Why supersonic flow?

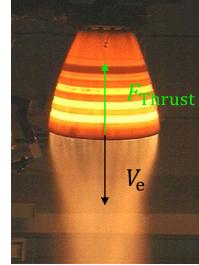
e

Rocket Thrust Summary Known: γ = Specific Heat Ratio < p_† = Total Pressure T_t = Total Temperature R = Gas Constant p_o = Free Stream Pressure A = Area e ₽_{t A}^ ٧ Mass Flow Rate: $\mathbf{m} = \frac{\mathbf{A}^* \mathbf{p}_t}{\sqrt{T_t}} \sqrt{\frac{\gamma}{R}} \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$ м_е ^Аер_е $\frac{A_{e}}{A^{*}} = \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \frac{\left(1+\frac{\gamma-1}{2}M_{e}^{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}}}{M}$ Exit Mach: Exit Temperature : $\frac{T_e}{T_+} = (1 + \frac{\gamma - 1}{2} M_e^2)^{-1}$ Exit Pressure: $\frac{\mathbf{p}_e}{\mathbf{p}_{\star}} = (1 + \frac{\gamma - 1}{2} M_e^2)^{\frac{-\gamma}{\gamma - 1}}$

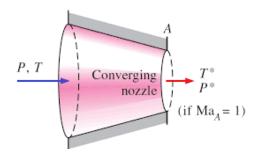
Exit Velocity:

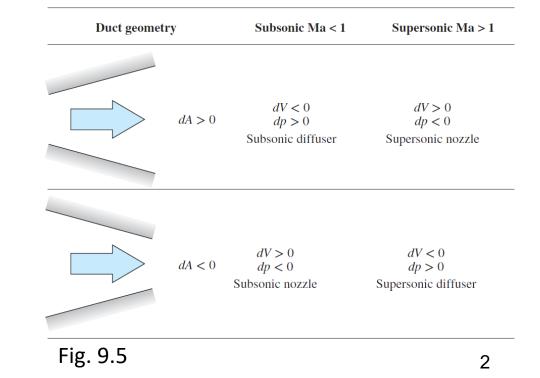
 $V_{e} = M_{e} \sqrt{\gamma RT_{e}}$

Thrust: $F = \dot{m} V_e + (p_e - p_o) A_e$

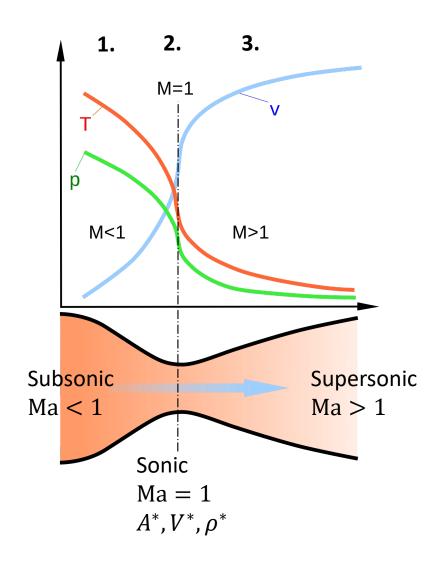


- Sonic flow (M = 1)
 - Sonic values: A^* , ρ^* , V^* ...
 - If M = 1 achieved \rightarrow no higher mass flow is possible!
 - $\dot{m}_{\rm max} = \rho^* A^* V^*$ Eq. (9.46a)
 - The flow is choked
- Sub- and super-sonic flow
 - Pressure-waves moves with the speed of sound
 - Flow behaves differently in nozzles if sub- or supersonic





- Supersonic flow (Ma > 1)
 - Only possible from a reservoir if:
 - 1. Subsonic flow is accelerated through convergent nozzle
 - 2. Sonic flow is obtained at the smallest cross-section (throat)
 > A* = A_t → M = 1
 - 3. Supersonic flow through expanding the flow via divergent nozzle

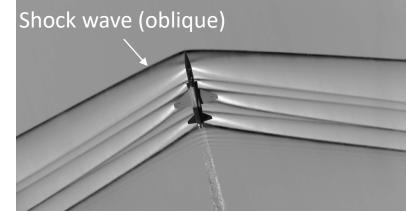


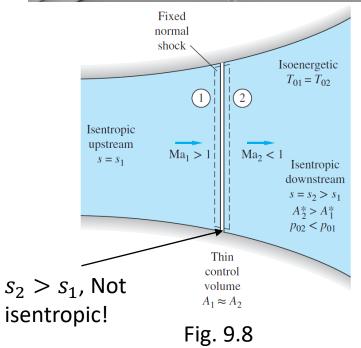
Normal shock

- Abrupt change in supersonic flow
- If $\gamma > 1$ (e.g. air) the flow goes from super- to subsonic
- The chock results in losses
 - Isentropic assumption not valid through chock
- Need to use **normal shock relations** e.g. $\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma+1} [Ma_1^2 - 1] \quad \text{Eq. (9.55)}$

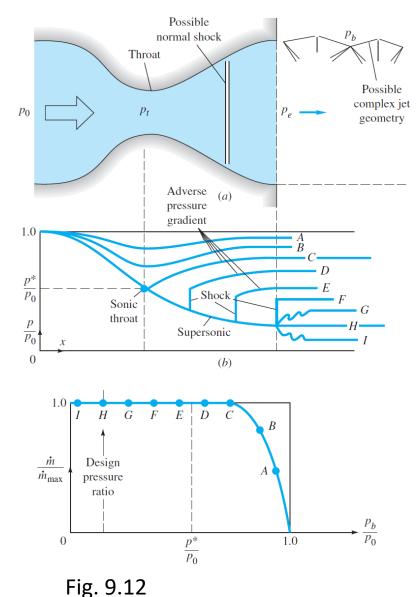
$$Ma_2^2 = \frac{(\gamma - 1)Ma_1^2 + 2}{2\gamma Ma_1^2 - (\gamma - 1)}$$
 Eq. (9.57)

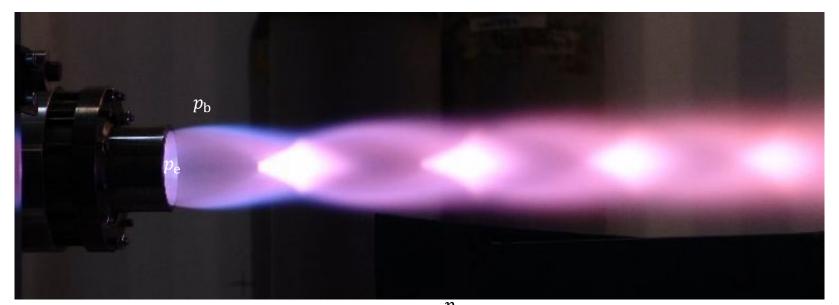
- Can also use relations from Eq. (9.58)
- Table B.1 isentropic relations
- Table B.2 normal shock relations

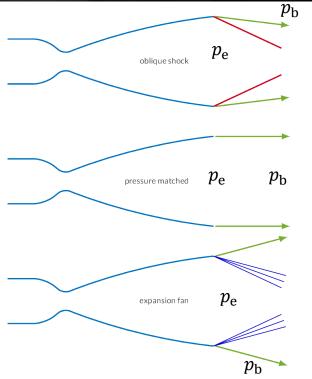




- Converged-Divergent nozzle
 - The flow behaviour depends on $p_0 p_{\rm e}$
 - $> p_0$ is the reservoir pressure
 - $ightarrow p_{\rm e}$ is the exit/jet pressure
 - $> p_{\rm b}$ is the back pressure ($p_{\rm b} = p_{\rm e}$ at A C and H)
- Find the right Eqns. in Ch. 9 depending on what type of flow we have
 - Perfect gas law, $p = \rho RT$ Eq. (1.10)
 - Continuity equation $\dot{m} = \text{const.}$
 - Isentropic relations, e.g. Eqs. (9.26 9.28) or B.1
 - Area Ma relations, e.g. Eq. (9.44) and (9.47) or B.1
 - Normal shock relations (see previous slide) or B.2







Over expanded nozzle: $p_{\rm e} < p_{\rm b}$

Pressure matched nozzle: $p_{\rm e} = p_{\rm b}$

Underexpanded nozzle: $p_{\rm e} > p_{\rm b}$