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Learning Outcomes

4 Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category

37 Understand and explain basic concepts of compressible flows (the gas law,
speed of sound, Mach number, isentropic flow with changing area, normal
shocks, oblique shocks, Prandtl-Meyer expansion)

Let’s go supersonic ...
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Motivation

Compressible flow:
flows where variations in density are significant
most often high-speed gas flows (gas dynamics)
fluids moving at speeds comparable to the speed of sound

not common in liquids (would require very high pressures)



Historical Milestones

First supersonic flight - Charles Yeager 1947 Steam turbine with convergent-divergent nozzles - Carl Gustav de Laval 1893



Compressible Flow Applications




Compressible Flow Applications




Compressible Flow Applications

feed tube

feed tube \ 3 D gas cooler
» D

compression passage

- - v

expansion cylinder compression cylinder




Governing Equations

With significant density changes follows substantial changes in pressure and
temperature

The energy equation must be included

Four equations:
1. Continuity
2. Momentum
3. Energy
4. Equation of state

Unknowns: p, p, T, and V

The four equations must be solved simultaneously



Mach Number Regimes

Incompressible flow
insignificant density changes

Subsonic flow
local and global Mach number less than unity

Transonic flow

subsonic flow with regions of supersonic flow
(local Mach number can be higher than one)
supersonic flow with regions of subsonic flow
(local Mach number can be less than one)

Supersonic flow
local and global Mach number higher than one

Hypersonic flow
Mach number higher than 5.0

Jaquinu yoe\ Buises.ou
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Ratio of Specific Heats

The ratio of specific heats is important in compressible flow

C
T=5
v
~ is a fluid property
For moderate temperatures v is a constant

For higher temperatures ~ varies with temperature

(for air: v = 1.4)



Equation of State

In the following, we will assume that the ideal gas law is applicable and that the
specific heats are constants:

p = pRT

R =C, — C, = const

—C = const
fy_cv -

Auxiliary relations:



Internal Energy and Enthalpy

Constant specific heats: Variable specific heats:

oh = GyaT = [ cuor



Isentropic Relations

First law of thermodynamics

0q + ow = de
For reversible processes: ow = —pdv (where v = p/p)

P

h=e+==e+pv=dh=de+pdv+ vdp
p

6q = dh — vdp
Second law of thermodynamics
0Qrev  0Q 6q

ds = - :?ers,-,evjdsz?




Isentropic Relations

compute entropy change from the first and second law of thermodynamics
(assuming reversible heat addition)

TdS:dh—d—'o
p

for perfect gases, dh = Cp,dT

[ [onf

for constant specific heats (calorically perfect)

S2—51=Cp nT—Rlnp:CVln—E’ln



Isentropic Relations

82—81:Cp

for isentropic flow (s = s1) we
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Speed of Sound

The rate of propagation of a pressure pulse of infinitesimal strength through
a fluid at rest

Related to the molecular activity of the fluid

A thermodynamic property



Speed of Sound




Speed of Sound

frame of reference fixed to fluid

frame of reference following the wave
<
p p+ Ap p p+ Ap
P p+Ap P p+ Ap
T T+ AT T T+ AT
V=0 vV =AV V==C V=C-AV
- —



Speed of Sound

frame of reference following the wave

p B[ < o]
P ! p+ Ap
T PN
|
inuity: v=cCc !|1v=Cc-AV
continuity: Sl >

pAC = (p+ Ap)A(C — AV)

Ap
AV =C
p+Ap

Note! there are no gradients in the flow so viscous effects are confined to the interior
of the wave



Speed of Sound

frame of reference following the wave

p B[ < o]
P LoptAp
t T N N
. |
momentum: v=c '|[1v=c-av
— i —

pA — (D + ApP)A = (pAC)(C — AV — C) = Ap = pCAV

with AV from the continuity equation we get

Ap Ap
C*="" (1 + )
Ap P

Note! the larger Ap/p, the higher the propagation velocity



Speed of Sound

In the limit of infinitesimal strength Ap — 0 and thus

ap
C2 _ g2 _ “F
a 99
There is no added heat and thus the process adiabatic

For weak waves the process can also be assumed to be reversible

2_ 9%

as =
op s



Speed of Sound

0
82:£
ap |s
The isentropic relation gives
L Op - p
p=p"= oo =7 == =RT
p p

and thus
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Stagnation Enthalpy

Consider high-speed gas flow past an insulated wall

1 1
h1+§V12+gzl :h2+§V§+922—q+WV

1. differences in potential energy extremely small
2. outside of the boundary layer, heat transfer and viscous work are zero

1 1
hy + §V12 =hy + §V22 = const



Stagnation Enthalpy

1
h+2\/2ho]

”The maximum enthalpy that the fluid would achieve if brought to rest adia-
batically”



Stagnation Temperature

For a calorically perfect gash = CpT

1
h+§V2:ho

1

Where T, is the stagnation temperature



Mach Number Relations

CpT \/ —CpTo = 1+ oo V2 _lo




Mach Number Relations

Since a oc T2 we get



Mach Number Relations

If the flow is adiabatic and reversible (isentropic), we may use the isentropic relations

Do E v/(v=1) _ '1 . v MQ— v/ (v=1)
T I 2




Stagnation Properties

Po and p, - the pressure and density that the flow would achieve if brought to
rest isentropically

All stagnation properties are constants in an isentropic flow
ho, To, and a, are constants in an adiabatic flow but not necessarily p, and po

Po and py will vary throughout an adiabatic flow as the entropy changes due to
friction or shocks



Critical Properties

Another useful set of reference variables is the critical properties (sonic conditions)

TT":1+(72_1>M2={M=1-0}:H<7;1>:<2+g_1>:<7_2H>




Critical Properties

9 \ Y01
Y+ 1>

(

[
Po



Critical Properties

Ary=14
T*i 2
To \y+1
a* 2
a
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Isentropic Quasi-1D Flow

Quasi-1D Assumptions:
1. Flow properties varies in one direction only (x)
2. The flow area is a smooth function A = A(x)
3. Steady-state, inviscid and isentropic flow

r

N

>

Ay Az



The Area-Velocity Relation

Continuity:

p()V(X)A(x) = const = d(pVA) = 0 = AVdp + pAdV + pVdA = 0

divide by pVA gives



The Area-Velocity Relation
In the following, isentropic flow is assumed
Stagnation enthalpy:

1
hO:h+§V2:const:>o’h+VdV:0

The first and second law of thermodynamics:

Tds—0—ah-P o agn=P
p p

and thus

i+VdV:0



The Area-Velocity Relation

dp +VavV =0
P

From the definition of the speed of sound

1
dp:azdpiaQ@ +VavV =0 = dp _ ——Vav
p p a



The Area-Velocity Relation

dp dV dA dv 1 A
W AT v L_y
, TVt aAaT v 2T

dV(V2 ) dA
- 72_1 _
a




The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
av >0
dp < 0

subsonic diffuser
dv <0
dp >0

supersonic diffuser
dv <0
dp >0

subsonic nozzle
av >0
dp < 0



The Area-Velocity Relation

What happens when M = 17



The Area-Velocity Relation

What happens when M = 17

M=1whendA =0



The Area-Velocity Relation

What happens when M = 17

M=1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—'—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— —_— —_— | —_—
! supersonic | supersonic
|



The Area-Mach-Number Relation

A
AV = prARyr = = =D
p p ST,

E 5 (’yRT*)l/Q B (7/?7’)1/2 E 1/2 E 1/2 B
v V n V To T n

</~
| — |
)
+ |
—_
R
—
+
2
||
—_
<
no
N~
_ 1
—
~
no

A\ 2 1 2+(7—1)M2 (y+1)/(v=1)
(&) w5




The Area-Mach-Number Relation

ANZ 1 [24 (v —1)M2 (v+1)/(v=1)
(/4*) - W |: fy + 1 :| supersonic
L e
M subsonic
Note! - ~_.

10 10 1 5 6 7

—_ A

A*

Two possible solutions for each value of o
one subsonic and one supersonic (except when A = A™)



The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

100 |

1071

supersonic




The Area-Mach-Number Relation

Critical (choked) nozzle flow
L | -
supersonic
' i 100 D
w ‘ M E | subsonic E
‘ i AN ]
10—1 ; 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
A
A*



Choking

A* pV |
VA = p*"V*A* = — =
! ! A prVE
0.8
pV —massflow per unit area pg 0.6
p* *
0.4
From the area-Mach-number relation: .
<1 if M<1
A* 0
R 1 if M=1 107!
<1 if M>1

The maximum possible mass flow through a duct is achieved when its throat
reaches sonic conditions



Choking

o P :< 2
Po v+1

3. V* = \/4RT*

4, i = ¢
To  ~y+1
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Shock Waves

"Shock waves are nearly discontinuous changes in a supersonic flow”

Reasons for the appearance of shocks in a flow can be for example:

higher downstream pressure
sudden changes in flow direction
blockage by a downstream body

Rl SR

explosion



Normal Shocks

® @
Continuity: _T J_’
p1Uy = paUs . .
The Rankine-Hugoniot relation:
Momentum:
2~ iUt hy =y = (B2 —p1) (- + -
P1 — P2 = paus — p1U7 2 1—2D2 P1 PR
Energy:

1 1
/’71+*U%:/72+*U§:ho

2 2



Normal Shocks

1 1 1
hy —hy = 5(/32 —p1) (E + E)

Note! The Rankine-Hugoniot relation only includes thermodynamic properties
(no velocities) and gives a relation between the flow state upstream of the shock and
the flow downstream of the shock



Normal Shocks

The Rankine-Hugoniot relation

v+1Y (p2
pp 1H () ()

~y+1 P2
e (25) + ()

The isentropic relation

P2 _ <p2>1/7
P1 P1

P2
P1

t

Pressure ratio (y = 1.4)

| | — isentropic A
— Hugoniot
| | | |
2 4 6 8
P2
P1

10



Normal Shocks

The second law of thermodynamics

B To P2
SQ—Sl—Cp].nﬁ Rlin

can be rewritten as

vy
So — 81 = Cvln |:IO2 <)01) :|
P1 \ p2

(p2/p1 from the Rankine-Hugoniot relation)  _q |

Entropy (v = 1.4)

| | |

06 08 1 1.2 14 16 18 2
P2
P1

Note! a reduction of entropy is a violation of the second law of thermodynamics



Normal Shocks

For a perfect gas, it is possible to obtain relations for normal shocks that only include
upstream variables

Momentum equation: py + piU; = pPs + polis

Uz
P2 — P1 = p1UT — pal3 = {p1U1 = patia} = prtr (U1 — U2) = prU} (1 - U1>

divide by py
’CE £ + LU% <1 _ uQ)
P1 P1 Uty

U2 = M3a2 = MPART; = AM2PE = B2 —q g2 <1 — “2>
P1 P1 U



Normal Shocks

P2 2( U2>
— =14+~yM7[|1—-—
P1 s Uy

Using the energy equation its possible obtain a relation for :2
1
(the derivation is quite lengthy though)

U 2+ (v =DM

uq (v+ I)M%

and thus




Normal Shocks

Pressure ratio (y = 1.4)

20 T T T

P2 _ 2y 2 _
p171+7+1(Ml 1) o

P1

Note! from before we know that p2/p; must be greater than 1.0, which means that
My must be greater than 1.0



Normal Shocks
Momentum equation: p; + piU? = pa + polis
M = g = p1 + pM2a2 = py + paM2al
a=+\/7RT = \/7§,O1+ 1/\42%o =p2 + 2M2’y,02

p1 (1+M3) = p2 (1 +yM3)

p2  1+yM3
p1 1+~yM3




Normal Shocks

Two ways to calculate the pressure ratio over the shock

2 2
P2 Y (M2 = 1) @:1‘1‘7/\”;
P1 1 +~yM;3

Setting the relations equal gives a relation for the downstream Mach number

2 (y — DM3 + 2
2= M — (= 1)




Normal Shocks

Downstream Mach Number (v = 1.4)

1.2 T T T T

o (y—1MF+2
2T M - (v-1)

9 | | | |
0 2 4 6 8 10

My
Note! for v > 1 and M; > 1, the downstream Mach number must be less than 1.0,
i.e we will always have subsonic flow downstream of a normal shock




Normal Shocks - Summary

1. Supersonic flow upstream of normal shock
2. Subsonic flow downstream of normal shock

3. Entropy increases over the shock and consequently total pressure
decreases

4. Sonic throat area increases

5. Very weak shock waves are nearly isentropic



Normal Shocks - Trends

Normal shock relations (y = 1.4)

—p2/;m
—Ts/Th
p2/pP1
_DOZ/DO1
— M,
—AY/AL




Normal Shocks - Examples

-




Moving Normal Shocks

w
_—
p+ Ap P
p+ Ap P frame of reference:
T+ AT T fixed to the fluid
Change frame of reference: u=tp u=0
coordinate system moving with the shock
thermodynamic properties does not change
p+ Ap P
p+ Ap P frame of reference:
1 1 1 T+ AT T following the shock
hg—h1:§(p2—,01) E—FE Uu=up —W u=—-w
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Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

A

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

A

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

|
throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

|
throat ‘

p/Po ‘r

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

throat

p/Po ‘r ‘ ‘

p* /Po —




Convergent-Divergent Nozzle

M/Mehoked y

0 > Pe/Po
1

throat




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

M/Mehoked A

0 > Pe/Po

p/pPo

throat

p* /Po




Convergent-Divergent Nozzle

normal shock

w

oblique shock

J
pressure matched

_/\—>

expansion fan

Po/Pe = (Po/Pe)ne
normal shock at nozzle exit

(Po/Pelne < Po/Pe < (Po/Pe)sc
overexpanded nozzle flow

Po/Pe = (Po/Pe)sc
pressure matched nozzle flow

Po/Pe > (Po/Pe)sc
underexpanded nozzle flow



Convergent-Divergent Nozzle
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Oblique Shocks




Oblique Shocks




Mach Wave

Sound waves emitted from A (speed of sound a)



Mach Wave




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My =~ M,
Isentropic



Obligue Shocks and Mach Waves

Two-dimensional steady-state flow

y Stationary shock
A

Flow condition

M>1
Flow condition

B>

Significant changes of flow properties from 1 to 2
M1 > 1.0, 5 > [, and Ml #MQ
Not isentropic



Obligue Shocks and Mach Waves

When does an oblique shock appear in a flow?

M>1 P

compression corner gradual compression



Obligue Shocks and Mach Waves

Sphere in,,high/l\//iach number flow.

=




Obligue Shocks and Mach Waves

oblique shocks :

. perforated plate
[ N




Obligue Shocks and Mach Waves




Obligue Shocks and Mach Waves




Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ X

Two-dimensional steady-state flow

Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

u
My, = C‘Ti = M sin(B)
M, = 22 = My sin(8 — )



Obligue Shock Relations

Conservation of mass:

—p1UIA + paU2A = 0 = p1Uy = pala



Obligue Shock Relations

Conservation of momentum (shock-normal direction):

—(p1U3 + P1)A + (p2u3 + P2)A = 0 = p1Ui +P1 = paU3 + P2



Obligue Shock Relations

/ X
Conservation of momentum (shock-tangential direction):

—p1U1W1A + pQUQWQA =0=w; =Wy



Obligue Shock Relations

Conservation of energy:

1 1 1 1
~p1U1[h1 ° i(U% + W%)]A + p2U2[/’)2 =+ §(u§ + W%)]A =0= hl + EU% = /’72 + §u§



Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M, and
My with M,

o _ Mi+12/(v-1)
" 2y/(y - 1)ME, — 1

Ratios such as p2/p1, p2/p1, and To/T1 can be calculated using the relations for
normal shocks with M; replaced by M),



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

A shock is an adiabatic compression process and thus constant T, applies for
oblique shocks as well

For other stagnation properties the answer is no, but why?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

A shock is an adiabatic compression process and thus constant T, applies for
oblique shocks as well

For other stagnation properties the answer is no, but why?

Po, po,, €tc are calculated using M; not M, (the tangential velocity is included)



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

A shock is an adiabatic compression process and thus constant T, applies for
oblique shocks as well

For other stagnation properties the answer is no, but why?
Po, po,, €tc are calculated using M; not M, (the tangential velocity is included)

Note! Do not not use ratios involving total quantities, €.9. Po,/Po,, Pos/Por
obtained from formulas or tables for normal shock



Deflection Angle (for the interested)

o0 U9

Uiy

i — T [
ow w2+ u3

w2 + uf



Deflection Angle (for the interested)

00 Us up
ow  w?+uz; w?riuj
Us(W? +U3) —uy(W? +u3) (up —ur)(W? —uqla)
20 2 (W2 2 =0= " A2 Y
(W2 +u3)(w? + uy) (W2 +u3)(W? + uy)

Two solutions:
us = Uy (no deflection)
w? = uyus (Max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Shock Polar: My =1.5—4.0, v =1.4

flow deflection

oblique shock (shock angle 3)

No-deflection cases:

1. Normal shock
(reduced shock-normal velocity)

71 1 1 1
2. Mach wave :
(unchanged wave-normal velocity) Vy



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Shock Polar: My = 2.5, vy =14

flow deflection

oblique shock (shock angle 3)

e A

a*

Solutions to the left of the sonic line
are subsonic




Shock Polar - Flow Deflection - 64

Graphical representation of all possible deflection angles for a specific Mach number

Shock Polar: My = 2.5, vy =14

flow deflection

oblique shock (shock angle 3)

V,
tanf = 2

Vi

It is not possible to deflect the flow
more than Gpax

IS |
NV



Shock Polar - Flow Deflection

Graphical representation of all possible deflection angles for a specific Mach number
Shock Polar: My = 2.5, vy =14

flow deflection

oblique shock (shock angle 3)
For each deflection angle 6 < 6ax,
there are two solutions

1. strong shock solution
2. weak shock solution

Weak shocks give lower losses and
therefore the preferred solution




Shock Polar - Weak Solution

Graphical representation of all possible deflection angles for a specific Mach number

Shock Polar: My = 2.5, vy =14

flow deflection

oblique shock (shock angle 3)

The shock polar can be used to
calculate the shock angle g for a
given deflection angle 6




Shock Polar - Strong Solution

Graphical representation of all possible deflection angles for a specific Mach number

Shock Polar: My = 2.5, vy =14

flow deflection

oblique shock (shock angle 3)

The shock polar can be used to
calculate the shock angle g for a
given deflection angle 6




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1



The 0-3-Mach Relation

_ 2cot(B8) (M7 sin?(8) — 1)
tan(f) = M2 (y + cés(w)) +2 }

A relation between:
flow deflection angle ¢
shock angle 5
upstream flow Mach number M,




0-p-Mach: M} =25, v=1.4

No mal shock (8 = 90 )

The 0-5-Mach Relation vs. Shock Polar

Shock Polar: My = 2.5, vy =14

0.5

Normal shock




The 0-5-Mach Relation vs. Shock Polar

0-5-Mach: My, = 2.5, v = 1.4 Shock Polar: My =2.5, v = 1.4
— . : 11— T T T
" |
05 weak solut on:\
60 W —— e | . ‘
: %
/ = 0
40 ] a
F| weak solution
20 . e |
0 | | -1 — | | |
0 10 20 30 40 50 0 0.5 1 1.5 2
0 Vi



The 6-5-Mach Relation - Wedge Flow

Wedge flow oblique shock analysis:

1. 0-5-M relation = g for given M; and ¢

2. B gives My, according to: My, = My sin(f)

3. normal shock formula with M, instead of M; =
M, (instead of My)

4. My given by My = M),/ sin(f — 0)

normal shock formula with M, instead of M; =

p2/p1, P2/P1, €tc

6. upstream conditions + pa/p1, P2/p1, etc =
downstream conditions

[9)



Obligue Shocks and Mach Waves

M1>M2

My > 1.0

01 =1f(My,p1), My =F(My,61,051)



Obligue Shocks and Mach Waves

p1 = 28°
M; =3.1

} =0 =~ 11.2°, My ~ 2.5



Obligue Shocks and Mach Waves

01 =0



Obligue Shocks and Mach Waves

M1 >M2 >M3
Ms > 1.0

B2 > B

Bo =f(Ma,0), M3 =1f(Ms,02,[2)

Note! Shock wave reflection at solid wall is not specular



Obligue Shocks and Mach Waves
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Expansion Waves

Gradual change of flow angle
Increasing flow area
Increasing Mach number

Accumulation of infinitesimal flow deflections - isentropic



Expansion Waves

What is an expansion wave or expansion region?

M>1

expansion corner gradual expansion



The Prandtl-Meyer Function

The change of flow properties over an expansion region can be calculated using
the Prandtl-Meyer function

The Prandtl-Meyer function derivation is based on the fact that each expansion
wave gives an infinitesimal change in flow angle and flow properties



Prandtl-Meyer Function Derivation (for the interested)

For small deflection angles, linearization of the #-35-Mach relation gives

2
o M
D (M2 —1)1/2

The momentum equation for inviscid flows gives

Y

20 12
_pa®M
y 7

dp = —d(pV?) = —pVdV —Vd(pV) = —pVadV = —p
=0
dp

25X _ Y P
= {pa® = RT =p} = 5 M=

av
%

=



Prandtl-Meyer Function Derivation (for the interested)

Now, setting the two expressions for dp/p equal

av yM? av
N2 e — (M2~ /22
yM v (M2_1)1/2d6:>d6 ( ) v
4 M
V:Ma:>dV:adM+Mda:>d—:d—+d—a
V M a

dM  da
—) 2, 1/2 [ ¥V e
do = —(M? - 1) (/w + a)



Prandtl-Meyer Function Derivation (for the interested)

do = —(M? — 1)1/ (

B 1/2
do <1 i 1M2>
a 2

N1 —-1/2
da = (1 + 2M2> dao + aod

oM | da
M a

B ~1/2
<1+ - 1M2> ]

isentropic = dap, = 0

b d%+TW)ﬂ_—HHBW§WWAWW

T (1eme) (14 21520) "



Prandtl-Meyer Function Derivation (for the interested)
M da

— 2 1/2 [ ¥V e

do = —(M?—1) ( ViR a)

da_ —{(y—DMaM . 2M*-1)' oM
a 1+ 5me T 24 (v -)ME M

Introducing w defined such that: dw = —df, w = 0 when M =1
M 9 M2 1/2 am
dw =
[roo= [ 2ot

w(M) = <7+1> . tan ! <( MQ/?;_ 1)>1/2 — tan" ' (M? — 1)/2

v—1 v+ 1)



The Prandtl-Meyer Function

v 1 /2 M2 — 1 1/2 )
s = (357) e (G ) e

Prandtl-Meyer function (y = 1.4)
140 — T T T

120 |- -

w(M) = 130.45°

‘/\//—H)c
100

80
60
40

20




Prandtl-Meyer Expansion Waves

Example:

expansion fan (Mach waves)

0, =0, My > 1is given
05 is given
find M2 such that Af = Oy — 01 = W(Mg) — w(Ml)



Prandtl-Meyer Expansion Waves

Since the flow is isentropic, the isentropic relations apply:
(To and p, are constant)

Calorically perfect gas:

= = 1+%(7—1)M2

[ 157=1
Po 1+%(7—1)M2 ’



Prandtl-Meyer Expansion Waves

since To, = To, @nd pPo, = Po,

Ty

To, i

P1 _ Po, P1
P2 p01 P2

T2:T<)1T2_<

-

Toy
Ty

Po,
P2

)/
)/

Tou
T

Poy
P1

>:
>_




Diamond-Wedge Airfoil

expansion fan
oblique shock oblique shock

symmetric airfoil
(both in x- and
y-planes

Note! symmetric airfoil at zero incidence = zero lift but what about drag?



Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle € and upstream
Mach number M,

2-3 Prandtl-Meyer expansion for flow deflection angle 2¢ and upstream Mach
number My

3-4 standard oblique shock calculation for flow deflection angle e and upstream
Mach number M5



Diamond-Wedge Airfoil - Wave Drag
Since conditions 2 and 3 are constant in their respective regions, we obtain:

D =2[psL sin(e) — psL sin(e)] = 2(p2 —/03)2 = (p2 —p3)t

For supersonic free stream (M > 1), with shocks and expansion fans according to
figure we will always find that po > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)



Flat-Plate Airfoil

expansion fan

oblique shock

slip line

incidenceex: ~ \ @ T~ ——""_"4___

oblique shock

expansion fan



Flat-Plate Airfoll

It seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!



Flat-Plate Airfoll

It seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from
the plate, shock and expansion waves will interact and eventually sort the
mismatch of flow angles out



Flat-Plate Airfoil

Flow states 4 and 5 must satisfy:

1. ps=ps
2. flow direction 4 equals flow direction 5 (®)

Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust
themselves to comply with the requirements

For calculation of lift and drag only states 2 and 3 are needed

States 2 and 3 can be obtained using standard oblique shock formulas and
Prandtl-Meyer expansion



Obligue Shocks and Expansion Waves

compression corner expansion corner

M  decrease M increase
V' decrease V' increase
p increase p  decrease
p increase p  decrease
T increase T  decrease
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Supersonic Stereo

What if you somehow managed to make a stereo travel at twice the speed of sound, would it sound backwards to someone
who was just casually sitting somewhere as it flies by?

—Tim Currie
Yes.
Technically, anyway. It would be pretty hard to hear.

‘The basic idea is pretty straightforward. The stereo is going faster than its own sound, so it will reach you first, followed by the sound it emitted one second ago,
followed by the sound it emitted two seconds ago, and so forth.

‘The problem s that the stereo is moving at Mach 2, which means that two seconds ago, it was over a kilometer away. It's hard to hear music from that distance,
particularly when your ears were just hit by (a) a sonic boom, and (b) pieces of a rapidly disintegrating stereo.

Wind speeds of Mach 2 would messily disassemble most consumer electronics. The force of the wind on the body of the stereo is roughly comparable to that of a
dozen people standing on it:
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