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Be able to categorize a flow and have knowledge about how to select
applicable methods for the analysis of a specific flow based on category
Explain what a boundary layer is and when/where/why it appears

Explain how the flat plate boundary layer is developed (transition from laminar
to turbulent flow)

Explain and use the Blasius equation

Define the Reynolds number for a flat plate boundary layer

Explain what is characteristic for a turbulent flow

Explain flow separation (separated cylinder flow)

Explain how to delay or avoid separation

Derive the boundary layer formulation of the Navier-Stokes equations
Understand and explain displacement thickness and momentum thickness
Understand, explain and use the concepts drag, friction drag, pressure drag,
and lift

Let’s take a deep dive into boundary-layer theory
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Complementary Course Material

These lecture notes covers chapter 7 in the course book and additional course
material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTFO053_Turbulence.pdf


https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf

Motivation



External Flow

Significant viscous effects near the surface of an immersed body

Nearly inviscid far from the body

Unconfined - boundary layers are free to grow

Most often CFD or experiments are needed to analyze an external flow unless
the geometry is very simple
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Reynolds Number Effects
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Reynolds Number Effects
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Note! Re; and the local Reynolds number Re, are not the same if L # x
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Boundary Layer Equations

We wiill derive a set of equations suitable for boundary-layer flow analysis
Starting point: the non-dimensional equations derived in Chapter 5
We will assume two-dimensional, incompressible, steady-state flow

We will do an order-of-magnitude comparison of all the terms in the governing
equations on non-dimensional form and identify terms that can be neglected in
a thin-boundary-layer flow



Non-dimensional Flow Equations

The governing equations for two-dimensional, laminar, incompressible and
steady-state flow with negligible body forces:

continuity:

X-momentum:

y-momentum:



Non-dimensional Flow Equations

continuity:
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Non-dimensional Flow Equations

X-momentum:
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Non-dimensional Flow Equations
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continuity:
ou* . ov*
ox*  oOy*

X-momentum:
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y-momentum:
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Boundary Layer Equations

To be able to find the relative sizes of different terms in the equations, we will first
have a look at the flow parameters and operators

U =U/Ux ~ 1
x*=x/L~1
yr=y/L~0"

d denotes boundary layer thickness and §* = § /L

Note! here, u* is not the friction velocity and ¢* is not the displacement thickness



Boundary Layer Equations

y* a8 = ut o1

What about derivatives?

ot 1-0 1 -

y* =-0=uv" =0

Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

What about derivatives?
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oy* 5 o
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Note! The sign of terms is not important here, we are only interested in the

order of magnitude



Boundary Layer Equations

x5 0=uv" =0

s 1l=ut =1

ou* |0 —1] .

ox* 1-0 . .
/ ut =0

Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

ou*
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

continuity:
ou*  ov*
=0=Vv"~¢"
ox* — Oy*
1
~1 N,sl*
ov* , ou* .
oy must be of the same order of magnitude as o in order to fulfill the

continuity equation



Boundary Layer Equations

A S MRV
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations

X5 0=V 5

X5 1=v" =0
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Note! The sign of terms is not important here, we are only interested in the
order of magnitude



Boundary Layer Equations
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Note! The sign of terms is not important here, we are only interested in the

order of magnitude



Boundary Layer Equations

X-momentum:

Lou* Lou* op*
u + v =——+
ox* oy* ox*
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the boundary layer is assumed to be very thin = §* < 1 and thus
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assuming the inertial forces to be of the same size as the friction forces in the

boundary layer we get: 1/Re; ~ 52



Boundary Layer Equations

y-momentum:
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examining the equation we see that all terms are at most of size §* = ~ 0F

0" is small = p is independent of y



Boundary Layer Equations

The pressure can be assumed to be constant in the vertical direction through the
boundary layer and thus p = p(x)

Ps
d(x)
Pw
* * ~ ap* * *2
o5 — Py | ~ 8y*5 0



Boundary Layer Equations

With the knowledge gained, we now move back to the dimensional equations

laminar
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aJra—y—O

LU 0u  1db
ox oy  pdx

Jrl/ay2

turbulent

ou v

87+6y N
u—+V@——1@
ox 0y  pdx

i L0

0

0%u OW

g oy? Oy



Boundary Layer Equations

Limitations
The boundary layer equations do not apply close to the start of the

0
boundary layer where a—:l* >1

The equations are derived assuming a thin boundary layer



Boundary Layer Equations

The pressure derivative can be replaced with a velocity derivative

Outside of the boundary layer the flow is inviscid = we can use the Bernoulli
equation

P+ pU2 fconst:»d—er pUso AUso O:»—ld—pfu o

ax ax pax 77 dx



Boundary Layer Equations

laminar boundary layer

L vy

ox oy

u@-i- @ =U %4-1/@
Ox oy * dx y?

Two equations and two unknowns = possible to solve ©



Boundary Layer Equations

Note! the boundary layer equations can be used for curved surfaces if the boundary
layer thickness ¢ is small compared to the curvature radius r
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The Von Karman Integral Relation

Approximate solutions for 6(x) and 7, (x)
Control volume approach applied to a boundary layer

Assuming steady-state incompressible flow

> F= /va n)dA



The Von Karman Integral Relation
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The Von Karman Integral Relation

Momentum Uso (X)
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The Von Karman Integral Relation

Pressure forces in the x-direction
pPo

dp dé
- (p + dde> (5 + dXo’x)

1dp do

Shear forces in the x-direction
—TwaX

ax



The Von Karman Integral Relation

Forces
dFy =
do dp dp dé do 1dpdo
—TwaX +po — |Pd +p&dx + 5d—Xo’x + &&dxdx +p&o’x + Sk dxc/xc/x

products of infinitesimal quantities can be regarded to be zero and thus

d
dF, = —r,dx — 5d—idx



The Von Karman Integral Relation

Momentum equation

Now we have all components of the momentum equation defined

d [, d [ [? dp
pd—x [/OUdy}_pU‘”dx[/o Udy}__TW_(SO'X

The momentum equation for boundary layers or Von Karman’s integral relation

Note! the relation is valid for laminar and turbulent flows (for turbulent flows use
time-averaged quantities)



The Von Karman Integral Relation

Qutside of the boundary layer the flow is inviscid = we can use Bernoulli

dp dU« 1adp dUx
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The Von Karman Integral Relation
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The Von Karman Integral Relation
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The Von Karman Integral Relation
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The Von Karman Integral Relation

w _d [° dUs [?
Y- Usy — 2o "
) dx/o u( u)ay + x (U u)dy

Constant freestream velocity gives

AUs w _d [°

Ok, but what does this mean??
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Momentum Integral Estimates

displacement thickness 5* momentum thickness 6
Té x % 0
same mass flow same momentum

"The presence of a boundary layer will result in a small but finite displacement
of the flow streamlines”



Momentum Thickness

displacement thickness & momentum thickness 6

Té* j{e
?

same mass flow same momentum

0y u

5
— — 2 — J— -
/o puU(Uso — u)bdy = pUZ b0 = 6 /0 U (1 Uoc) dy

Note! b is the width of the flat plate



Momentum Thickness

Uso Uso

The drag D for a plate of width b N op=p

X abD P
D(x) b/0 Tw(Xx)dx = O = b1y

from before we have | ‘

T da [? d, s /5 u o db
SSAT ™ - — - — |dy=U
X/o U(Uss —u)dy = XU ; 1 y = U —=

the Von Karman integral relation

the displacement thickness 6

and thus

@:bUZdG

D(x) = pbU2 6
ax oodﬁ()poo



Momentum Thickness

do
D(x) = pbU% 0, 7, = pUgo&

Sy u
—/Oum(l‘uw)dy

Note!

Uso

P = Pa

1. the momentum thickness 6 is a measure of the total drag

2. can be used both for laminar and turbulent flows
3. no assumption about velocity profile shape made



Displacement Thickness

displacement thickness & momentum thickness 6

i 4o
¥
same mass flow same momentum
é 5 y
/ p(Uso —u)bdy = pUscbd™ = §* = / (1 _ U) dy
0 JO 00

0" Is an estimate of the displacement in the wall-normal direction of streamlines in the
outer part of the boundary layer due to the deficit of massflow caused by the no-slip
condition at the wall - a measure of the boundary-layer thickness
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Laminar Boundary Layer

The Von Karman integral relation gives us the wall shear stress (1) as a function of
the velocity profile (u(y)) and the boundary-layer thickness ()

Tw d

5
L o’x/o U(Uso — u)dy

So now we need a velocity profile u = u(y) to continue ...



Laminar Boundary Layer

Assumptions:
Boundary layer over a flat plate

o0

. au
Constant freestream velocity U, = const = v 0

Laminar flow

Parabolic velocity profile



Laminar Boundary Layer - Parabolic Velocity Profile

u(y) =A+ By +Cy?
The constants A, B, and C are defined using boundary conditions

no slip:
u0)=0=A=0

constant velocity at y = ¢:
G =0=B+2C=0=B=-2/C
oy I~

freestream velocity:

U(0) = Use = BS + C0% = Uy = {B = —20C} = —C8% = Uy = C = I

52



Laminar Boundary Layer - Parabolic Velocity Profile



Laminar Boundary Layer - Parabolic Velocity Profile

T d 0

pO'X/U U(Us — u)dy
L
Yoy, 5
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Laminar Boundary Layer - Parabolic Velocity Profile

14
0dd = 15—d
5U‘X

o0
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Laminar Boundary Layer - Parabolic Velocity Profile

Weo  2uUse 2 pU% 0.365
- - ~ puoo
) 30vx V30 [Usx Rex
Uoo 14

Introducing the skin friction coefficient c;

TW:,LL

f= ~
pU2  /Rey



Laminar Boundary Layer - Parabolic Velocity Profile

Note! more accurate solutions for laminar flat plate boundary layers exists:

Ok, so where did we go wrong?

For external (unconfined) boundary layers, the velocity profile is not parabolic — but
quite close to parabolic ...
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The Blasius Velocity Profile

For laminar flow, the boundary layer equations can be solved for v and v

Blasius presented a solution 1908 where he had used a coordinate transformation

u . . . . . . u
—— is a function of a single dimensionless variable n = y 1/ —

and showed that
Us vX

The coordinate transformation corresponds to a scaling of the y coordinate with the
boundary layer thickness &

o L Yy Y _L/UOOX_ JYe
X Rex & x/yRex xV v YV T




The Blasius Velocity Profile

1. Rewrite the boundary layer equations using the stream function (Chapter 4)

2. Rewrite the equation again ¥ = f(n)+/rU.x where 7 is the scaled wall-normal
coordinate and f(n) is a non-dimensional stream function

3. Lots of math ....

The Navier-Stokes equations are reduced to an ordinary differential equation (ODE)

f/// + %ﬁ:// _ 0

with the boundary conditions



The Blasius Velocity Profile

Note! u/U, — 1 asy — oo and therefore § is usually defined as the distance from
the wall where u/U = 0.99



The Blasius Velocity Profile

Laminar boundary layer (Blasius)

U T T
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U () ,
5L
Uso Al
n=y o -
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The Blasius Velocity Profile
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The Blasius Velocity Profile

0.4
close the the wall the velocity profile is linear
0.3
u
o0 vX
g (U 0006 g 0.1
an \Ux =0 0.2

Near-wall velocity distribution (Blasius)




Laminar Boundary Layer - Blasius

0.332p1/2u1/2U§c/2
Tw (X) =~ Y

Note! the wall shear stress drops off with increasing distance due to the boundary
layer growth

Recall for pipe flow, the wall shear stress is independent of x — pipe flow is confined
and the boundary layer height is restricted



Laminar Boundary Layer - Blasius
wall shear stress:

0.332p1/21 /2032
T (X) = v

drag force:
X

D(x) = b/ T (X)aX = 0.664bp" 21 203/ 2x1/2
0

drag coefficient:

c. - 2L 1328
° 7 pULbL T \ReL




Laminar Boundary Layer - Blasius

3(x)
From before we have D(x) = pb/ U(Uso — u)dy
0

5(x)
D(x) = pbU2, / UL (1 . “) dy = pbUZ 6(x)
0 [e'e)

X
b / Tw(X)ax = pbU2 0(x) ~ 0.664bp'/2 1 2U3/2x1 /2 = 0(x)
0

66441/ 664
= 0(x) ~ 220X o thus b0 , 0.66
P20 21 /2 X VRex

0.664./2x1/2
~ 4/)1/2U¥2



Laminar Boundary Layer - Blasius

Displacement thickness:

o 1721
X Re}(/Z

Note! since 6" is much smaller than x for large values of Rey, the velocity component
in the wall-normal direction will be much smaller than the velocity parallel to the plate



Laminar Boundary Layer

1 \ I I
—— Parabolic approximation
08— Blasius profile
0.6 -
y
0
0.4
0.2
O | | | |
0 0.2 0.4 0.6 0.8




Laminar Boundary Layer

description

boundary layer thickness

displacement thickness

momentum thickness

shape factor

wall shear stress

local skin friction coefficient

drag coefficient

variable

Xl X|¢ Xl

laminar flow (Blasius) turbulent flow (Prandtl)

5.0
v/ Rex




The Blasius Velocity Profile - Self Similarity

From before:

Uoso Uso
U )
nx,y) =y Tj: Vo u(y) = 0.99Uc0
u vy
U——099:>77~50 ' y =61 u(y) = 0.99Uc
Laminar boundary layer (Blasius)

5T :’ X = Xg
4 ,
= 3F b U U
| X1,01) = n(X2,02) = 614 [ —— = oy [ ——
ol - n(x1,01) = n(xe, 62) 1 X, 2 Xy
% 5T o1 o5 o5 i U U
U4L 2\ X1 < X9 = ﬁ> £2>51<52
Us VX1 VX2
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Boundary Layer Transition

Uso Uso Uso Uso
> > q 2| --- u=0.99Ux
i 4 B = UsoX
> -~k > > Rex = .
q 4 -7 5 N} UsoX, s
> - S Rexey = —— ~ 5.0 x 10°

Y

< > >
laminar Xer transition turbulent
X — =




Boundary Layer Transition

For low Rey, disturbances in the flow are damped out by viscous forces

For somewhat higher Reynolds numbers, friction forces are less important and
the flow becomes unstable

The transition region is short - can be treated as a point (the transition point)



Boundary Layer Transition

The onset of transition from laminar to turbulent is affected by a number of factors
such as:

Turbulence in the freestream
Surface roughness

Pressure gradient

With a smooth surface, no turbulence in the freestream, and zero pressure gradient,
the onset of transition can be pushed up to Rey ~ 3.0 x 10°

As a rule of thumb, we can assume Re,,, ~ 5.0 x 10°



Boundary Layer Transition

Freestream turbulence:

frestream turbulence reduces the critical Reynolds number

with high turbulence intensity in the freestream, the transition can start already at
Re, ~ 3.0 x 10° or lower



Boundary Layer Transition

Surface roughness:

o€

"y N . u
surface roughness does not affect transition significantly if Re, = < 680
14

if Re. > 680, the extent of the laminar region can be shortened significantly
(Reyx ~ 3.0 x 10%)

Note! rule of thumb



Boundary Layer Transition

Negative pressure gradient:

decreasing pressure in the flow direction has a stabilizing effect on the
flow and can delay transition from laminar to turbulent flow



Boundary Layer Transition

Forced transition:

a trip wire or added surface roughness can make the transition to turbulence
really fast

the critical Reynolds number is not meaningful if the boundary layer is forced to
transition



Flat Plate - Turbulent Boundary Layer

A turbulent boundary layer grows faster than a laminar boundary layer

the velocity fluctuations (', v/, w/) leads to increased exchange of
momentum

increased shear stress compared to the laminar case where we only have forces
related to molecular viscosity

larger portion of the fluid will be decelerated close to the wall



Flat Plate - Turbulent Boundary Layer

The Von Karman integral relation and the integral estimates are valid for both
laminar and turbulent boundary layers

T d

s
" = dx/o U(Uso — u)dy

o (o)

-

/()Uoo Uso
0 u

*: 1_7

=] (o)

We need a velocity profile u(y) for turbulent boundary layers to be able to
calculate 7, 6, and ¢*

Approach 1: the log law 1&
Approach 2: Prandtl’'s power law approximation



Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

1 *
uzln(yu > +B where k =0.41 and B =5.0
u* K v

u* is the friction velocity defined as u* = w

p

at the edge of the boundary layer u = Uy, and y = § and thus

Uoo m11n<5u )—i—B
K

u* v




Flat Plate - Turbulent Boundary Layer

Approach 1: the log law

. . 2 1
The skin friction coefficient c; is defined as ¢ = % =Ty = cf5 pUZo
PYS

/ /C
the friction velocity can be expressed as u* = T Uso %
P

insert in the log-law and we get

2 1 Crf
— =~ —In | Resy/— B
Cr l€n< 0 2>+

rather difficult to work with ...



Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’s power law approximation
Prandtl suggested the following relations:
¢ ~ 0.02Re; /¢

/
o~ ()

from before we have the following relation: 7, = pU3 — = C¢f = 2—

s
calculate the momentum thickness 6 = / 4 <1 — u) dy = 16
0



Flat Plate - Turbulent Boundary Layer
Approach 2: Prandtl’s power law approximation

Now, combining the two skin friction coefficient relations we see that

0.02Re; /5 = 2.9 <75>

ax \ 72
- ds d(Res)
thus Re; /% ~ 9.722° — 9.72
and thus Re; 97dx 97d(ReX)
6/7 & 5 - 0.16

integration gives Res =~ 0.16Rey 7
Re,

Note! the turbulent boundary layer grows significantly faster than the laminar
Stury X XS/ T VS 8 ox x1/?



Flat Plate - Turbulent Boundary Layer

Approach 2: Prandtl’s power law approximation

. 0.027
f ~ —
Ff‘ei/7
0.0135u1/7 8/ 7TUL3/T
TWip ~ X1/7

Note! friction drops slowly with x, increases nearly as p and U2, and is rather
insensitive to viscosity



Flat Plate - Turbulent Boundary Layer

description

boundary layer thickness

displacement thickness

momentum thickness

shape factor

wall shear stress

local skin friction coefficient

drag coefficient

variable

Xl x| x>

T
|
S

laminar flow (Blasius) turbulent flow (Prandtl)

5.0

Rex
2
Rey

T

[
N
=

07
D
D
=~

N .
8 8

0.332

0.664
Rey

—_
wW
[\
(od]

"
3

PUZ
vV Rey

0.16.
Rei/ 7
0.02
Rey”
0.016
Rei/ !

1.29

PUZ
E’ei/7
0.027
F.’ei/7
0.031
,‘?ez/7

0.0135




Flat Plate - Turbulent Boundary Layer

The velocity profile in a turbulent boundary layer is quite far from the Blasius profile
used for laminar boundary layers

1

— Blasius profile

08 | — Prandtl’s 1/7-power profile |

0.6 .
Y
1)

0.4 —

0.2 —

0 ‘
0 0.2 0.4 0.6 0.8 1

& <



Flat Plate Boundary Layer

Uso Uso Uso Uso
< q > | --- u=0.99U
< < =" Unox
> _--"% ) —— Rex = .
4 4 -7 5 S/ UsoX 5
- > Rexey = —— ~ 5.0 x 10°
_ - —|---=-3 - v

< > >
laminar Xer transition turbulent
X

Xer ().664 L 0.027
[0 [0
>0 Rey xer REy

N
D—bsz




Flat Plate Boundary Layer

Boundary layer thickness Boundary layer thickness
‘ | I I
‘ | 1 1
‘ | 1 1
| | (I
; | [
‘ | [
| | (I
; | [
| | »
| ; L 0.16x
| 7 . = a7
v 0.16x 1 ’f’ I y Lo ReX
- | I I
B’exl/7 ! /’ ! =
d ‘ o0 L 5.0x
S ! = 75 Lo o
,” : : F\’ex/ ] : : Rex/
.~ : _____ ‘p --------- : } )
'l o | 'w L mmmmmmmmmmmmmmmmT
‘ . AR
X X

For a long boundary layer the length of the laminar region becomes relatively short in
comparison with the length of the turbulent region



Wall Roughness

laminar:
1.328
Cp=—+
1/2
Re,

turbulent (smooth):
~0.031

Cop=—7
F?ei/ !

turbulent (fully rough):

Cp = (1.89 + 1.621og(L/e))~2®

Cp

0.5

fully rough

turbulent (smooth)

laminar

L/e = 200 —
L/e = 300 ——
L/e = 500 ——
L/e = 1000 —
L/e = 2000 —
L/e = 5000 —

L/e = 10000 —
L/e = 20000 —

0
10°

106

107 108 10°

Re;



Wall Roughness

transition (Reyans = 5.0 x 10°):

©0.031 1440

Ch — 427 _
b E’eiﬁ Re;

transition (Reyans = 3.0 x 10°):

C 0.031 8700
D= =77 " Ba
Re)/”  Rev

Co

0.5

L/e = 200 —

L/e = 300 ——

L/e = 500 =——
fully rough

\ L/e = 2000 ——

turbulent (smooth)

laminar

L/e = 1000 —

L/e = 5000 —

L/e = 10000 —
L/e = 20000 —

0
10°

106

107 108 107
Re;



Wall Roughness

30 T T T T I T T
- - - viscous sublayer (y* = 5)
—— nominal surface
— rough surface
20 - 8
Recall: smooth surface:
yt
o 10 + 8
Surface roughness (e) within )
the viscous sublayer N\ e ]
0 VN\/\/IE\'\/\\/AV/\VA

0 2 4 6 8§ 10 12 14
ut
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Pressure Gradient

Adverse pressure gradient

pressure increases in the flow direction
may lead to separation

Thin front
boundary layer

Favorable pressure gradient

pressure decreases in the flow direction
the flow will not separate

Re, = 10°

Separation mechanism
loss of momentum near the wall
adverse pressure gradient
decelerated fluid will force flow to separate from the body

Beautifully behaved
but mythically thin
boundary layer
and wake

Outer stream grossly
perturbed by broad flow
separation and wake



Pressure Gradient

Boundary layer formulation of the momentum equation:

ou ou  1dp

U&—I-V@— - dlx

with u = v = 0 close at the wall, we get

or

or o%u
oy

i

= o2

wall wall

Note! applies both for laminar and turbulent flow

1or
p Oy

R
~padx

wall



Pressure Gradient

ou| 1o
y? - pdx

wall

Adverse pressure gradient (o’_p > 0):

ax
d%u
(37)/2 >Oatthewa”(y:0)
0’u

Oy?
2

0 .
thus AL 0 somewhere in the boundary layer

Oy?

< 0in the outer layer (y — 9)

o oy

Oy?

_ou
y=s

=

I
0 0.2 0.4 0.6 0.8 1



Pressure Gradient

u(y)

Favorable gradient
(dp/dx < 0)

Point of inflection:
inside wall

No separation



Pressure Gradient

y y
A
Uso | Uso
u@y) uy)
Favorable gradient Zero gradient
(dp/dx < 0) (dp/dx = 0)
Point of inflection: Point of inflection:
inside wall at the wall

No separation No separation



Pressure Gradient

y y y
A A
Uso | Uso I Uso I
u(y) u(y) uy)

Favorable gradient Zero gradient Weak adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow

No separation No separation No separation



Pressure Gradient

y y y y
A A A
Uso | Uso I Uso I Uso I
u@y) uy) uy) uy)

Favorable gradient Zero gradient Weak adverse Critical adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow
No separation No separation No separation Separation

zero slope at wall
Tw =20



Pressure Gradient

y y y y y
A A A A
Uso | Uso I Uso I Uso I Uso '
u@y) uy) uy) uy) u@y)
Favorable gradient Zero gradient Weak adverse Critical adverse Excessive adverse
(dp/dx < 0) (dp/dx = 0) gradient (dp/dx > 0) gradient (dp/dx > 0) gradient (dp/dx > 0)
Point of inflection: Point of inflection: Point of inflection: Point of inflection: Point of inflection:
inside wall at the wall in the flow in the flow in the flow
No separation No separation No separation Separation Separated flow
zero slope at wall backflow at wall

Tw =20



Pressure Gradient

500X

Inviscid core flow —=-—-—

S(X)_ 2
-

Nozzle
decreasing area

favorable pressure
gradient

dp/dx < 0

du/dx > 0

Throat

minimum area

Zero pressure

gradient
dp/dx =0
du/dx =0

ww

Diffuser
increasing area

adverse pressure
gradient

dp/dx > 0

dU/dx < 0



Shape Factor

0.8 -

(.6 | decreased shape factor

c
3

0.4F

0.2 1

Favorable pressure gradients

Adverse pressure gradients

> <

*

Shape factor: H = %

Laminar flow:

No pressure gradient: H ~ 2.6
Separation: H ~ 3.5
Turbulent flow:

No pressure gradient: H ~ 1.3

Separation: H ~ 2.4



Avoid or Delay Separation

Decrease magnitude of adverse pressure gradient \ =

Guide vanes

Corner duct Diffusers Corner duct

Streamlining

Centrifugal fan

I




Avoid or Delay Separation

Remove decelerated fluid

Boundary layer suction

Z



Avoid or Delay Separation

N

Increase near-wall momentum —

Injection of high-velocity fluid

Forced transition to turbulence

surface roughness
surface irregularities (dimples on the surface of a golf ball)
trip wires

Negative consequence: comes with increased friction
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Drag of Immersed Bodies
%f"

dra UsoL
Cp = _rag f > Cp based on frontal and planform area

== _
FPUSA v 0.3 : ‘

T
circular cylinder

Characteristic area A:
0.2 Cp based on frontal area (tb) o

1. Frontal area
blunt objects: cylinders, cars
2. Planform area 0.1 |
wide flat bodies: wings, hydrofoils
3. Wetted area £ st on panionm area ()

flat plate

Ships 0 | | | |

0 0.2 0.4 0.6 0.8
t/c



Drag of Immersed Bodies

CD - CDpressure + CDfrict/'on
Pressure drag:

“the difference between the high front
stagnation pressure and the low wake
pressure on the backside of the body”

“often larger than the friction drag”

The relative importance of friction and
pressure drag depends on:

body shape
surface roughness

Friction drag percent

100

80

60

40

20

percentage of pressure

0.2

Note! for a cylinder, friction drag can be as low as a few percent of the total drag



Cylinder Surface Pressure

P — Poso
P pU2 /2

Inviscid theory

Turbulent

Laminar

1 pain?
Cp=1 ‘1sm 0

Separation Separation
A o ffon] N
—> Broad wake =~ —» Narrow wake
Poo Poo _) 1
0
Co —1f
2k
-3
0

45 90 135

180



Cylinder Drag

5 T T T T T T T T T T TTTTTT T I [ TTTTI
— Cylinder (2D)
— Sphere

1, |

0 T Y Y I N \’_\—\HHH
' 102 10° 10* 10° 10° 107
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Streamlining

Cp =20

)
-

L



Streamlining

Cp =20

J

Q

-

Cp=1.1

)
-



Streamlining

/)
qq
Usg —> Cp = 2.0 Use —>
\)\)
o

Cp=1.1

)
-



Streamlining

qq qq
Uss — Cp = 2.0 Uso —> Cp=1.1
\0 \)\) \)\)

- @SS -, e

same drag



Drag Prediction

No reliable theory for drag prediction (with the exception of flat plates)

The separation point can be predicted with some accuracy but not the wake
flow

CFD or experiments needed



Wing Lift and Drag

planform area: A, = bc

angle of attack («)

A=

chord (c) |

lift

dra
9 span (b)

thickness (f)

Fr

CL=—t _
P IR A

Ce
/\Rm:(leOs A
16 F 04—
o
/ Split
ﬂaPI n
e
12 0.03 - Withflap |
at 60°
With flap / l Re,=9% 106 | !/
[~ at60°, |
8 6% 106 o0z / Re, =3 x10°
/ 3x10° /
610
-
No flap - o x 106
/ 04 —0.01
Noflap
| |
12 -8 -4 Jo 4 8 12 16 -8 -4 0 4 8§ 12 16
a deg o, deg



Wing Lift and Drag - High-Lift Devices

o

A: Cruise configuration

B: Takeoff configuration Y

&=
C: Landing configuration




Wing Lift and Drag - Wing Stalll




Wing Lift and Drag - Induced Drag

Streamline over
the top surface

Voo

1
I "
e Streamline over the bottom surface

Top view

(planform) Wing area = §

Wing root

L

r Wing span b *

Low pressure
Front
view — —

High pressure

Low pressure

High pressure

Front view of wing

(a)

(b)

vortices

Vortex




Wing Lift and Drag - Induced Drag




Wing Lift and Drag - Induced Drag




Wing Lift and Drag

HOW A WING PRODUCES LIFT

—
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Joukowsky Transform }s

A Joukowsky wing is generated in the complex plane by applying the Joukowsky
transform to a cylinder

Since the potential flow around a cylinder is well known it is by using so-called
conformal mapping possible to get the flow around the wing profile from the cylinder
solution



Joukowsky Transform

s
o~

\
¥

¢=x+in




Complex Conjugate

OKAY, ANYONE. WHO'S FEELING
LIKE THEY CAN'T HANDLE
THE PHYSICS HERE SHOULD
PROBABLY JUST LEAVE NOW.

BECAUSE. TM MULTIPLYING
THE WRAVEFUNCTION BY IT5
COMPLEX CONTJUGATE,

THATS RIGHT.

0/

SHIT JusT
GOT AEAL.
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