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Chapter 3 - Integral Relations for a Control Volume
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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

12 Define Reynolds transport theorem using the concepts control volume and

system

13 Derive the control volume formulation of the continuity, momentum, and energy

equations using Reynolds transport theorem and solving problems using those

relations

15 Derive and use the Bernoulli equation (using the relation includes having

knowledge about its limitations)

we will derive methods suitable for estimation of forces and system analysis

fluid flow finally ...
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
�

��
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Conservation of Linear Momentum



Conservation of Linear Momentum

Reynolds transport theorem with B = mV and β = dB/dm = d(mV)/dm = V

d

dt
(mV)sys =

∑
F =

d

dt

(ˆ
CV

VρdV
)
+

ˆ
CS

Vρ(Vr · n)dA

1. V is the velocity relative to an inertial (non-accelerating) coordinate system

2.
∑

F is the vector sum of all forces on the system

(surface forces and body forces)

3. the relation is a vector relation (three components)
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Conservation of Linear Momentum

Forces on the system F:

1. body forces (gravity, magnetic fields, coriolis forces)

2. forces transferred to the system via solid bodies that protrude through the

control volume surface

3. forces due to pressure and viscous stresses of the surrounding fluid
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Surface Pressure Force
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ˆ
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Surface Pressure Force

1
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A free jet leaving a confined duct and exits into the ambient atmosphere will be at

atmospheric pressure

Niklas Andersson - Chalmers 10 / 39



Linear Momentum - Example

Deflection av a steady-state water jet without changing its velocity magnitude

1. steady-state

2. water ⇒ incompressible

3. atmospheric pressure on all control volume surfaces

4. neglect friction

F = ṁ2V2 − ṁ1V1

|V1| = |V2| = V

mass conservation: ṁ1 = ṁ2 = ṁ = ρAV

V
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θ
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y
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Linear Momentum - Example

V

V

1

2

F

CV

pamb

θ

x

y

Fx = ṁV(cos θ − 1)

Fy = ṁV sin θ

F = ṁV(cos θ − 1, sin θ, 0)
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Momentum Flux Correction Factor

One-dimensional flow through inlets and outlets is of course not true in reality

Introducing the momentum flux correction factor ζ

ˆ
Vρ(V · n)dA = ζVavṁ

where (for incompressible flow)

Vav =
1

A

ˆ
udA
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Momentum Flux Correction Factor

Laminar pipe flow:

Velocity profile:

u(r) = Umax

(
1−

( r

R

)2
)

From example 2 in the conservation-of-mass section

we have that the average velocity for a laminar pipe

flow is obtained as:

Vav =
1

2
Umax

umax

Vav

umax

Vav

Niklas Andersson - Chalmers 14 / 39



Momentum Flux Correction Factor

u(r) = Umax

(
1−

( r

R

)2
)

ˆ
Vρ(V · n)dA =

ˆ R

0
U2
max

(
1−

( r

R

)2
)
ρUmax

(
1−

( r

R

)2
)
2πrdr

ˆ
Vρ(V · n)dA = 2πρU2

max

ˆ R

0

(
1−

( r

R

)2
)2

rdr

ˆ
Vρ(V · n)dA =

1

3
πR2ρU2

max
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Momentum Flux Correction Factor

ˆ
Vρ(V · n)dA =

1

3
ρπR2U2

max

the mass flow ṁ can be obtained as:

ṁ = VavρπR
2 =

1

2
UmaxρπR

2

which gives

ˆ
Vρ(V · n)dA =

2Umax

3
ṁ

from the definition of ζ

ˆ
Vρ(V · n)dA = ζVavṁ =

{
Vav =

1

2
Umax

}
=

ζUmax

2
ṁ
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Momentum Flux Correction Factor

comparing the two expressions, we have that

2Umax

3
ṁ =

ζUmax

2
ṁ

and thus ζ = 4/3 for laminar incompressible flow
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Momentum Flux Correction Factor

Turbulent pipe flow:

Velocity Profile:

u(r) ≈ Umax

(
1− r

R

)m
, m ≈ 1

7

From example 3 in the conservation-of-mass section

we have that the average velocity for a laminar pipe

flow is obtained as:

Vav =
2Umax

(1 +m)(2 +m)

umax

Vav

umax

Vav
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Momentum Flux Correction Factor

ρ2πU2
max

ˆ R

0

(
1− r

R

)2m
rdr = ζρπR2V2

av = ζ
4ρπR2U2

max

(1 +m)2(2 +m)2
⇒

2

(r − R)
(
1− r

R

)2m
(2mr + r + R)

2(1 + 2m)(1 +m)


R

0

= ζ
4R2

(1 +m)2(2 +m)2
⇒

R2

(1 + 2m)(1 +m)
= ζ

4R2

(1 +m)3(2 +m)3
⇒ ζ =

(1 +m)2(2 +m)2

4(1 + 2m)(1 +m)
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Momentum Flux Correction Factor

Laminar pipe flow:

ζ = 4/3 should be used

Turbulent pipe flow:

ζ =
(1 +m)2(2 +m)2

4(1 + 2m)(1 +m)

m 1/5 1/6 1/7 1/8 1/9

ζ 1.037 1.027 1.020 1.016 1.013

ζ = 1.0 is often a good approximation for turbulent flows
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Roadmap - Integral Relations

Integral relations

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Conservation of mass Reynolds transport theorem

System and control volume

The Bernoulli equation

Conservation relations
�

��

�
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Daniel Bernoulli



The Bernoulli Equation

The relation between pressure, velocity, and elevation in a frictionless flow
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The Bernoulli Equation

Frictionless flow along a streamline (a streamtube with infinitesimal cross section

area)

V, p, ρ

V + dV

p + dp

ρ + dρ

dW ≈ ρgdVθ

ds

A

A + dA

dp(A + dA)

Fp,perimeter ≈
1

2
dpdA

conservation of mass:

d

dt

(ˆ
CV

ρdV
)
+ ṁout − ṁin = 0 ≈ ∂ρ

∂t
dV + dṁ

where dV ≈ Ads

dṁ ≈ −∂ρ

∂t
Ads
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The Bernoulli Equation

linear momentum equation in the streamwise direction:

∑
dFs =

d

dt

(ˆ
CV

VρdV
)
+ (ṁV)out − (ṁV)in ≈

∂

∂t
(ρV)Ads+ d (ṁV)

frictionless flow: only pressure and gravity forces

dFs,p ≈ 1

2
dpdA− (A+ dA)dp ≈ −Adp

dFs,grav = −dW sin θ = −(gρA)ds sin θ = −gρAdz

∑
dFs = −gρAdz−Adp =

∂

∂t
(ρV)Ads+ d (ṁV)
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The Bernoulli Equation

−gρAdz−Adp =
∂ρ

∂t
VAds+

∂V

∂t
ρAds+ ṁdV︸ ︷︷ ︸

=ρAVdV

+Vdṁ

the continuity equation gives

V

[
∂ρ

∂t
Ads+ dṁ

]
≈ 0

and thus

∂V

∂t
ρAds+ Adp+ ρAVdV + gρAdz = 0

Now, divide by ρA

∂V

∂t
ds+

dp

ρ
+ VdV + gdz = 0
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The Bernoulli Equation

Bernoulli’s equation for unsteady frictionless flow along a streamline (the relation

just derived) can be integrated between any two points along the streamline

ˆ 2

1

∂V

∂t
ds+

ˆ 2

1

dp

ρ
+

1

2

(
V2
2 − V2

1

)
+ g (z2 − z1) = 0
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The Bernoulli Equation

Steady (∂V/∂t = 0), incompressible (constant density) flow:

p1 +
1

2
ρV2

1 + ρgz1 = p2 +
1

2
ρV2

2 + ρgz2 = const
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The Bernoulli Equation

Note! the following restrictive assumptions have been made in the derivation

1. steady flow

many flows can be treated as steady at least when doing control volume type of

analysis

2. incompressible flow

low velocity gas flow without significant changes in pressure, liquid flow

3. frictionless flow

friction is in general important

4. flow along a single streamline

different streamlines in general have different constants, we shall see later that

under specific circumstances all streamlines have the same constant

One should be aware of these restrictions when using the Bernoulli relation
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Relation to the Energy Equation

p1 +
1

2
ρV2

1 + ρgz1 = p2 +
1

2
ρV2

2 + ρgz2 = const

Derived from the momentum equation

May be interpreted as a idealized energy equation (viscous dissipation not

included) - provides a balance of

1. reversible pressure work

2. kinetic energy

3. potential energy
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Stagnation, Static, and Dynamic Pressures

In many flows, elevation changes are negligible

p1 +
1

2
ρV2

1 = p2 +
1

2
ρV2

2 = po

Static pressure: p1 and p2

Dynamic pressure:
1

2
ρV2

1 and
1

2
ρV2

2

Stagnation (total) pressure: po
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Pitot Static Tube
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Pitot Static Tube

p1 +
1

2
ρairU

2
1 + ρgz1 = p2 +

1

2
ρairU

2
2 + ρgz2

U1 = 0.
U2 = U

z1 ≈ z2
p1 − p2 = ρwatergh

 ⇒ U =

√
2ρwatergh

ρair
h

1

2

U

water
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Hydraulic and Energy Grade Lines
�

EGL:
p

ρg
+

V2

2g
+ z

EGL constant if:

1. the there are no friction losses

2. no heat is added or removed

3. no work is done

HGL:
p

ρg
+ z = EGL -

V2

2g

EGL

HGL

REF

z

p

ρg

V2

2g
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Venturi Tube

1 2

HGLp1

p2

p1

ρ
+

1

2
V2
1 + gz1 =

p2

ρ
+

1

2
V2
2 + gz2

z1 = z2 gives

V2
2 − V2

1 =
2∆p

ρ

continuity:

A1V1 = A2V2 ⇒ V1 =
A2

A1
V2 =

D2
2

D2
1

V2

inserted in the Bernoulli equation, this gives

V2 =

[
2D4

1∆p

ρ(D4
1 − D4

2)

]1/2
⇒ ṁ = ρA2V2 =

πD2
1D

2
2

4

[
2ρ∆p

D4
1 − D4

2

]1/2
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Tank Problem
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Tank Problem - Solution 1

conservation of mass:

A1V1 = A2V2 ⇒ V1 =
A2

A1
V2

Bernoulli:

p1

ρ
+

1

2
V2
1 + gz1 =

p2

ρ
+

1

2
V2
2 + gz2

p1 = p2 = patm

V2
2 − V2

1 = 2g(z1 − z2) = 2gh

V2 =

√√√√ 2gh

1−
(
A2
A1

)2

A2 � A1 ⇒ V2 ≈
√
2gh

h = z1 − z2

2

1

open jet
p2 = patm

V2
1

2g

EGL

HGL

V2
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Tank Problem - Solution 2

The outflow is very small in compared to

the tank volume and thus the water

surface hardly moves at all, i.e. V1 ≈ 0

Bernoulli:

p1

ρ
+

1

2
V2
1 + gz1 =

p2

ρ
+

1

2
V2
2 + gz2

V1 ≈ 0, p1 = p2 = patm

V2
2 = 2g(z1 − z2) = 2gh

V2 =
√
2gh

h = z1 − z2

2

1

open jet
p2 = patm

V2
1

2g

EGL

HGL

V2
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Airfoil
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