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Chapter 3 - Integral Relations for a Control Volume
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

12 Define Reynolds transport theorem using the concepts control volume and

system

13 Derive the control volume formulation of the continuity, momentum, and energy

equations using Reynolds transport theorem and solving problems using those

relations

15 Derive and use the Bernoulli equation (using the relation includes having

knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
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Motivation

Fluid motion analysis:

differential approach (chapter 4):

describe the detailed flow pattern at every point in the flow

control volume approach (chapter 3):

working with a finite region, balance in and out flow and determine gross flow

effects (force, torque, energy exchange, ... )

gives useful engineering estimates
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
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System vs Control Volume

All laws of mechanics are written for a system:

I A system is an arbitrary quantity of mass of fixed identity m

I The system is separated from its surroundings by its boundaries

I Interaction between the system and its surroundings
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System Mass

msyst = const

dm

dt
= 0

Obvious in solid mechanics but needs attention in fluid mechanics
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Conservation Relations

1. Mass

2. Linear momentum

3. Angular momentum

4. Energy
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Linear Momentum

If the surroundings exert a net force F on the system, the mass in the system will

begin to accelerate

F = ma = m
dV
dt

=
d

dt
(mV)
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Angular Momentum

If the surroundings exert a net moment M about the center of mass of the system,

there will be a rotation effect

M =
dH
dt

where H = Σ(r × V)δm is the angular momentum of the system about its center of

mass
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Energy

First law of thermodynamics

δQ− δW = dE

Second law of thermodynamics

dS ≤ δQ

T
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State Relations

I The above-listed relations includes thermodynamic properties

I Needs to be supplemented by a state relation

I Remember: a thermodynamic property can be calculated from any two other

thermodynamics properties

p = p(ρ,T), e = e(ρ,T)
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Volume and Mass Flow Rate

Q =

ˆ
∂Ω

(V · n)dA

ṁ =

ˆ
∂Ω

ρ(V · n)dA

Ω

∂Ω

n
V

n

V · n
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
�
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Reynolds Transport Theorem

Converts mathematical relations for a specific system to relations for a specific region

I fixed control volume

I moving control volume

I deformable control volume
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Reynolds Transport Theorem

Let B be any extensive property of the fluid (energy, momentum, enthalpy, ... )

β is the corresponding intensive value (the amount B per unit mass)

The total amount of B in the control volume is

BCV =

ˆ
CV

βdm =

ˆ
CV

βρdV

where β =
dB

dm
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Reynolds Transport Theorem

flow

Bcv(t)

system at time t

∆Bin flow

Bcv(t + ∆t)

system at time t + ∆t

∆Bout
system
control surface

Bsys(t) = Bcv(t) + ∆Bin

Bsys(t +∆t) = Bcv(t +∆t) + ∆Bout
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Reynolds Transport Theorem

The rate of change of B for the system:

dBsys

dt
= lim

∆t→0

[
Bsys(t +∆t)− Bsys(t)

∆t

]
Apply relations from previous slide ⇒

dBsys

dt
= lim

∆t→0

[
Bcv(t +∆t) + ∆Bout − Bcv(t)−∆Bin

∆t

]
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Reynolds Transport Theorem

Rewriting ⇒

dBsys

dt
= lim

∆t→0

[
Bcv(t +∆t)− Bcv(t)

∆t

]
︸ ︷︷ ︸

dBcv
dt

+ lim
∆t→0

∆Bout

∆t︸ ︷︷ ︸
Ḃout

− lim
∆t→0

∆Bin

∆t︸ ︷︷ ︸
Ḃin︸ ︷︷ ︸

Ḃnet

dBsys

dt
=

dBcv

dt
+ Ḃnet
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Reynolds Transport Theorem

Rate of change of B within the control volume

d

dt

(ˆ
CV

βρdV
)

Net flux of B over the control volume surface

ˆ
CS

βρ(V · n)dA
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Reynolds Transport Theorem

d

dt
(Bsys)︸ ︷︷ ︸

Lagrange

=
d

dt

(ˆ
CV

βρdV
)
+

ˆ
CS

βρ(V · n)dA︸ ︷︷ ︸
Euler
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Reynolds Transport Theorem

For a fixed control volume (the volume does not change in time)

d

dt

(ˆ
CV

βρdV
)

=

ˆ
CV

∂

∂t
(βρ)dV
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Reynolds Transport Theorem

If the control volume moves with the constant velocity Vs, the relative velocity of the
fluid crossing the control volume surface Vr is

Vr = V − Vs

and thus

d

dt
(Bsys) =

d

dt

(ˆ
CV

βρdV
)
+

ˆ
CS

βρ(Vr · n)dA
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
�

�
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Conservation of Mass

Reynolds transport theorem with B = m and β = dB/dm = dm/dm = 1

d

dt
(msys) = 0 =

d

dt

(ˆ
CV

ρdV
)
+

ˆ
CS

ρ(Vr · n)dA

for a fixed control volume

ˆ
CV

∂ρ

∂t
dV +

ˆ
CS

ρ(Vr · n)dA = 0
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Conservation of Mass

1

2

3

4

5

Control volume (CV)

Control surface (CS)

for a control volume with a number of one-dimensional inlets and outlets

ˆ
CV

∂ρ

∂t
dV +

∑
i

(ρiAiVi)out −
∑
i

(ρiAiVi)in = 0
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Conservation of Mass

Steady state ⇒ ∂ρ/∂t = 0

ˆ
CS

ρ(Vr · n)dA = 0

or ∑
i

(ρiAiVi)out =
∑
i

(ρiAiVi)in
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Conservation of Mass

Incompressible flow ⇒ ∂ρ/∂t = 0

ˆ
CS

(Vr · n)dA = 0

or ∑
i

(AiVi)out =
∑
i

(AiVi)in
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Conservation of Mass - Example 1

Steady flow through a streamtube

I steady state ⇒ no changes in time

I streamtube ⇒ only flow through the surfaces

1 and 2

ṁ = ρ1A1V1 = ρ2A2V2 = const

if the density is constant (incompressible flow)

Q = A1V1 = A2V2 = const ⇒ V2 =
A1

A2
V1

V1

V2

1

2

V · n = 0

Streamtube control volume

Remember: a streamtube is constructed from a set of streamlines
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Conservation of Mass - Example 2

Compute the average velocity for a steady laminar incompressible viscous flow

through a circular tube with given axial velocity profile

u = Uo

(
1−

( r

R

)2
)

Assumptions:

1. Laminar flow

2. Steady state ⇒ no changes in time

3. Incompressible ⇒ constant density

Vav =
1

A

ˆ
udA =

1

πR2

ˆ R

0
Uo

(
1−

( r

R

)2
)
2πrdr =

2Uo

R2

ˆ R

0

(
1−

( r

R

)2
)
rdr

Uo

u(r)

r = R

u = 0 (no slip)

u = 0 (no slip)

r

x
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Conservation of Mass - Example 2

Vav =
2Uo

R2

ˆ R

0

(
1−

( r

R

)2
)
rdr =

2Uo

R2

[
r2

2
− r4

4R2

]R
0

=
Uo

2

Thus, for laminar pipe flow

Vav =
Uo

2
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Conservation of Mass - Example 3

Compute the average velocity for a steady turbulent incompressible viscous flow

through a circular tube with given axial velocity profile

u ≈ Uo

(
1− r

R

)m
Assumptions:

1. Turbulent flow: 1/5 ≥ m ≥ 1/9
2. Steady state ⇒ no changes in time

3. Incompressible ⇒ constant density

Vav ≈
1

A

ˆ
udA =

1

πR2

ˆ R

0
Uo

(
1− r

R

)m
2πrdr =

2Uo

R2

ˆ R

0

(
1− r

R

)m
rdr

Uo

u(r)

r = R

u = 0 (no slip)

u = 0 (no slip)

r

x
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Conservation of Mass - Example 3

Vav ≈
2Uo

R2

ˆ R

0

(
1− r

R

)m
rdr =

2Uo

R2

[
(r − R)

(
1− r

R

)m
(mr + r + R)

(m+ 1)(m+ 2)

]R
0

Thus, for turbulent pipe flow

Vav ≈
2Uo

(m+ 1)(m+ 2)

m = 1/7 ⇒ Vav ≈ 49Uo/60 ≈ 0.82Uo
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