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Chapter 6 - Viscous Flow in Ducts
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Learning Outcomes

3 Define the Reynolds number

4 Be able to categorize a flow and have knowledge about how to select

applicable methods for the analysis of a specific flow based on category

6 Explain what a boundary layer is and when/where/why it appears

8 Understand and be able to explain the concept shear stress

18 Explain losses appearing in pipe flows

19 Explain the difference between laminar and turbulent pipe flow

20 Solve pipe flow problems using Moody charts

24 Explain what is characteristic for a turbulent flow

25 Explain Reynolds decomposition and derive the RANS equations

26 Understand and explain the Boussinesq assumption and turbulent viscosity

27 Explain the difference between the regions in a boundary layer and what is

characteristic for each of the regions (viscous sub layer, buffer region, log region)

if you think about it, pipe flows are everywhere (a pipe flow is not a flow of pipes)
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Complementary Course Material

These lecture notes covers chapter 6 in the course book and additional course

material that you can find in the following documents

MTF053_Equation-for-Boundary-Layer-Flows.pdf

MTF053_Turbulence.pdf

Niklas Andersson - Chalmers 6 / 140

https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Equations-for-Boundary-Layer-Flows.pdf
https://courses.onlineflowcalculator.com/fluidmech/docs/MTF053_Turbulence.pdf


Motivation

”Piping systems are encountered in almost every engineering design and

thus have been studied extensively”



Typical Pipe-Flow Problems

Example I:

Given pipe geometry, fluid properties, flow rate, and locations of valves, bends,

diffusers etc - estimate the pressure drop needed to drive the flow

Example II:

Given the pressure drop available from a pump - what flow rate can be expected
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Transition to Turbulence

101 102 103 104 105 106 107
0

1

2

3

4

5

ReD

CD

Cylinder (2D)

Sphere

Niklas Andersson - Chalmers 10 / 140



Transition to Turbulence
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Transition to Turbulence

Factors that affects the transition to turbulent flow:

1. Wall roughness

2. Fluctuations in incoming flow

3. Reynolds number
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Transition to Turbulence
Reynolds number

small natural disturbances damp quickly

t

u

intermittent bursts of turbulence

t

u

continuous turbulence

t

u

Fluctuations in the fully turbulent flow velocity signal:

typically 1% to 20% of the average velocity

not periodic

random

continuous range (spectrum) of frequencies
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Transition to Turbulence
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Transition to Turbulence - Viscous Flow in Ducts

0 < Re < 1 highly viscous laminar ”creeping” motion

1 < Re < 100 laminar, strong Reynolds number dependence

100 < Re < 103 laminar, boundary layer theory useful

103 < Re < 104 transition to turbulence

104 < Re < 106 turbulent, moderate Reynolds number dependence

106 < Re < ∞ turbulent, slight Reynolds number dependence

Note! The ranges will vary somewhat with geometry and surface roughness
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Transition to Turbulence - Viscous Flow in Ducts

An accepted design value for pipe flow transition is

Red,crit ≈ 2300

Note!

1. this value is for pipe flows, other applications have different transition Reynolds

numbers

2. by careful design the Reynolds number can be pushed to higher values
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Transition to Turbulence - Viscous Flow in Ducts

The great majority of our analyses are concerned with laminar flow or with

turbulent flow, and one should not normally design a flow operation in the

transition region.
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Transition to Turbulence - Osborne Reynolds (1842-1912)

Re =
ρUD

µ

turbulent flow

laminar flow

R
e
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Internal Flows

Wall-bounded flows - constrained by bounding walls

Boundary layers grows and meet at the center
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Velocity Profile Development

x

r

u(r, x)
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Velocity Profile Development

x

r

u(r, x)

Growing boundary layer

Inviscid core

Boundary layer merge
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Velocity Profile Development
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u(r, x) u(r)

Niklas Andersson - Chalmers 19 / 140



Velocity Profile Development

x

r
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Velocity Profile Development

Le = f(d,V , ρ, µ)

where

V =
Q

A
=

4Q

πd2

and

Q =

ˆ
udA = const

Dimensional analysis gives:

Le

d
= g

(
ρVd

µ

)
= g(Red)
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Velocity Profile Development

Laminar flow:

Le

d
≈ 0.06Red

The maximum laminar entrance length, at Red = Red,crit = 2300, is Le = 138d, which
is the longest development length possible
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Velocity Profile Development

Turbulent flow (Red ≤ 107):

Le

d
≈ 1.6Red

1/4

Red 4.0× 103 1.0× 104 1.0× 105 1.0× 106 1.0× 107

Le/d 13 16 28 51 90
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Head Loss

x

u(r)

τ(r)

τ
w

r

r =
R

x2 −
x1 =

L

1

2

p1 = p2 + ∆p

p2

z 1

z 2

g
gx = gsinα

α

Assumptions:

1. steady-state flow

2. incompressible

3. fully developed

4. no pumps or turbines
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Head Loss

Continuity gives:

Q1 = Q2 = Q, V1 = V2 = Vav

Energy equation for steady flow without pumps or turbines:

(
p

ρg
+ α

V2

2g
+ z

)
1

=

(
p

ρg
+ α

V2

2g
+ z

)
2

+ hf

Fully developed flow ⇒ α1 = α2

hf = (z1 − z2) +

(
p1 − p2

ρg

)
= ∆z +

∆p

ρg
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Head Loss

x

u(r)

τ(r)

τ
w

r

r =
R

x2 −
x1 =

L

1

2

p1 = p2 + ∆p

p2

z 1

z 2

g
gx = gsinα

α

Apply the momentum equation along the pipe:

∑
Fx = ∆p(πR2) + ρg(πR2)L sinα− τw(2πR)L

∑
Fx = ṁ(V2 − V1) = 0

Niklas Andersson - Chalmers 26 / 140



Head Loss

x

u(r)
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p1 = p2 + ∆p

p2

z 1

z 2

g
gx = gsinα

α

∆p(πR2) + ρg(πR2)L sinα = τw(2πR)L

∆p

ρg
+ L sinα =

2τw
ρg

L

R

∆p

ρg
+∆z =

4τw
ρg

L

d

hf =
4τw
ρg

L

d
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Friction Factor

Henry Darcy 1803-1858

hf = fD
L

d

V2
av

2g

where

fD = f(Red, ε/d,duct shape)

is the Darcy friction factor

4τw
ρg

L

d
= fD

L

d

V2
av

2g
⇒ fD =

8τw
ρV2

av

Note! for non-circular pipes, τw is an average value around the duct perimeter
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Fully-Developed Laminar Pipe Flow

x

r

umax

u(r)

Pressure driven (Poiseuille flow) in a circular pipe with the diameter D and radius R

Assumptions:

1. Steady state

2. Incompressible

3. Laminar

4. Fully developed

u(r) = umax

(
1−

( r
R

)2)
⇒ du

dr
= −2umax

r

R2
=
{
Vav =

umax

2

}
= −4Vav

r

R2

τw = µ

∣∣∣∣dudr
∣∣∣∣
r=R

=
4µVav
R

=
8µVav
D
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Fully-Developed Laminar Pipe Flow

For laminar flow:

fD =
8τw
ρV2

av

= {τw =
8µVav
D

} =
64µ

ρVavD
=

64

ReD

Note! in laminar flow, the friction factor is inversely proportional to the Reynolds

number

Niklas Andersson - Chalmers 31 / 140



Fully-Developed Laminar Pipe Flow
�

(
p+

dp

dx
∆x

)
p

τw

τw(
p+

dp

dx
∆x

)
πR2 − pπR2 − τw2πR∆x = 0 ⇒

dp

dx
= 2

τw
R

=

{
τw = µ

du

dr

∣∣∣∣
r=R

}
=

2µ

R

du

dr

∣∣∣∣
r=R

u(r) = umax

(
1−

( r
R

)2)
⇒ du

dr
= 2umax

r

R2

dp

dx
=

4µ

R2
umax ⇔ umax = −R2

4µ

dp

dx
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Fully-Developed Laminar Pipe Flow
�

−dp

dx
=

(
∆p+ ρg∆z

L

)
⇒ umax =

(
∆p+ ρg∆z

L

)
R2

4µ

Vav =
umax

2
=

(
∆p+ ρg∆z

L

)
R2

8µ

Q =

ˆ
udA = VavA = Vav

πD2

4
=

(
∆p+ ρg∆z

L

)
πD4

128µ
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Fully-Developed Laminar Pipe Flow
�

We can now calculate the head loss according to

hf = fD
L

D

V2
av

2g
where fD =

8τw
ρV2

av

hf =
4τwL

ρgD
=

{
τw =

8µVav
D

}
=

16µVavL

ρgDR
=

32µVavL

ρgD2
=

{
Vav =

4Q

πD2

}
=

128µQL

πρgD4
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Reynolds-Averaged Navier-Stokes (RANS)



Leonardo Da Vinci

”Observe the motion of the surface of the water, which resembles that of hair,

which has two motions, of which one is caused by the weight of the hair, the

other by the direction of the curls; thus the water has eddying motions, one

part of which is due to the principal current, the other to random and reverse

motion”



Governing Equations

Assumptions:

1. constant density and viscosity

2. no thermal interaction

Flow equations:

continuity: ∇ · V = 0

momentum: ρ
DV
Dt

= −∇p+ ρg + µ∇2V
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Governing Equations

The differential energy equation is not included here but let’s have a look at it anyway

ρ
Dû

Dt
+ p∇ · V = ∇ · (k∇T) + φ

Pressure work:

pressure drives the flow through the duct

Viscous work:

no-slip condition ⇒ zero velocity at the walls ⇒ no work done by wall shear stress

So, where does the energy go?

pressure work is balanced by viscous dissipation in the interior of the flow
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Reynolds’ Decomposition

t

u

u = u+ u′

u

t

p

p = p+ p′

p

Not possible to solve analytically

Often, the time-averaged quantities are what we are looking for
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Reynolds’ Decomposition

t

u

u = u+ u′

u

t

p

p = p+ p′

p

u =
1

T

ˆ T

0
udt

u′ = u− u

u′ =
1

T

ˆ T

0
(u− u)dt = u− u = 0
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Reynolds’ Decomposition

The mean square of the fluctuations are, however, not zero

u′2 =
1

T

ˆ T

0
u′2dt 6= 0

measure of turbulence intensity

Mean of fluctuation products are generally not zero (u′v′, u′p′)
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Reynolds’ Decomposition

Reynolds’ idea was to split all properties into mean and fluctuating parts:

u = u+ u′, v = v + v′, w = w +w′, p = p+ p′

1. insert into the governing equations

2. time average the equations
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Reynolds-Averaged Navier Stokes (RANS)

Continuity:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

Momentum (x-component):

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z

)
= −∂p

∂x
+ ρgx + µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
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Reynolds-Averaged Navier Stokes (RANS)

Continuity:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
+

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0

time averaging the equation gives

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

and as a consequence

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0
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Reynolds-Averaged Navier Stokes (RANS)

Momentum (x-component):

ρ

(
∂u

∂t
+

∂u′

∂t

)
+

ρ

(
u
∂u

∂x
+ u

∂u′

∂x
+ u′

∂u

∂x
+ u′

∂u′

∂x

)
+

ρ

(
v
∂u

∂y
+ v

∂u′

∂y
+ v′

∂u

∂y
+ v′

∂u′

∂y

)
+

ρ

(
w
∂u

∂z
+w

∂u′

∂z
+w′∂u

∂z
+w′∂u

′

∂z

)
=

−∂p

∂x
− ∂p′

∂x
+ ρgx + µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+

∂2u′

∂x2
+

∂2u′

∂y2
+

∂2u′

∂z2

)

Niklas Andersson - Chalmers 46 / 140



Reynolds-Averaged Navier Stokes (RANS)

Momentum (x-component):

time averaging the equation gives:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
+ u′

∂u′

∂x
+ v′

∂u′

∂y
+w′∂u

′

∂z

)
=

−∂p

∂x
+ ρgx + µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

The highlighted terms can be rewritten as:

u′
∂u′

∂x
+ v′

∂u′

∂y
+w′∂u

′

∂z
=

∂u′u′

∂x
+

∂u′v′

∂y
+

∂u′w′

∂z
− u′

(
∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z

)
︸ ︷︷ ︸

=0
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Reynolds-Averaged Navier Stokes (RANS)

the continuity equation reduces to

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

the axial component of the momentum equation:

ρ
Du

Dt
= −∂p

∂x
+ ρgx +

∂

∂x

(
µ
∂u

∂x
− ρu′2

)
+

∂

∂y

(
µ
∂u

∂y
− ρu′v′

)
+

∂

∂z

(
µ
∂u

∂z
− ρu′w′

)
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Reynolds-Averaged Navier Stokes (RANS)

By applying Reynolds’ decomposition to our governing equations, we have

introduced a number of new unknowns

The number of equations is the same as before, which means problems

Our new problem has a name

The closure problem
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Reynolds Stresses

y

x

z

−ρu′v′

−ρu′w′ −ρu′u′

The three correlation terms −ρu′2, −ρu′v′, and −ρu′w′ are called Reynolds stresses

or turbulent stresses

In duct and boundary layer flow, the stress −ρu′v′, associated with the direction

normal to the wall, is dominant

ρ
Du

Dt
≈ −∂p

∂x
+ ρgx +

∂τ

∂y

τ = µ
∂u

∂y
−ρu′v′ = τlam + τturb
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Reynolds Stresses

x

y

z

u(y)
v
′

dA

mass flow through surface element: ṁy = ρv′dA

momentum balance in x-direction: Fx = ṁyu = ρv′
(
u+ u′

)
dA

τdA = − Fx

dA
= −ρv′ (u+ u′) = −ρv′u− ρu′v′ =

{
v′u = v′u = 0

}
= −ρu′v′

⇒ −ρu′v′ can be interpreted as a shear stress
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Reynolds Stresses

Introducing turbulent viscosity µt defined such that

−ρu′v′ = µt
∂u

∂y

Boussinesq’s assumption

With the turbulent viscosity, the total shear stress τ becomes:

τ = µ
∂u

∂y
−ρu′v′ = (µ+ µt)

∂u

∂y
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Laminar vs Turbulent Shear Stress

y = δ(x)

u(x, y)

U(x)

y

τlam

τturb

y

τ(x, y)

τw(x) u = 0.0

viscous sublayer

overlap region

outer region

τturb is about two to three orders of magnitude greater than τlam in the outer region

(and the other way around in the near-wall region)

laminar shear (τlam) dominates in the near-wall region

turbulent shear (τturb) dominates in the outer region

both are important in the overlap layer

Niklas Andersson - Chalmers 53 / 140



Roadmap - Viscous Flow in Ducts

Governing Flow Equations

Basic Concepts

Laminar Pipe Flow

Turbulent Pipe Flow

Wall Roughness and Friction

Tools for Pipe-Flow Analysis�

Flow Regimes

Reynolds-Averaged

Navier-Stokes

(RANS)

Local Losses�

Darcy Friction Factor

Near-Wall Models

Non-circular Ducts�

�

�

�

�

�

Niklas Andersson - Chalmers 54 / 140



Turbulent Pipe Flow - Boundary-Layer Equations

Momentum equation (x-component)

ρ
Du

Dt
≈ −∂p

∂x
+ ρgx +

∂τ

∂y

where

τ = µ
∂u

∂y
− ρu′v′ = (µ+ µt)

∂u

∂y

For boundary-layer flows

ρ

(
u
∂u

dx
+ v

∂u

dy

)
= −dp

dx
+ ρgx + (µ+ µt)

∂u

∂y

(will be discussed in more detail in later lectures)
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Turbulent Pipe Flow - Boundary-Layer Equations

ρ

(
u
∂u

dx
+ v

∂u

dy

)
= −dp

dx
+ ρgx +

∂τ

∂y

y → 0 ⇒

{
u → 0

v → 0
⇒

∂τ

∂y
=

dp

dx
− ρgx
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Turbulent Pipe Flow - Boundary-Layer Equations

∂τ

∂y
=

dp

dx
− ρgx

τ(y) =

(
dp

dx
− ρgx

)
y + C

τ(0) = C = τw ⇒ τ(y) =

(
dp

dx
− ρgx

)
y + τw

Note! with a negative pressure gradient, the shear stress will reduce with increasing

distance from the wall

Niklas Andersson - Chalmers 57 / 140



Turbulent Pipe Flow - Boundary-Layer Equations

τ(y) =

(
dp

dx
− ρgx

)
y + τw

At the wall, the shear stress is equal to the wall-shear stress

y → 0 ⇒ τ(y) → τw

In fact, assuming that the shear stress (τ ) is constant and equal to the wall-shear

stress (τw) is a valid assumption in the near-wall region (some distance from the

wall but still close) as long as the pressure gradient is moderate.

Outside of the near-wall region, inertial effects has to be accounted for, i.e., Du/Dt
will not be zero and thus the shear stress will not be equal to the wall-shear stress.
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Turbulent Boundary Layers

A turbulent boundary layer may be divided into different regions where the physical

processes leading to shear stress are clearly distinguishable

The viscous sublayer

the shear stress is dominated by molecular viscosity (µ)

The buffer region

molecular viscosity (µ) and turbulent viscosity (µt) are equally
important

The log layer

the shear stress is dominated by turbulent viscosity (µt)

The outer region

inertial effects must be accounted for

Niklas Andersson - Chalmers 59 / 140



Turbulent Boundary Layers

In the following we will discuss two turbulent boundary layer regions in detail:

The viscous sublayer - the region closest to the wall

The log region - outside of the viscous sublayer but still in the near-wall region
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Viscous Sublayer

At the wall

τ = τw = µ
∂u

∂y
− ρu′v′

y → 0 ⇒

{
u′ → 0

v′ → 0
⇒

τ = µ
∂u

∂y
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Viscous Sublayer

τ = µ
∂u

∂y
⇒ u(y) =

τw
µ
y + C

u(0) = 0 ⇒ C = 0 ⇒

u(y) =
τw
µ
y

Note! in the viscous sublayer, the average velocity increase linearly with the wall

distance
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Viscous Sublayer

Introducing friction velocity defined as

u∗ =

√
τw
ρ

and thus

u(y) =
τw
µ
y =

ρu∗2y

µ
=

u∗2y

ν

which can be rewritten as:

u

u∗︸︷︷︸
u+

=
u∗y

ν︸︷︷︸
y+

valid for y+ ≤ 5− 10
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The Log Region

Now, let’s move a bit further out from the wall

1. τ = const = τw still (we have not moved that far out from the wall)

2. outside of the viscous sublayer µt � µ and thus

τ = τw = µ
∂u

∂y
− ρu′v′ ≈ −ρu′v′ = µt

∂u

∂y

We need an estimate of µt to be able to solve this ...
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The Log Region

Let’s first examine the relation between u′ and v′ (the velocity fluctuations in the
x and y directions)

The illustration below shows a fluid particle in a boundary-layer flow

x

y

z

u(y)

v
′
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The Log Region

x

y

z

u(y)

v
′

A positive v′ fluctuation will lead to a vertical transport of the fluid particle

The fluid particle will end up in a position in the flow where the axial velocity is

higher than where it came from, thus leading to a negative fluctuation in the axial

velocity at that position (u′ < 0)

In the same way, a negative v′ fluctuation will lead to u′ > 0

The product u′v′ will always be negative if ∂u/∂y is positive
in the wall-normal direction

Thus τturb = −ρu′v′ = µt
∂u

∂y
is positive

Niklas Andersson - Chalmers 66 / 140



The Log Region

What about other type of boundary layers such as for example the flow over a

moving surface

moving wall frame of reference of the wall
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The Log Region

y

u(y)

lm

lm

+

−

Prandtl’s mixing length concept

”the average distance that a small mass of fluid will travel before it

exchanges its momentum with another mass of fluid”

Ludwig Prandtl 1875-1953

u(y + lm) = u(y) + lm
∂u

∂y

u(y − lm) = u(y)− lm
∂u

∂y

Prandtl assumed u′ ≈ lm
∂u

∂y

He further assumed v′ to be of the same size as u′
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The Log Region

Prandtl’s mixing length concept

τt = −ρu′v′ ≈ ρl2m

(
∂u

∂y

)2

−ρu′v′ ≈ µt
∂u

∂y
⇒ µt ≈ ρl2m

∣∣∣∣∂u∂y
∣∣∣∣

νt =
µt
ρ

≈ l2m

∣∣∣∣∂u∂y
∣∣∣∣
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The Log Region

Prandtl’s mixing length concept

Theodore von Kármán 1881-1963

So, how do we estimate the mixing length lm

lm(y) = ao + a1y + a2y
2 + . . .

1. y → 0 ⇒ lm → 0 ⇒ ao = 0

2. small values of y (we are still very close to the wall) ⇒ lm = a1y

lm = κy

where κ is Kármán’s constant κ ≈ 0.41

Niklas Andersson - Chalmers 70 / 140



The Log Region

µt ≈ ρl2m

∣∣∣∣∂u∂y
∣∣∣∣ = ρκ2y2

∣∣∣∣∂u∂y
∣∣∣∣

τw = µt
∂u

∂y
= ρκ2y2

(
∂u

∂y

)2

= ρu∗2

κ2y2
(
∂u

∂y

)2

= u∗2 ⇒

∂u

∂y
=

u∗

κy
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The Log Region

∂u

∂y
=

u∗

κy
⇒

u(y) =
u∗

κ
ln(y) + C

or in non-dimensional form

u(y)

u∗︸︷︷︸
u+

=
1

κ
ln
(
yu∗

ν

)
︸ ︷︷ ︸

y+

+
C

u∗
− ln

(
u∗

ν

)
︸ ︷︷ ︸

B
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The Log Region

u+ =
1

κ
ln
(
y+
)
+ B

valid for 30 . y+ . 1000

From experiments we have:

κ ≈ 0.41 and 4.9 < B < 5.5

flow over a flat plate (external flow): B ≈ 4.9

duct flow (internal flow): B ≈ 5.3

White: B ≈ 5.0
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Outer region
�

In the outer region it has been found that

U − u

u∗
= f

(y
δ

)
where δ is the thickness of the outer layer and U the velocity at the edge of the outer

layer
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Regions in a Turbulent Boundary Layer

100 101 102 103 104
0

10

20

30

u
+

= y
+

u
+

=
1

κ
ln
(
y
+
)
+ B

I II III IV

y+

u+

I:

II:

III:

IV:

viscous sublayer

buffer layer

log-law region

outer layer

between the viscous sublayer and the

log region, none of the models works

in the outer region, inertial forces

needs to be included

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
6= 0
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Example - Pipe Flow Boundary Layer

Given data:

Air at 20◦C flows through a 14-cm-diameter pipe. The flow is fully developed and the

centerline velocity is 5.0 m/s

Air @ 20◦C ⇒ ρ = 1.2 kg/m3, µ = 1.8× 10−5 kg/(ms)

D = 0.14 m

Umax = 5.0 m/s

Assumptions:

steady-state, fully-developed, turbulent, incompressible pipe flow

Task:

From the provided data, estimate the friction velocity (u∗) and the wall-shear stress

(τw)
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Example - Pipe Flow Boundary Layer

Assume turbulent flow:

Vav =
2Umax

(1 +m)(2 +m)

m = 1/7 gives Vav = 4.08 m/s

ReD =
ρVavD

µ
≈ 38000 � ReDcritical

= 2300

The flow is turbulent

Niklas Andersson - Chalmers 77 / 140



Example - Pipe Flow Boundary Layer

Assume that the log-law is valid all the way to the center of the pipe

u+ =
1

κ
ln(y+) + B ⇔ 0 =

1

κ
ln(y+) + B− u+

or (at the center of the pipe where y = R and u = Umax )

0 =
1

κ
ln
(
Ru∗

ν

)
+ B− Umax

u∗

where κ = 0.41 and B = 5.0

u∗ =

√
τw
ρ
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Example - Pipe Flow Boundary Layer

Find estimates of u∗ and τw using a Newton-Raphson solver

Using the definitions of y+, u+, and u∗, we can get a function f(τw)

f(τw) =
1

κ
ln
(
R
√
τw√
ρν

)
+ B−

Umax
√
ρ

√
τw

The derivative of f(τw) is obtained as (details on next slide)

f ′(τw) =
(1/κ)

√
τw + Umax

√
ρ

2τ
3/2
w

=
(1/κ) + u+

2τw

Niklas Andersson - Chalmers 79 / 140



Example - Pipe Flow Boundary Layer
�

f(τw) =
1

κ
ln
(
R
√
τw√
ρν

)
+ B−

Umax
√
ρ

√
τw

f ′(τw) =
∂

∂τw

(
1

κ
ln
(
R
√
τw√
ρν

))
− ∂

∂τw

(
Umax

√
ρ

√
τw

)
=

=
∂

∂τw

(
1

κ

[
ln
(

R
√
ρν

)
+ ln (

√
τw)

])
−
(
−1

2

)
Umax

√
ρ

τ
3/2
w

=

=
∂

∂τw

(
1

κ

[
ln
(

R
√
ρν

)
+

1

2
ln (τw)

])
+
Umax

√
ρ

2τ
3/2
w

=

=

(
1

κ

)
1

2τw
+
Umax

√
ρ

2τ
3/2
w

=
(1/κ)

√
τw + Umax

√
ρ

2τ
3/2
w

=
(1/κ) + u+

2τw
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Example - Pipe Flow Boundary Layer

With the functions f(τw) and f ′(τw) defined, we can set up an iterative

Newton-Raphson solver to find τw using

τwn+1 = τwn −
f(τwn)

f ′(τwn)

where n+ 1 and n are iteration numbers. Iterate until converged with the following

convergence criterium:

∣∣∣∣ f(τwn)

f ′(τwn)

∣∣∣∣ ≤ τw × 10−4
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Example - Pipe Flow Boundary Layer

1 import numpy as np
2

3 def calc_yplus_uplus(rho,mu,tau_w,y,U):
4 nu=mu/rho
5 ustar=np.sqrt(tau_w/rho)
6 yplus=y*ustar/nu
7 uplus=U/ustar
8 return yplus,uplus,ustar
9

10 mu = 1.8e-5 # fluid viscosity (dynamic viscosity)
11 rho = 1.2 # fluid density
12 u_max = 5.0 # centerline velocity
13 R = 0.07 # pipe radius
14 kappa = 0.41 # von Kármán constant
15 B = 5.0 # integration constant in the log-law
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Example - Pipe Flow Boundary Layer

17 tau_w = mu*u_max/R # initial guess
18

19 yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
20

21 dtau_w = 10.*tau_w
22

23 while( abs(dtau_w) > 0.0001*tau_w ):
24 f = (1./kappa)*np.log(yplus)-uplus+B
25 df = 0.5*((1./kappa)+uplus)/tau_w
26 dtau_w = -f/df
27 tau_w = tau_w+dtau_w
28 yplus,uplus,ustar=calc_yplus_uplus(rho,mu,tau_w,R,u_max)
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Example - Pipe Flow Boundary Layer

iteration τw f/f ′

1 0.003531 2.244938e-03

2 0.009029 5.498838e-03

3 0.020451 1.142164e-02

4 0.038183 1.773146e-02

5 0.054798 1.661537e-02

6 0.061401 6.602591e-03

7 0.062021 6.204740e-04

8 0.062026 4.575602e-06
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Example - Pipe Flow Boundary Layer

variable dimension value

y+ (pipe center) 1061

u∗ m/s 0.227

τw N/m2 0.062

Note! y+ = 1061 is actually outside the range of y+ values for which the log-law is

valid - but it is very close to the limit...
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Example - Pipe Flow Boundary Layer

0 1 2 3 4 5 6
0

2

4

6

y
+

= 30

y
+

= 1000

u (m/s)

y (cm)

Velocity Profile u(y)

101 102 103

5
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15

20
y
+

=
5

y
+

=
3
0

y
+

=
1
0
0
0

u
+

= y
+

u
+

=
1

κ
ln(y+) + B

y+

u+

Velocity Profile u+ vs y+

Note! The upper limit of the viscous sublayer (y+ = 5) corresponds to a distance
from the wall of y = 0.3 mm or 0.2% of the pipe diameter and the lower bound for

the log region (y+ = 30) corresponds to a wall distance of y = 2.0 mm or 1.4% of

the pipe diameter.
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Turbulent Pipe Flow

umax

Vav

Laminar flow

umax

Vav

Turbulent flow

Niklas Andersson - Chalmers 88 / 140



Turbulent Pipe Flow

As we did for laminar pipe flow, we will now obtain the friction factor for turbulent

pipe flow

τw = fD
ρVav

2

8

u∗ ≡
√

τw
ρ

⇒ fD = 8

(
Vav

u∗

)−2

So, what we need now is an estimate of the average flow velocity in the pipe (Vav/u
∗)

There are different ways to do this and here is one example:

1. Assume that we can use the log-law all the way across the pipe

2. Integrate to get the average velocity

3. Insert the calculated average velocity into the relation above
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Turbulent Pipe Flow

fD = 8

(
Vav

u∗

)−2

u(r)

u∗
≈ 1

κ
ln (R − r)u∗

ν
+ B

Vav

u∗
=

Q

Au∗
=

1

πR2

ˆ R

0

u(r)

u∗
2πrdr

⇒ Vav

u∗
≈ 2

R2

ˆ R

0

[
1

κ
ln (R − r)u∗

ν
+ B

]
rdr

with κ = 0.41 and B = 5.0 we get

Vav

u∗
≈ 2.44 ln

(
Ru∗

ν

)
+ 1.34

details on next slide� Niklas Andersson - Chalmers 90 / 140



Turbulent Pipe Flow
�

Vav

u∗
=

2

R2

ˆ R

0

[
r

κ
ln
(
(R − r)u∗

ν

)
+ Br

]
dr =

2

κR2

ˆ R

0

[
ln(R − r) + ln

(
u∗

ν

)
+ Bκ

]
rdr =

=
1

κ

(
ln
(
u∗

ν

)
+ Bκ

)
+

2

κR2

ˆ R

0
r ln(R − r)dr =

=
1

κ
ln
(
u∗

ν

)
+ B+

2

κR2

[
1

4

(
−2(R2 − r2) ln(R − r)− r(2R + r)

)]R
0

=

=
1

κ
ln
(
Ru∗

ν

)
+ B− 3

2κ
= {κ = 0.41, B = 5.0} = 2.44 ln

(
Ru∗

ν

)
+ 1.34
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Turbulent Pipe Flow

Vav

u∗
≈ 2.44 ln

(
Ru∗

ν

)
+ 1.34

The argument of the logarithm can be rewritten as

Ru∗

ν
=

VavD

2ν

u∗

Vav
=

{
ReD =

VavD

ν
, fD = 8

(
u∗

Vav

)2
}

=
1

2
ReD

(
fD

8

)1/2

and thus we get Prandtl’s friction-factor function for smooth pipes:

1√
fD

≈ 2.0 log10(ReD
√
fD)− 0.8
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Turbulent Pipe Flow

Alternative 2:

If we assume that
u(y)

u∗
= 8.3

(
u∗y

ν

)1/7

applies all over the cross section we get

fD =
0.3164

Re
1/4
D
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Wall Roughness

101 102 103
5

10

15

20

25

u
+

=
1

κ
ln
(
y
+
)
+ B

u
+

=
1

κ
ln
(

y+

ε+

)
+ B + C

∆B =
1

κ
ln
(
ε
+
)
− C

y+

u+Effects of surface roughness on friction:

Negligible for laminar pipe flow

Significant for turbulent flow

breaks up the viscous sublayer

modified log law (changed the value of the integration constant B)

∆B ∝ (1/κ) ln ε+ where ε+ =
εu∗

ν

ε is a representative measure of the surface roughness
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Wall Roughness

εu∗

ν
< 5 hydraulically smooth

no effects of roughness

5 ≤ εu∗

ν
≤ 70 transitional

moderate Reynolds number effects

εu∗

ν
> 70 fully rough

sublayer totally broken up

independent of Reynolds number
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Wall Roughness
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Wall Roughness
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Wall Roughness
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Wall Roughness
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Wall Roughness
�

Ra Roughness Average arithmetic average of the absolute values of the profile heights

Rq RMS Roughness root mean square average of the profile heights

Rp Maximum Profile Peak Height distance between the highest point of the profile and the mean line

Rpm Average Maximum Profile Peak Height average of the successive values of Rp

Rv Maximum Profile Valley Depth distance between the deepest valley of the profile and the mean line

Rt Maximum Height of the Profile vertical distance between the highest and lowest points of the profile

Rz Average Maximum Height of the Profile average of the successive values of Rt
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Wall Roughness

Colebrook (implicit):

1√
fD

= −2.0 log10
(
ε/D

3.7
+

2.51

ReD
√
fD

)

Haaland (explicit):

1√
fD

= −1.8 log10

(
6.9

ReD
+

(
ε/D

3.7

)1.11
)
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The Moody Chart
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The Moody Chart
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The Moody Chart
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The Moody Chart
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Wall Roughness

Material Condition ε [mm] Uncertainty [%]

Steel Sheet metal (new) 0.05 ± 60

Stainless (new) 0.002 ± 50

Commercial (new) 0.046 ± 30

Riveted 3.0 ± 70

Rusted 2.0 ± 50

Iron Cast (new) 0.26 ± 50

Wrought (new) 0.046 ± 20

Galvanized (new) 0.15 ± 40

Asphalted cast 0.12 ± 50

Brass Drawn (new) 0.002 ± 50

Plastic Drawn tubing 0.0015 ± 60

Glass - smooth

Concrete Smoothed 0.04 ± 60

Rough 2.0 ± 50

Rubber Smoothed 0.01 ± 60

Wood Stave 0.5 ± 40
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Non-circular Ducts
�

Use the same formulas of the Moody chart but replace the pipe diameter D with the

hydraulic diameter Dh

Dh =
4A

P

where A is the cross section area and P is the wetter perimeter

∆pf = fD
L

Dh

ρV2

2
, ReDh =

VDh

ν
,

ε

Dh
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Non-circular Ducts
�

a

b

a/b Dh C

0.7 1.17a 65.0

0.5 1.30a 68.0

0.3 1.44a 73.0

0.2 1.50a 78.0

0.1 1.55a 79.0

a

b

b/a Dh C

1.0 1.00a 57.0

1.25 1.11a 57.6

2.0 1.33a 62.0

3.0 1.50a 69.0

4.0 1.60a 73.0

5.0 1.67a 78.0

8.0 1.78a 83.0

10.0 1.82a 85.0

α α

α a

Dh C

0.58a 53.0

do

di

di/do C

di

do
= 0.10 89.2

di

do
= 0.25 94.0

0.5 <
di

do
< 1.0 96.0

Dh = do − di

a

Dh C

2.0a 96.0
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Non-circular Ducts
�

Laminar flow:

fD =
C

ReDh

(for circular pipes: C = 64 and Dh = D)
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Non-circular Ducts
�

a

bFlow between parallel plates:

vertical distance between plates: a

plate width: b

Dh =
4A

P
=

4ab

2a+ 2b

∣∣∣∣
b→∞

=
4ab

2b
= 2a
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Roadmap - Viscous Flow in Ducts

Governing Flow Equations

Basic Concepts

Laminar Pipe Flow

Turbulent Pipe Flow

Wall Roughness and Friction

Tools for Pipe-Flow Analysis�

Flow Regimes

Reynolds-Averaged

Navier-Stokes

(RANS)

Local Losses�

Darcy Friction Factor

Near-Wall Models

Non-circular Ducts�

�

�

�

�

�

�

�

�

�
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Local Losses
�
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Local Losses
�

Swirl generated by:

Inlets or outlets

Sudden area changes

Bends

Valves

Gradual expansions or contractions

∆pf = K
ρV2

2

∆pftot =
∑
i

fDi

Li

Di

ρV2
i

2
+
∑
j

Kj

ρV2
j

2
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Local Losses
�

Generated swirl will be damped out by inner friction

Kinetic energy is converted to internal energy, which results in a pressure loss
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Local Losses
�
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Given data:

Oil with the density ρ = 950.0 kg/m3 and viscosity ν = 2.0× 10−5 m2/s flows
through a L = 100 m long pipe with the diameter D = 0.3 m. The roughness ratio is
ε/D = 2.0× 10−4 and the head loss is hf = 8.0 m.

Assumptions:

steady-state, fully-developed, turbulent, incompressible pipe flow

Task:

Find the average flow velocity (Vav) and the flow rate (Q)
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

We are given a measure of the head loss (hf ) for the pipe

The definition of the Darcy friction factor gives a relation between head loss

(hf ) and the average velocity (Vav)

hf = f
V2
av

2g

L

D

To be able to calculate the average velocity (Vav), we need the friction factor (f )
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook’s formula gives a relation

between friction factor (f ) and average flow velocity (Vav)

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51

ReD
√
f

)

Use an iterative approach to find the friction factor (f ) using Colebrook’s relation

and

ReD =
VavD

ν
, where Vav =

√
2hfgD

fL
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

1 import numpy as np
2

3 def GetVelocity(hf,f,D,L):
4 return np.sqrt((2.*9.81*hf*D)/(f*L))
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Colebrook(f,D,nu,eps,V):
10 # Colebrook friction factor
11 return -2.0*np.log10(((eps/D)/3.7)+(2.51/(GetReynoldsNumber(D,V,nu)*np.

sqrt(f))))-1./np.sqrt(f)
12

13 def GetFlowRate(V,D):
14 return (V*np.pi*D**2)/4.
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 D = 3.0e-1 # pipe diameter [m]
19 L = 1.0e2 # pipe length [m]
20 hf = 8.0 # head loss [m]
21 eps = 2.0e-4*D # surface roughness [m]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 V = GetVelocity(hf,f,D,L)
30 ff = Colebrook(f,D,nu,eps,V)
31 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
32 f = f_old-(ff/dff)

Niklas Andersson - Chalmers 120 / 140



Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

iteration f |f − fold|/f

1 1.876228e-02 2.005234e-01

2 1.992732e-02 5.846445e-02

3 2.009150e-02 8.171902e-03

4 2.010758e-02 7.998039e-04

5 2.010907e-02 7.373985e-05

6 2.010920e-02 6.757868e-06

7 2.010921e-02 6.189787e-07
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Result:

Average flow velocity Vav 4.84 m/s

Flow rate Q 0.342 m3/s
Reynolds number ReD 72585

Friction factor f 0.0201

IFLOW
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0

1

2

3

4

5

6

7

8

9

10

ReD

f
×
1
00

Friction Factor

turbulent (Colebrook)

turbulent (Prandtl)

laminar
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Pipe Flow Example 1: Find Flow Rate (Rough Pipe)

Note! this specific case could actually have been solved without iterating since

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51

ReD
√
f

)

ReD =
VavD

ν
, where Vav =

√
2hfgD

fL
⇒ ReD

√
f =

√
hfgD

3

ν
√
L

and thus

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51ν
√
L√

hfgD
3

)
⇒ f = 0.0201
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Given data:

Oil with the density ρ = 950.0 kg/m3 and viscosity ν = 2.0× 10−5 m2/s flows
through a L = 100 m long pipe at a flow rate of Q = 0.342 m3/s. The surface
roughness is ε = 0.06 mm and the head loss is hf = 8.0 m.

Assumptions:

steady-state, fully-developed, turbulent, incompressible pipe flow

Task:

Find the pipe diameter (D)
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

We are given a measure of the head loss (hf ) for the pipe

The definition of the Darcy friction factor gives a relation between head loss

(hf ) and the pipe diameter (D)

hf = f
V2
av

2g

L

D
=

{
Q = Vav

πD2

4

}
= f

8Q2L

π2gD5

To be able to calculate the pipe diameter (D), we need the friction factor (f )
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in rough pipes, Colebrook’s formula gives a relation

between friction factor (f ) and pipe diameter (D)

1√
f
= −2.0 log

(
ε/D

3.7
+

2.51

ReD
√
f

)

Use an iterative approach to find the friction factor (f ) using Colebrook’s relation

and

ReD =
VavD

ν
, where Vav =

4Q

πD2
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

1 import numpy as np
2

3 def GetDiameter(hf,f,L,Q):
4 return ((8.*f*Q**2*L)/(9.81*np.pi**2*hf))**(1./5.)
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Colebrook(f,D,nu,eps,V):
10 # Colebrook friction factor
11 return -2.0*np.log10(((eps/D)/3.7)+(2.51/(GetReynoldsNumber(D,V,nu)*np.

sqrt(f))))-1./np.sqrt(f)
12

13 def GetVelocity(Q,D):
14 return 4.*Q/(np.pi*D**2)
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

17 nu = 2.0e-5 # fluid viscosity [m^2/s]
18 L = 1.0e2 # pipe length [m]
19 hf = 8.0 # head loss [m]
20 eps = 6.0e-5 # surface roughness [m]
21 Q = 3.42e-1 # flow rate [m^3/s]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 D = GetDiameter(hf,f,L,Q)
30 V = GetVelocity(Q,D)
31 ff = Colebrook(f,D,nu,eps,V)
32 dff = (Colebrook(f+df,D,nu,eps,V)-Colebrook(f-df,D,nu,eps,V))/(2.*df)
33 f = f_old-(ff/dff)
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

iteration f |f − fold|/f

1 1.900357e-02 2.106745e-01

2 2.003493e-02 5.147839e-02

3 2.010728e-02 3.597900e-03

4 2.010953e-02 1.122501e-04

5 2.010960e-02 3.210179e-06

6 2.010960e-02 9.154651e-08
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Pipe Flow Example 2: Find Pipe Diameter (Rough Pipe)

Result:

Pipe diameter D 0.299 m

Average flow velocity Vav 4.84 m/s
Reynolds number ReD 72579

Friction factor f 0.0201
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Given data:

A smooth plastic pipe is to be designed to carry Q = 0.25 m3/s of water at 20◦C
through a L = 300 m horizontal pipe with the exit at atmospheric pressure. The

pressure drop is approximated to be ∆p = 1.7 MPa.

Water @ 20◦C: ρ = 998 kg/m3 and µ = 0.001 kg/(ms) (ν = 1.002× 10−6 m2/s)

Assumptions:

steady-state, fully-developed, turbulent, incompressible pipe flow

Task:

Find a suitable pipe diameter (D)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The energy equation on integral form gives us a relation between the pressure

drop ∆p and the pipe head loss hf(
p

ρg
+

αV2

2g
+ z

)
1

=

(
p

ρg
+

αV2

2g
+ z

)
2

+ ht − hp + hf

1. Steady-state, incompressible flow (Q1 = Q2 = Q) in a constant-diameter pipe

(D1 = D2 = D) ⇒ V1 = V2 = Vav

2. Fully-developed turbulent pipe flow with constant average velocity ⇒
α1 = α2 = α

3. No information about elevation change is given so we will assume that

z1 = z2 = z

4. There are no turbines or pumps in the pipe ⇒ ht = hp = 0.

p1 − p2

ρg
=

∆p

ρg
= hf
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Again, we will use the definition of the Darcy friction factor (f ) to get a relation

between the losses and the pipe diameter

hf = f
V2

2g

L

D
⇒
{
hf =

∆p

ρg
,Q = Vav

πD2

4

}
⇒ f =

π2∆p

8Q2Lρ
D5

To be able to calculate the pipe diameter (D), we need the friction factor (f )
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

The flow in the pipe is assumed to be turbulent and fully developed

For turbulent flows in smooth pipes, Prandtl’s formula gives a relation between

friction factor (f ) and pipe diameter (D)

1√
f
= 2.0 log

(
ReD

√
f
)
− 0.8

Use an iterative approach to find the friction factor (f ) using Prandtl’s relation and

ReD =
VavD

ν
, where Vav =

4Q

πD2
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

1 import numpy as np
2

3 def GetDiameter(Dp,rho,f,L,Q):
4 return ((8.*f*Q**2*L*rho)/(np.pi**2*Dp))**(1./5.)
5

6 def GetReynoldsNumber(D,V,nu):
7 return D*V/nu
8

9 def Prandtl(f,D,nu,V):
10 # Prandtl friction factor
11 return 2.0*np.log10(GetReynoldsNumber(D,V,nu)*np.sqrt(f))-0.8-(1./np.

sqrt(f));
12

13 def GetVelocity(Q,D):
14 return 4.*Q/(np.pi*D**2)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

16 rho = 998.0 # fluid density [kg/m^3]
17 mu = 1.0e-3 # fluid viscosity [kg/ms]
18 nu = mu/rho # fluid viscosity [m^2/s]
19 L = 3.0e2 # pipe length [m]
20 Dp = 1.7e6 # pressure drop [Pa]
21 Q = 2.5e-1 # flow rate [m^3/s]
22 f = 1.5e-2 # friction factor (inital guess)
23

24 # Newton-Raphson solver
25 f_old = 1.0e3
26 df = 1.0e-6
27 while np.abs(f-f_old)>1.0e-6*f:
28 f_old = f
29 D = GetDiameter(Dp,rho,f,L,Q)
30 V = GetVelocity(Q,D)
31 ff = Prandtl(f,D,nu,V)
32 dff = (Prandtl(f+df,D,nu,V)-Prandtl(f-df,D,nu,V))/(2.*df)
33 f = f_old-(ff/dff)
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

iteration f |f − fold|/f

1 9.140310e-03 6.410822e-01

2 1.020433e-02 1.042711e-01

3 1.033763e-02 1.289507e-02

4 1.034327e-02 5.449435e-04

5 1.034345e-02 1.791398e-05

6 1.034346e-02 5.818538e-07
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Pipe Flow Example 3: Find Pipe Diameter (Smooth Pipe)

Result:

Pipe diameter D 0.156 m

Average flow velocity Vav 13.1 m/s
Reynolds number ReD 2036821

Friction factor f 0.01034
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On-Demand Hyperloop-Style Water Delivery
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