#### Fluid Mechanics - MTF053

Lecture 4

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

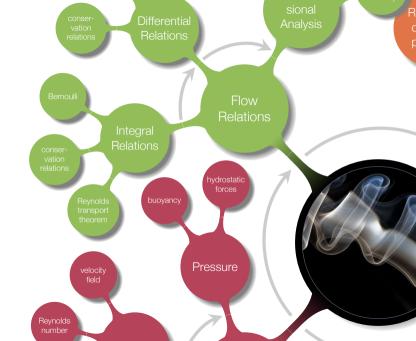
niklas.andersson@chalmers.se





# Chapter 3 - Integral Relations for a Control Volume

# Overview



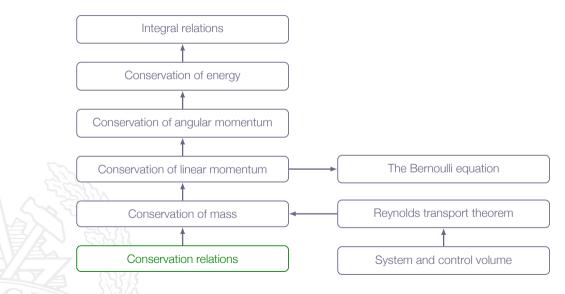
# Learning Outcomes

- 4 Be **able to categorize** a flow and **have knowledge about** how to select applicable methods for the analysis of a specific flow based on category
- 12 **Define** Reynolds transport theorem using the concepts control volume and system
- 13 **Derive** the control volume formulation of the continuity, momentum, and energy equations using Reynolds transport theorem and solving problems using those relations
- 15 **Derive** and use the Bernoulli equation (using the relation includes having knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...

# Roadmap - Integral Relations



### Motivation

Fluid motion analysis:

differential approach (chapter 4):

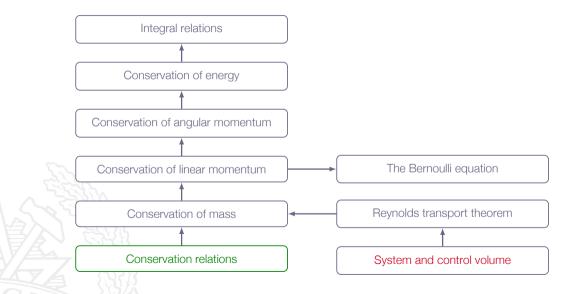
describe the detailed flow pattern at every point in the flow

#### control volume approach (chapter 3):

working with a finite region, balance in and out flow and determine gross flow effects (force, torque, energy exchange,  $\dots$ )

gives useful engineering estimates

# Roadmap - Integral Relations



All laws of mechanics are written for a system:

A system is an arbitrary quantity of mass of fixed identity m

The system is separated from its surroundings by its boundaries

Interaction between the system and its surroundings

### System Mass

 $m_{syst} = const$ 

$$\frac{dm}{dt} = 0$$

Obvious in solid mechanics but needs attention in fluid mechanics

# **Conservation Relations**

- 1. Mass
- 2. Linear momentum
- 3. Angular momentum
- 4. Energy

If the surroundings exert a net force  ${\bf F}$  on the system, the mass in the system will begin to accelerate



$$\mathbf{F} = m\mathbf{a} = m\frac{d\mathbf{V}}{dt} = \frac{d}{dt}(m\mathbf{V})$$

If the surroundings exert a net moment  ${\bf M}$  about the center of mass of the system, there will be a rotation effect

$$\mathbf{M} = \frac{d\mathbf{H}}{dt}$$

where  $\mathbf{H} = \Sigma(\mathbf{r} \times \mathbf{V}) \delta m$  is the angular momentum of the system about its center of mass



First law of thermodynamics

$$\delta Q - \delta W = dE$$

Second law of thermodynamics



$$dS \le \frac{\delta Q}{T}$$

#### State Relations

▶ The above-listed relations includes thermodynamic properties

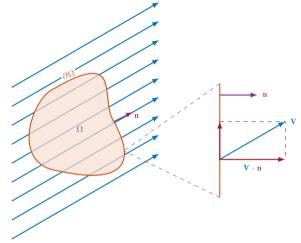
- Needs to be supplemented by a state relation
- Remember: a thermodynamic property can be calculated from any two other thermodynamics properties

$$o = \rho(\rho, T), \ e = e(\rho, T)$$

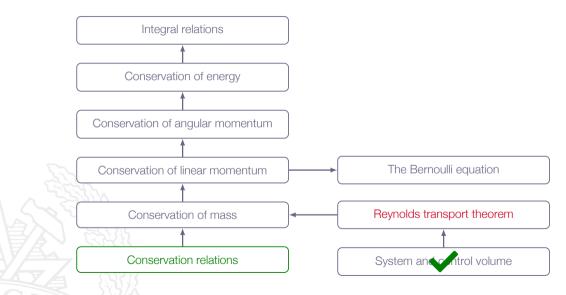
# Volume and Mass Flow Rate

$$Q = \int_{\partial \Omega} (\mathbf{V} \cdot \mathbf{n}) dA$$

$$\dot{m} = \int_{\partial \Omega} \rho(\mathbf{V} \cdot \mathbf{n}) dA$$

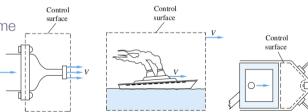


# Roadmap - Integral Relations



Converts mathematical relations for a specific system to relations for a specific region

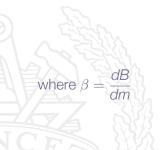
- fixed control volume
- moving control volume
  - deformable control volume



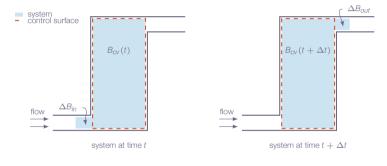
Let B be any extensive property of the fluid (energy, momentum, enthalpy, ... )

 $\beta$  is the corresponding **intensive** value (the amount B per unit mass)

The total amount of B in the control volume is



$$B_{CV} = \int_{CV} \beta dm = \int_{CV} \beta 
ho d\mathcal{V}$$



 $B_{\rm sys}(t) = B_{\rm cv}(t) + \Delta B_{\rm in}$ 

 $B_{SYS}(t + \Delta t) = B_{CV}(t + \Delta t) + \Delta B_{OUt}$ 

Niklas Andersson - Chalmers



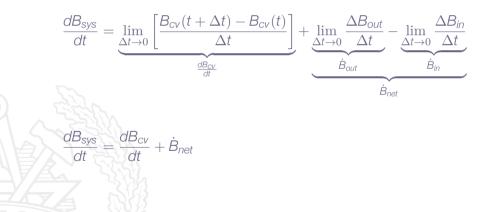
The rate of change of *B* for the system:

$$\frac{dB_{\text{sys}}}{dt} = \lim_{\Delta t \to 0} \left[ \frac{B_{\text{sys}}(t + \Delta t) - B_{\text{sys}}(t)}{\Delta t} \right]$$

Apply relations from previous slide  $\Rightarrow$ 

$$\frac{B_{sys}}{dt} = \lim_{\Delta t \to 0} \left[ \frac{B_{cv}(t + \Delta t) + \Delta B_{out} - B_{cv}(t) - \Delta B_{in}}{\Delta t} \right]$$

#### $\text{Rewriting} \Rightarrow$

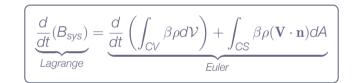


Rate of change of *B* within the control volume

$$\frac{d}{dt}\left(\int_{CV}\beta\rho d\mathcal{V}\right)$$

Net flux of B over the control volume surface

$$\int_{CS} \beta \rho(\mathbf{V} \cdot \mathbf{n}) dA$$



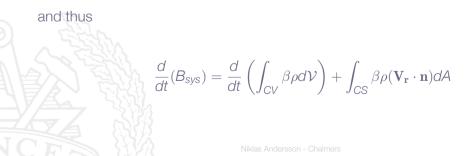
For a fixed control volume (the volume does not change in time)

$$\frac{d}{dt}\left(\int_{CV}\beta\rho d\mathcal{V}\right) = \int_{CV}\frac{\partial}{\partial t}(\beta\rho)d\mathcal{V}$$

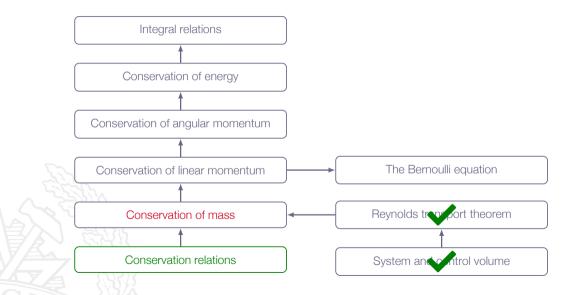


If the control volume moves with the constant velocity  $V_{\rm s},$  the relative velocity of the fluid crossing the control volume surface  $V_{\rm r}$  is

 $V_r = V - V_s$ 



# Roadmap - Integral Relations



Reynolds transport theorem with B = m and  $\beta = dB/dm = dm/dm = 1$ 

$$\frac{d}{dt}(m_{\text{sys}}) = 0 = \frac{d}{dt} \left( \int_{CV} \rho d\mathcal{V} \right) + \int_{CS} \rho(\mathbf{V}_{\mathbf{r}} \cdot \mathbf{n}) dA$$

#### for a fixed control volume

$$\int_{CV} \frac{\partial \rho}{\partial t} d\mathcal{V} + \int_{CS} \rho(\mathbf{V_r} \cdot \mathbf{n}) d\mathcal{A} = 0$$

for a control volume with a number of one-dimensional inlets and outlets

$$\int_{CV} \frac{\partial \rho}{\partial t} d\mathcal{V} + \sum_{i} (\rho_{i}A_{i}V_{i})_{out} - \sum_{i} (\rho_{i}A_{i}V_{i})_{in} = 0$$
Control surface (CS)
Control volume (CV)
Control vo

Steady state  $\Rightarrow \partial \rho / \partial t = 0$ 

$$\int_{CS} \rho(\mathbf{V}_{\mathbf{r}} \cdot \mathbf{n}) d\mathbf{A} = 0$$



$$\sum_{i} (\rho_i A_i V_i)_{out} = \sum_{i} (\rho_i A_i V_i)_{int}$$

Incompressible flow  $\Rightarrow \partial \rho / \partial t = 0$ 

$$\int_{CS} (\mathbf{V}_{\mathbf{r}} \cdot \mathbf{n}) d\mathbf{A} = 0$$



$$\sum_{i} (A_i V_i)_{out} = \sum_{i} (A_i V_i)_{ir}$$

Steady flow through a streamtube

- ► steady state  $\Rightarrow$  no changes in time
- ► streamtube ⇒ only flow through the surfaces 1 and 2

$$V \cdot n = 0$$
  
 $V_1$   
(1) Streamtube control volume

$$\dot{m} = \rho_1 A_1 V_1 = \rho_2 A_2 V_2 = const$$

if the density is constant (incompressible flow)

$$Q = A_1 V_1 = A_2 V_2 = const \Rightarrow V_2 = \frac{A_1}{A_2} V_1$$

Remember: a streamtube is constructed from a set of streamlines

Compute the average velocity for a steady **laminar** incompressible viscous flow through a circular tube with given axial velocity profile

$$u = U_o \left( 1 - \left(\frac{r}{R}\right)^2 \right)$$

**Assumptions:** 

- 1. Laminar flow
- 2. Steady state  $\Rightarrow$  no changes in time
- 3. Incompressible  $\Rightarrow$  constant density

$$r = R$$
  $u = 0$  (no slip)

u = 0 (no slip)

$$V_{av} = \frac{1}{A} \int u dA = \frac{1}{\pi R^2} \int_0^R U_o \left( 1 - \left(\frac{r}{R}\right)^2 \right) 2\pi r dr = \frac{2U_o}{R^2} \int_0^R \left( 1 - \left(\frac{r}{R}\right)^2 \right) r dr$$

$$V_{av} = \frac{2U_o}{R^2} \int_0^R \left(1 - \left(\frac{r}{R}\right)^2\right) r dr = \frac{2U_o}{R^2} \left[\frac{r^2}{2} - \frac{r^4}{4R^2}\right]_0^R = \frac{U_o}{2}$$

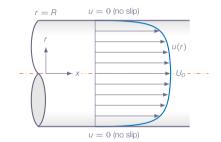
#### Thus, for laminar pipe flow



Niklas Andersson - Chalmers

Compute the average velocity for a steady **turbulent** incompressible viscous flow through a circular tube with given axial velocity profile

$$u \approx U_o \left(1 - \frac{r}{R}\right)^n$$



**Assumptions:** 

- 1. Turbulent flow:  $1/5 \ge m \ge 1/9$
- 2. Steady state  $\Rightarrow$  no changes in time
- 3. Incompressible  $\Rightarrow$  constant density

$$V_{av} \approx \frac{1}{A} \int u dA = \frac{1}{\pi R^2} \int_0^R U_o \left(1 - \frac{r}{R}\right)^m 2\pi r dr = \frac{2U_o}{R^2} \int_0^R \left(1 - \frac{r}{R}\right)^m r dr$$

$$V_{av} \approx \frac{2U_o}{R^2} \int_0^R \left(1 - \frac{r}{R}\right)^m r dr = \frac{2U_o}{R^2} \left[\frac{(r-R)\left(1 - \frac{r}{R}\right)^m (mr+r+R)}{(m+1)(m+2)}\right]_0^R$$

Thus, for turbulent pipe flow

$$V_{av} \approx \frac{2U_o}{(m+1)(m+2)}$$

 $m = 1/7 \Rightarrow V_{\rm av} \approx 49 U_{\rm o}/60 \approx 0.82 U_{\rm o}$