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Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category
Explain what a boundary layer is and when/where/why it appears

Explain how the flat plate boundary layer is developed (transition from laminar
to turbulent flow)

Explain and use the Blasius equation

Define the Reynolds number for a flat plate boundary layer

Explain what is characteristic for a turbulent flow

Explain flow separation (separated cylinder flow)

Explain how to delay or avoid separation

Derive the boundary layer formulation of the Navier-Stokes equations
Understand and explain displacement thickness and momentum thickness
Understand, explain and use the concepts drag, friction drag, pressure drag,
and lift

Let’s take a deep dive into boundary-layer theory
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Complementary Course Material

These lecture notes covers chapter 7 in the course book and additional course
material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTFO053_Turbulence.pdf


https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf

Motivation



External Flow

Significant viscous effects near the surface of an immersed body

Nearly inviscid far from the body

Unconfined - boundary layers are free to grow

Most often CFD or experiments are needed to analyze an external flow unless
the geometry is very simple
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Reynolds Number Effects
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Reynolds Number Effects
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Note! Re; and the local Reynolds number Re, are not the same if L # x
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Boundary Layer Equations

We wiill derive a set of equations suitable for boundary-layer flow analysis
Starting point: the non-dimensional equations derived in Chapter 5
We will assume two-dimensional, incompressible, steady-state flow

We will do an order-of-magnitude comparison of all the terms in the governing
equations on non-dimensional form and identify terms that can be neglected in
a thin-boundary-layer flow



Non-dimensional Flow Equations

The governing equations for two-dimensional, laminar, incompressible and
steady-state flow with negligible body forces:

continuity:

X-momentum:

y-momentum:



Non-dimensional Flow Equations

continuity:
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Non-dimensional Flow Equations

X-momentum:
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Non-dimensional Flow Equations
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continuity:
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X-momentum:
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Boundary Layer Equations

To be able to find the relative sizes of different terms in the equations, we will first
have a look at the flow parameters and operators

U =U/Ux ~ 1
x*=x/L~1
yr=y/L~0"

d denotes boundary layer thickness and §* = § /L

Note! here, u* is not the friction velocity and ¢* is not the displacement thickness



Boundary Layer Equations

y* a8 = ut o1

What about derivatives?

ot 1-0 1 -
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

What about derivatives?
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Note! The sign of terms is not important here, we are only interested in the

order of magnitude



Boundary Layer Equations

x5 0=uv" =0
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

continuity:
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Boundary Layer Equations
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations
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Boundary Layer Equations
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Boundary Layer Equations
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Boundary Layer Equations

X-momentum:
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assuming the inertial forces to be of the same size as the friction forces in the

boundary layer we get: 1/Re; ~ 52



Boundary Layer Equations

y-momentum:
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examining the equation we see that all terms are at most of size §* = ~ 0F

0" is small = p is independent of y



Boundary Layer Equations

The pressure can be assumed to be constant in the vertical direction through the
boundary layer and thus p = p(x)
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Boundary Layer Equations

With the knowledge gained, we now move back to the dimensional equations
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Boundary Layer Equations

Limitations
The boundary layer equations do not apply close to the start of the

0
boundary layer where a—:l* >1

The equations are derived assuming a thin boundary layer



Boundary Layer Equations

The pressure derivative can be replaced with a velocity derivative

Outside of the boundary layer the flow is inviscid = we can use the Bernoulli
equation
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Boundary Layer Equations

laminar boundary layer
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Two equations and two unknowns = possible to solve ©



Boundary Layer Equations

Note! the boundary layer equations can be used for curved surfaces if the boundary
layer thickness ¢ is small compared to the curvature radius r
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