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Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category
Explain what a boundary layer is and when/where/why it appears

Explain how the flat plate boundary layer is developed (transition from laminar
to turbulent flow)

Explain and use the Blasius equation

Define the Reynolds number for a flat plate boundary layer

Explain what is characteristic for a turbulent flow

Explain flow separation (separated cylinder flow)

Explain how to delay or avoid separation

Derive the boundary layer formulation of the Navier-Stokes equations
Understand and explain displacement thickness and momentum thickness
Understand, explain and use the concepts drag, friction drag, pressure drag,
and lift

Let’s take a deep dive into boundary-layer theory



Complementary Course Material

These lecture notes covers chapter 7 in the course book and additional course
material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTFO053_Turbulence.pdf


https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf
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Pressure Gradient

Adverse pressure gradient

pressure increases in the flow direction
may lead to separation

Thin front
boundary layer

Favorable pressure gradient

pressure decreases in the flow direction
the flow will not separate

Re, = 10°

Separation mechanism
loss of momentum near the wall
adverse pressure gradient
decelerated fluid will force flow to separate from the body

Beautifully behaved
but mythically thin
boundary layer
and wake

Outer stream grossly
perturbed by broad flow
separation and wake



Pressure Gradient

Boundary layer formulation of the momentum equation:
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with u = v = 0 close at the wall, we get
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Pressure Gradient
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Adverse pressure gradient (o’_p > 0):
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Pressure Gradient

u(y)

Favorable gradient
(dp/dx < 0)

Point of inflection:
inside wall

No separation



Pressure Gradient

y y
A
Uso | Uso
u@y) uy)
Favorable gradient Zero gradient
(dp/dx < 0) (dp/dx = 0)
Point of inflection: Point of inflection:
inside wall at the wall

No separation No separation



Pressure Gradient

y y y
A A
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u(y) u(y) uy)

Favorable gradient Zero gradient Weak adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow

No separation No separation No separation



Pressure Gradient

y y y y
A A A
Uso | Uso I Uso I Uso I
u@y) uy) uy) uy)

Favorable gradient Zero gradient Weak adverse Critical adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow
No separation No separation No separation Separation

zero slope at wall
Tw =20



Pressure Gradient

y y y y y
A A A A
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Favorable gradient Zero gradient Weak adverse Critical adverse Excessive adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow in the flow
No separation No separation No separation Separation Separated flow
zero slope at wall backflow at wall

Tw =20



Pressure Gradient

500X

Inviscid core flow —=-—-—

S(X)_ 2
-

Nozzle
decreasing area

favorable pressure
gradient

dp/dx < 0

du/dx > 0

Throat

minimum area

Zero pressure

gradient
dp/dx =0
du/dx =0

ww

Diffuser
increasing area

adverse pressure
gradient

dp/dx > 0

dU/dx < 0



Shape Factor
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Favorable pressure gradients

Adverse pressure gradients

> <
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Shape factor: H = %

Laminar flow:

No pressure gradient: H ~ 2.6
Separation: H ~ 3.5
Turbulent flow:

No pressure gradient: H ~ 1.3

Separation: H ~ 2.4



Avoid or Delay Separation

Decrease magnitude of adverse pressure gradient \ =

Guide vanes

Corner duct Diffusers Corner duct

Streamlining

Centrifugal fan

I




Avoid or Delay Separation

Remove decelerated fluid

Boundary layer suction

Z



Avoid or Delay Separation

N

Increase near-wall momentum —

Injection of high-velocity fluid

Forced transition to turbulence

surface roughness
surface irregularities (dimples on the surface of a golf ball)
trip wires

Negative consequence: comes with increased friction
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Drag of Immersed Bodies
%f"
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Cp = _rag f > Cp based on frontal and planform area

== _
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circular cylinder

Characteristic area A:
0.2 Cp based on frontal area (tb) o

1. Frontal area
blunt objects: cylinders, cars
2. Planform area 0.1 |
wide flat bodies: wings, hydrofoils
3. Wetted area £ st on panionm area ()

flat plate
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Drag of Immersed Bodies

CD - CDpressure + CDfrict/'on
Pressure drag:

“the difference between the high front
stagnation pressure and the low wake
pressure on the backside of the body”

“often larger than the friction drag”

The relative importance of friction and
pressure drag depends on:

body shape
surface roughness

Friction drag percent
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percentage of pressure

0.2

Note! for a cylinder, friction drag can be as low as a few percent of the total drag



Cylinder Surface Pressure
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Cylinder Drag
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Streamlining

Cp =20

)
-

L



Streamlining

Cp =20
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Streamlining
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Streamlining
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Drag Prediction

No reliable theory for drag prediction (with the exception of flat plates)

The separation point can be predicted with some accuracy but not the wake
flow

CFD or experiments needed



Wing Lift and Drag

planform area: A, = bc
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Wing Lift and Drag - High-Lift Devices

o

A: Cruise configuration

B: Takeoff configuration Y

&=
C: Landing configuration




Wing Lift and Drag - Wing Stalll




Wing Lift and Drag - Induced Drag

Streamline over
the top surface

Voo
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e Streamline over the bottom surface

Top view

(planform) Wing area = §

Wing root
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Front view of wing
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vortices

Vortex




Wing Lift and Drag - Induced Drag




Wing Lift and Drag - Induced Drag




Wing Lift and Drag

HOW A WING PRODUCES LIFT
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Joukowsky Transform }s

A Joukowsky wing is generated in the complex plane by applying the Joukowsky
transform to a cylinder

Since the potential flow around a cylinder is well known it is by using so-called
conformal mapping possible to get the flow around the wing profile from the cylinder
solution



Joukowsky Transform
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Complex Conjugate

OKAY, ANYONE. WHO'S FEELING
LIKE THEY CAN'T HANDLE
THE PHYSICS HERE SHOULD
PROBABLY JUST LEAVE NOW.

BECAUSE. TM MULTIPLYING
THE WRAVEFUNCTION BY IT5
COMPLEX CONTJUGATE,

THATS RIGHT.

0/

SHIT JusT
GOT AEAL.
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