

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Learning Outcomes

- 4 Be **able to categorize** a flow and **have knowledge about** how to select applicable methods for the analysis of a specific flow based on category
- 37 **Understand and explain** basic concepts of compressible flows (the gas law, speed of sound, Mach number, isentropic flow with changing area, normal shocks, oblique shocks, Prandtl-Meyer expansion)

Let's go supersonic ...

Roadmap - Compressible Flow

Shock Waves

"Shock waves are nearly discontinuous changes in a supersonic flow"

Reasons for the appearance of shocks in a flow can be for example:

- 1. higher downstream pressure
- 2. sudden changes in flow direction
- 3. blockage by a downstream body
- 4. explosion

Continuity:

$$\rho_1 U_1 = \rho_2 U_2$$

Momentum:

$$\rho_1 - \rho_2 = \rho_2 u_2^2 - \rho_1 u_1^2$$

Energy:

$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2 = h_0$$

The Rankine-Hugoniot relation:

$$h_2 - h_1 = \frac{1}{2}(\rho_2 - \rho_1)\left(\frac{1}{\rho_2} + \frac{1}{\rho_1}\right)$$

$$h_2 - h_1 = \frac{1}{2}(p_2 - p_1)\left(\frac{1}{\rho_2} + \frac{1}{\rho_1}\right)$$

Note! The **Rankine-Hugoniot** relation **only** includes **thermodynamic properties** (no velocities) and gives a relation between the flow state upstream of the shock and the flow downstream of the shock

The Rankine-Hugoniot relation

$$\frac{\rho_2}{\rho_1} = \frac{1 + \left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{\rho_2}{\rho_1}\right)}{\left(\frac{\gamma+1}{\gamma-1}\right) + \left(\frac{\rho_2}{\rho_1}\right)}$$

The isentropic relation

$$\frac{\rho_2}{\rho_1} = \left(\frac{\rho_2}{\rho_1}\right)^{1/\gamma}$$

The second law of thermodynamics

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1}$$

can be rewritten as

$$s_2 - s_1 = C_v \ln \left[\frac{\rho_2}{\rho_1} \left(\frac{\rho_1}{\rho_2} \right)^{\gamma} \right]$$

 $(\rho_2/\rho_1$ from the Rankine-Hugoniot relation)

Note! a reduction of entropy is a violation of the second law of thermodynamics

For a perfect gas, it is possible to obtain relations for normal shocks that only include upstream variables

Momentum equation: $\rho_1 + \rho_1 u_1^2 = \rho_2 + \rho_2 u_2^2$

$$\rho_2 - \rho_1 = \rho_1 u_1^2 - \rho_2 u_2^2 = \{\rho_1 u_1 = \rho_2 u_2\} = \rho_1 u_1 (u_1 - u_2) = \rho_1 u_1^2 \left(1 - \frac{u_2}{u_1}\right)$$

divide by p_1

$$\frac{\rho_2}{\rho_1} = 1 + \frac{\rho_1 u_1^2}{\rho_1} \left(1 - \frac{u_2}{u_1} \right)$$

$$u_1^2 = M_1^2 a_1^2 = M_1^2 \gamma R T_1 = \gamma M_1^2 \frac{\rho_1}{\rho_1} \Rightarrow \frac{\rho_2}{\rho_1} = 1 + \gamma M_1^2 \left(1 - \frac{u_2}{u_1} \right)$$

$$\frac{\rho_2}{\rho_1} = 1 + \gamma M_1^2 \left(1 - \frac{u_2}{u_1} \right)$$

Using the energy equation its possible obtain a relation for $\frac{u_2}{u_1}$ (the derivation is quite lengthy though)

$$\frac{u_2}{u_1} = \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2}$$

and thus

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right)$$

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right)$$

Note! from before we know that p_2/p_1 must be greater than 1.0, which means that M_1 must be greater than 1.0

Momentum equation: $\rho_1 + \rho_1 u_1^2 = \rho_2 + \rho_2 u_2^2$

$$M = \frac{u}{a} \Rightarrow \rho_1 + \rho_1 M_1^2 a_1^2 = \rho_2 + \rho_2 M_2^2 a_2^2$$

$$a = \sqrt{\gamma RT} = \sqrt{\frac{\gamma \rho}{\rho}} \Rightarrow \rho_1 + \rho_1 M_1^2 \frac{\gamma \rho_1}{\rho_1} = \rho_2 + \rho_2 M_2^2 \frac{\gamma \rho_2}{\rho_2}$$

$$\rho_1 \left(1 + \gamma M_1^2 \right) = \rho_2 \left(1 + \gamma M_2^2 \right)$$

$$\frac{\rho_2}{\rho_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2}$$

Two ways to calculate the pressure ratio over the shock

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right) \qquad \qquad \frac{\rho_2}{\rho_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2}$$

Setting the relations equal gives a relation for the downstream Mach number

$$M_2^2 = \frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}$$

$$M_2^2 = \frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}$$

Note! for $\gamma > 1$ and $M_1 > 1$, the downstream Mach number **must** be less than 1.0, i.e we will **always** have subsonic flow downstream of a normal shock

Normal Shocks - Summary

- 1. Supersonic flow upstream of normal shock
- 2. **Subsonic** flow **downstream** of normal shock
- Entropy increases over the shock and consequently total pressure decreases
- 4. Sonic throat area increases
- 5. Very weak shock waves are nearly isentropic

Normal Shocks - Trends

Normal Shocks - Examples

Moving Normal Shocks

Change frame of reference:

- 1. coordinate system moving with the shock
- 2. thermodynamic properties does not change

$$h_2 - h_1 = \frac{1}{2}(\rho_2 - \rho_1)\left(\frac{1}{\rho_1} + \frac{1}{\rho_2}\right)$$

Roadmap - Compressible Flow

The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

The Area-Mach-Number Relation

Critical (**choked**) nozzle flow

Convergent-Divergent Nozzle $p_{0}/p_{e} = (p_{0}/p_{e})_{ne}$ normal shock normal shock at nozzle exit $(p_0/p_e)_{ne} < p_0/p_e < (p_0/p_e)_{sc}$ oblique shock overexpanded nozzle flow $p_o/p_e = (p_o/p_e)_{sc}$ pressure matched pressure matched nozzle flow $p_{o}/p_{e} > (p_{o}/p_{e})_{sc}$ expansion fan underexpanded nozzle flow

