UdA



Momentum Flux Correction Factor

Laminar pipe flow:

Velocity profile:

u(r) = Umax (1 — (;)2>

From example 2 in the conservation-of-mass section |
we have that the average velocity for a laminar pipe Var
flow is obtained as:

Umax

Vav - 5 Umax
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Momentum Flux Correction Factor

Vp(V-n)oA — 'Rugqax L (Y e (1= (5 207
/ | (%) (%)
/Vp(V-n)o’A —2rpU2,, /OR (1 - (/;)2>2rdr

/Vp(V -n)dA = %WRZpU,%aX



Momentum Flux Correction Factor

/V,o(V -mn)dA = %pWRQU,%aX

the mass flow m can be obtained as:

. 1
m = Vav/07r"?2 = §Umaxp7r'q2

which gives

2 Umax m

/Vp(V -n)dA = 3

from the definition of ¢

; 1 Umax .
Yot -t = Vo = {Var = S0ar | =



Momentum Flux Correction Factor

comparing the two expressions, we have that

2Umaxm _ Cumaxm
3 2

and thus ¢ = 4/3 for laminar incompressible flow



Momentum Flux Correction Factor

Turbulent pipe flow:
Velocity Profile:

r\m 1
u(r)zUmaX(l——> M =

From example 3 in the conservation-of-mass section !

we have that the average velocity for a laminar pipe L Vo

Umax

flow is obtained as:

2Upmax
(L+m)(2+m)

Vav -

|




Momentum Flux Correction Factor

4p7r/:x’2U,%an
T+ m2( +m)?

R A 2m
27Uz / (1-5)" rar=conR?VZ, = ¢
0

R

(r—R) (1—%)2m 2mr+r+R) AR2
2 :C =
2(1 4+ 2m)(1+m) (1+m)2(2+m)?
0
R? 4R? (1+m)2(2+m)?

Arami+m ~° 6=

(I+m)3(2+m)3 4(1 4 2m)(1 +m)



Momentum Flux Correction Factor

Laminar pipe flow:

¢ = 4/3 should be used

Turbulent pipe flow:

(1+m)2(2 +m)>

¢= A1+ 2m)(1 +m)

| /5 | 16 | 17 | /8 | 1/9

m
¢ [1.037 [ 1.027 | 1.020 | 1.016 | 1.013

(¢ = 1.0 is often a good approximation)
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The Bernoulli Equation

The relation between pressure, velocity, and elevation in a frictionless flow



The Bernoulli Equation

Frictionless flow along a streamline (streamtube with infinitesimal cross section area)

A+ dA
A & \ p+dp
V4 dv dp(A + dA)
p+dp «~
V,p, p
conservation of mass: - @v W~ pgdV

1
F p,perimeter = EdpdA

d . : d .
where m = pAV and dV ~ Ads

dm = d(pAV) = —%Ads



The Bernoulli Equation

linear momentum equation in the streamwise direction:

. . 0 .
S = S ([ VoaV )+ () — (), = 5 (V) AdS + V)
at \ oy ot

frictionless flow means: only pressure and gravity forces

1
dFsp ~ §ClpdA — (A+dA)dp ~ —Adp
dFsgrar = —dWsin = —(gpA)ds sin @ = —gpAdz

ZO’FS = —gpAdz—Adp = % (pV)Ads +d (mV)



The Bernoulli Equation

% . .
—gpAdz—Adp = %VAO/S + %t pAds + mdV + Vdm

the continuity equation gives

ap N
4 [atAo’s + dm} =0

and thus

% pAds + Adp + mdV + gpAdz = 0

Now, divide by pA
oV ap

—ads+ —+VdV +gdz =0
ot P



The Bernoulli Equation

Bernoulli’s equation for unsteady frictionless flow along a streamline (the relation just
derived) can be integrated between any two points along the streamline

—d +/ ~Vi)+g@z—21)=0
1



The Bernoulli Equation

Steady (0V /ot = 0), incompressible (constant density) flow:

1 1
P1+ 5pVi + pgz1 = pa + 5 pV3 + pgzy = const




The Bernoulli Equation

Note! the following restrictive assumptions have been made in the derivation

steady flow

many flows can be treated as steady at least when doing control volume type of
analysis

incompressible flow

low velocity gas flow without significant changes in pressure, liquid flow
frictionless flow

friction is in general important
flow along a single streamline

different streamlines in general have different constants, we shall see later that
under specific circumstances all streamlines have the same constant

One should be aware of these restrictions when using the Bernoulli relation



Relation to the Energy Equation

1 1
p1 + §PV12 + p9z1 = p2 + EpVQQ + pgzy = const

> Derived from the momentum equation

> May be interpreted as a idealized energy equation (changes from 1 to 2)

> reversible pressure work

> Kkinetic energy change

> potential energy change

» no exchange due to viscous dissipation



Stagnation, Static, and Dynamic Pressures
In many flows, elevation changes are negligible

1 1
P1+ Vi =P2+ 5pV3 = po
Static pressure: p; and ps
Dynamic pressure: 5pV1 and §pV2

Stagnation (total) pressure: pg






Pitot Static Tube

1 1
p1 + ipa/‘ru% + p9z1 = P2 + §PafrU§ + p9Z2

U1 = 0. (1N
Us =U LU= 2pwater@h
21 ~ 22 Pair
P1—pP2 = Pwatergh

water




Hydraulic and Energy Grade Lines
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Venturi Tube

o1 + V1 +9z1 = Pz + V2 + 972
P P
71 = Zo gives
2Ap
vZ_oyz=""0
2 1 P
continuity:
A
A1V1 :A2V2 = V1 /?2\/2
1

inserted in the Bernoulli equation, this gives

4 1/2
QDIAIO ):| =m= pAQVQ =

Y D202 [ 2pAp 1Y/?
‘7 [p0f - D}

4 |DI—DI



Tank Problem - Solution 1

vi
29

conservation of mass: ©)

A
A1V1 :AQVQ = V1 = lVQ
A1

— 7o

Bernoulli: : 2
/@ p‘opinget
pr 1 pz 1 5
+Vi+9zi=—+;Vi+92

p B p 27 . 2gh

A
' - (#)

P1 = P2 = Patm

Ay <Al = Vo x \/2gh
V2 - V2 =29(z1 —z2) = 2gh



Tank Problem - Solution 2

The outflow is very small in compared to
the tank volume and thus the water
surface hardly moves at all, i.e. V4 ~ 0

Bernoulli:

1 1
%+2V§+gzl = pr—l- S Vs +922

Vi~ 0, p1 = P2 = Patm

vi
29

@ P2 = Patm

— 75

v _
open jet

V22 = 29(21 —22) = 2Qh

VQ = \/29/7



HANDLING A STUDENT WHO
|CHALLENGES, YOUR EXPERTISE
WITH AN INSIGHTFUL QUESTION

50, KIDS, THE. AIR ABOVE THE WING
TRAVELS A LONGER DISTANCE, 50
T HAS T0.Go PASTER T KEEPUPR
FRSTER AIR EXERTS LEK PRESSURE,
SOTHE WING IS LIFTED UPLIARD:

BUT THEN WHY

RIGHT:
Wow, GOoD QUESTION!
~MAYBE THIS PICTURE IS
SIMPUIFIED~OR WRONG!
\WE SHOULD LEARN MORE.

IT5... COMPUCATED,

L aouesen

:
:
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