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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

12 Define Reynolds transport theorem using the concepts control volume and
system

13 Derive the control volume formulation of the continuity, momentum, and energy
equations using Reynolds transport theorem and solving problems using those
relations

15 Derive and use the Bernoulli equation (using the relation includes having
knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...
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Motivation

Fluid motion analysis:

differential approach (chapter 4):

describe the detailed flow pattern at every point in the flow

control volume approach (chapter 3):

working with a finite region, balance in and out flow and determine gross flow
effects (force, torque, energy exchange, ... )

gives useful engineering estimates
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System vs Control Volume

All laws of mechanics are written for a system:

> A system is an arbitrary quantity of mass of fixed identity m
> The system is separated from its surroundings by its boundaries

> Interaction between the system and its surroundings



System Mass

Msyst = Cconst

o’m_

o

Obvious in solid mechanics but needs attention in fluid mechanics



Conservation Relations

Mass

Linear momentum
Angular momentum
Energy



Linear Momentum

If the surroundings exert a net force F on the system, the mass in the system will
begin to accelerate



Angular Momentum

If the surroundings exert a net moment M about the center of mass of the system,
there will be a rotation effect

_aH

M=

where H = X(r x V)dm is the angular momentum of the system about its center of
mass



Energy

First law of thermodynamics

Second law of thermodynamics



State Relations

> The above-listed relations includes thermodynamic properties
> Needs to be supplemented by a state relation

> Remember: a thermodynamic property can be calculated from any two other
thermodynamics properties

p=pp,T), e=ep,T)



Volume and Mass Flow Rate

Q= (V-n)dA
09

m = p(V -n)dA
o2
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Reynolds Transport Theorem

Converts mathematical relations for a specific system to relations for a specific region
fixed control volume
moving control volume
deformable control volume _




Reynolds Transport Theorem

Let B be any extensive property of the fluid (energy, momentum, enthalpy, ... )
5 is the corresponding intensive value (the amount B per unit mass)

The total amount of B in the control volume is

Boy = / Bam — / BpdV
cVv cVv

where 8 = g/Ti



Reynolds Transport Theorem
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Bsys(t) = Bey(t) + ABj
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Reynolds Transport Theorem

The rate of change of B for the system:

at At—0

At

Apply relations from previous slide =

stys ¢, 1 BCV (t + At) + ABouf - Bcv(t) _ AB”‘;
= l11m
at At—0 At



Reynolds Transport Theorem

Rewriting =
stys . Bcv (t + At) - Bcv(t) . ABout . ABIn
p— 1 —
g A At TAm AL A At
dBey Bout Bin
di
Bnet
B B .
d sys adBey + Bt

dat  dt




Reynolds Transport Theorem

Rate of change of B within the control volume

d

dt </ o dV)
Net flux of B over the control volume surface

| Bp(V -n)dA
CS



Reynolds Transport Theorem

d d
ot Bas) = </Cvﬁp >+/Csﬂp( n)

Lagrange Euler




Reynolds Transport Theorem

For a fixed control volume (the volume does not change in time)

d ’ 0
° ( y deV> - /C S epav



Reynolds Transport Theorem

If the control volume moves with the constant velocity Vg, the relative velocity of the
fluid crossing the control volume surface V.. is

and thus
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Conservation of Mass

Reynolds transport theorem with B =m and g = dB/dm = dm/dm =1

d d
&(msys) =0= gt (/C\/pdv> +/CSP(Vr‘n)dA

for a fixed control volume

[/Cvapdv+/ (Vr~n)dA0}




Conservation of Mass

for a control volume with a number of one-dimensional inlets and outlets

/c 9Py + Z PiANV ) out — Z(P/A/V/)/n =0
V i

i

Control surface (CS)

Control volume (CV)



Conservation of Mass

Steady state = dp/0t =0

/ (Vs - m)0A = 0
CS

or

> (pAVout =D (pAV)in

I I



Conservation of Mass

Incompressible flow = 9p/0t = 0

/CS(Vr ‘n)0A = 0

or

Z(A/Vi)out = Z(Af\//)/n

I I



Conservation of Mass - Example 1

V-n=20
Steady flow through a streamtube e .
> steady state = no changes in time ‘
> streamtube =- only flow through the surfaces ®
1 and 2 1 \® Streamtube control volume

m = p1A1V1 = p2A2V2 = const

if the density is constant (incompressible flow)

A
Q=A1V1 =AV, =const =V, = A—lvl
2

Remember: a streamtube is constructed from a set of streamlines



Conservation of Mass - Example 2

Compute the average velocity for a steady laminar incompressible viscous flow
through a circular tube with given axial velocity profile

r=R u = 0 (no slip)

ry 2
v UO (1 B (E) > r u(r)
Assumptions: ) o U

1. Laminar flow
2. Steady state = no changes in time
3. Incompressible = constant density U = 0{nosip)

1 1 (A r\2 20U, 7 ry 2




Conservation of Mass - Example 2

Vay = QRUQO/OR (1— <;>2>rdr—

Thus, for laminar pipe flow

Vav: -

2U,

R2

r

[

2



Conservation of Mass - Example 3

Compute the average velocity for a steady turbulent incompressible viscous flow
through a circular tube with given axial velocity profile

r=R u = 0 (no slip)

r m
u~U, (1 — —) g\
R \ "\ ui
Assumptions:

1. Turbulent flow: 1/5 >m > 1/9 7/
2. Steady state = no changes in time

u = 0 (no slip)
3. Incompressible = constant density

1 I r\m 2U, [ r\m



Conservation of Mass - Example 3

r—R(1-5)"mr+r+R)]"

Vav%wj/ﬁ(l—r>mrdr_2UO
0

R? R R? (m+1)(m+2)

Thus, for turbulent pipe flow
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