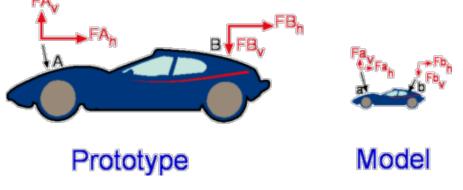
Exercise 8.

Fluid problems depended on several variables
f(U, μ, ρ, L ...)

– Use Buckingham Pi-theorem to form dimensionless numbers

- **Dimensionless numbers** reduce the complexity, e.g. $f(\text{Re}), \text{Re} = \frac{\rho UL}{\mu} = \frac{\text{Inertia}}{\text{Viscous}}$
- If the problem can be classified with dimensionless numbers, than the flow field should be similar at the same dimensionless number.
- Prototype = Large/full scale
- Model = Small scale (e.g. model train, plane...)



Exercise 8.

- Relation between measured force and characteristic force from flow. $C = \frac{F}{\frac{1}{2}\rho U^2 A}$
- Drag coefficient is the most common:
 - $C_{\rm D} = \frac{F_{\rm D}}{\frac{1}{2}\rho U^2 \cdot A} = \frac{\text{True drag force}}{\text{Potential retarding force}}$

 - $-F_{\rm D}$, is the force by the flow direction
 - $-\frac{1}{2}\rho U^2 \cdot A$, is the kinematic pressure times the projected area in the flow direction
 - $-C_{\rm D}$ some times function of only Re $\rightarrow C_{\rm D}$ (Re)
- Lift force \rightarrow Change the drag force to the lift force (normal to the flow)

Model test similarity

Geometric similarity:

- Dimensions scaled with one parameter
- $\alpha L_{\text{Prototype}} = L_{\text{Model}}$

Kinematic similarity:

- Require geometric similarity
- Flow field scaled with one coefficient, e.g. Re-number
- Flow field the same between prototype and model
- $\operatorname{Re}_{\operatorname{Prototype}} = \operatorname{Re}_{\operatorname{Model}}$

• Dynamic similarity:

- Require both geometric and kinematic similarity
- All force vectors are scaled with one coefficient
- If: incompressible flow, no free-surface \rightarrow Re_{Prototype} = Re_{Model}

