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Chapter 2 - Pressure Distribution in a Fluid



Overview

Fluid Dynamics

Basic

Concepts

Pressure

hydrostatic

forces

buoyancy

Fluid Flow

velocity

field

Reynolds

number

flow

regimes

Thermo-

dynamics

pressure,

density,

and tem-

perature

state

relations

speed of

sound

entropy

Fluid

fluid

concept
continuum

viscosity

Fluid Flow

Com-

pressible

Flow

shock-

expansion

theory

nozzle

flow

normal

shocks

speed of

sound

External

Flow

separation turbulence

boundary

layer

Reynolds

number

Duct Flow

friction

and losses

turbulent

flow

laminar

flow

flow

regimes

Turbulence

Turbu-

lence

Modeling

Turbu-

lence

viscosity

Reynolds

stresses
Reynolds

decom-

position

Flow

Relations

Dimen-

sional

Analysis

modeling

and

similarity

non-

dimensional

equations

The Pi

theorem

Differential

Relations

rotation

stream

function

conser-

vation

relations

Integral

Relations

Bernoulli

conser-

vation

relations

Reynolds

transport

theorem



Learning Outcomes

9 Explain how to do a force balance for fluid element (forces and pressure

gradients)

10 Understand and explain buoyancy and cavitation

11 Solve problems involving hydrostatic pressure and buoyancy

we will have a look at the pressure distribution in a fluid at rest, i.e. no flow yet...
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Motivation

Many problems does not include fluid motion

pressure distribution in a static fluid such as

the pressure in the atmosphere or in oceans

pressure on solid surfaces due to presence

of static fluid

floating and submerged bodies
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Pressure

Pressure is a thermodynamic property

Pressure is not a force and has no direction

Forces arise when the molecules of the fluid interacts with the surface of an

immersed body

A force in the surface-normal direction is generated due to the collision of fluid

molecules and the surface
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Pressure Variation in a Fluid at Rest

Fluid at rest - no shear (by definition)

Pressures px, pz, and pn may be different

Small element ⇒ constant pressure on each face
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Pressure Variation in a Fluid at Rest

∑
Fx = 0 = pxb∆z − pnb∆s sin θ

∑
Fz = 0 = pzb∆x − pnb∆s cos θ − 1

2
ρgb∆x∆z

{
∆z = ∆s sin θ

∆x = ∆s cos θ
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Pressure Variation in a Fluid at Rest

∑
Fx = 0 = pxb∆z − pnb∆z

∑
Fz = 0 = pzb∆x − pnb∆x − 1

2
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pz = pn +
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Pressure Variation in a Fluid at Rest

Since θ is arbitrary, the result is general

There is no pressure change in the horizontal direction

The pressure change in the vertical direction is proportional to the depth

”The pressure in a static fluid is a point property, independent of orientation”
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Pressure Forces on a Fluid Element y
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f is the net force per unit volume
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Pressure Forces on a Fluid Element

”it is not the pressure but the pressure gradient causing a net force which

must be balanced by gravity or acceleration”
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Equilibrium of a Fluid Element

Force balance for a small element

pressure gradients gives surface forces

body forces (electromagnetic or gravitational potentials)

surface forces due to viscous stresses

Newton’s second law:∑
f = fp + fg + fv = −∇p+ ρg + fv = ρa
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Equilibrium of a Fluid Element

Hydrostatic problems:

1. no viscous forces

2. no acceleration

Newton’s second law reduces to:

∇p = ρg

(the general form of Newton’s second law will be studied later)
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Hydrostatic Pressure in Liquids

∇p = ρg

∇p is perpendicular everywhere to surfaces of constant p

The normal of constant-pressure surfaces will be aligned with g
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Hydrostatic Pressure in Liquids

g = −gez

dp

dz
= −ρg

p2 − p1 = −
ˆ 2

1
ρgdz
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Hydrostatic Pressure in Liquids

a

A

b
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Water
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Free surface

Depth 1

Depth 2

Atmospheric pressure

for liquids, we assume constant density ⇒ p2 − p1 = −
ˆ 2

1
ρgdz = −ρg(z2 − z1)

pa = pb = pc = pd

pA = pB = pC 6= pD
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Hydrostatic Pressure in Liquids

Is the incompressible assumption for liquids a good assumption?

the density is 4.6 percent higher at the deepest part of the ocean - so yes!

p2 − p1 = −
ˆ 2

1
ρgdz = −ρg(z2 − z1)
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Hydrostatic Pressure in Liquids

p2 − p1 = −
ˆ 2

1
ρgdz = −ρg(z2 − z1)

Why is mercury used for pressure measurements?
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Hydrostatic Pressure in Gases

dp

dz
= −ρg = − p

RT
g

both pressure and temperature varies with altitude

ˆ 2

1

dp

p
= ln p2

p1
= −g

R

ˆ 2

1

dz

T

Temperature variation T(z) needed
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Hydrostatic Pressure in Gases
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Manometry

Known pressure p1

Oil (ρo )

Water (ρw )

Glycerin (ρg )

Mercury (ρm )

z1

z2

z3

z4

z5

p2 − p1 = −ρog(z2 − z1)

p3 − p2 = −ρwg(z3 − z2)

p4 − p3 = −ρgg(z4 − z3)

p5 − p4 = −ρmg(z5 − z4)

z

p5 − p1 = −ρmg(z5 − z4)− ρgg(z4 − z3)− ρwg(z3 − z2)− ρog(z2 − z1)
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Manometry

z1, p1 p = p1 at z = z1 in fluid 2
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Manometry

z1, p1 p = p1 at z = z1 in fluid 2

z2, p2 ≈ patm

jump across

zA, pA A

open, patm

ρ1

ρ2

pA + ρ1g(zA − z1)− ρ2g(z2 − z1) = p2 ≈ patm

Pascal’s law:
”Any two points at the same elevation in a continuous mass of the same

static fluid will be at the same pressure”
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Manometry
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Buoyancy



Buoyancy

Archimedes:

A body immersed in a fluid experiences a vertical buoyant force equal to the

weight of the fluid it displaces

A floating body displaces its own weight in the fluid in which it floats
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Buoyancy
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Buoyancy
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Buoyancy
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Buoyancy

A B

CD

Va

Vb

Fup = ρg(Va + Vb)

Fdown = ρgVa
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Buoyancy

In general

FB =
∑

ρig(displacement volume)i

Floating bodies

FB = body weight
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Buoyancy - Stability
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Note! the center of buoyancy (B) is, in this case, the centroid of the displaced volume of liquid

Center of gravity G

Center of buoyancy B

Symmetry line

Metacenter M
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Buoyancy - Stability
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Pressure measurement

Pressure is a derived property

The force per unit area related to fluid molecular bombardment of a surface
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Pressure measurement
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Pressure measurement

fluid

membrane

strain gauge
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Manometer Example

p1 +
∑
down

ρig∆i −
∑
up

ρig∆i = p2

p1 + (∆2 +∆1)ρAg−∆1ρBg− (∆2 +∆3)ρAg = p2

p1+(∆2+∆1)ρAg−∆1ρBg−(∆2+z2 − z1)ρAg = p2
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−
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Iceberg Efficiency
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