

Steady and unsteady flow

Steady-state

Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

Unsteady

Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

- Reynolds Transport Theorem (RTT)
 - Integral relations for a control volume
 - One of the most fundamental theorems in fluid mechanics
 - From the theorem we get fundamental laws:
 - ➤ Mass conservation (continuity)
 - ➤ Linear momentum conservation (impulse)
 - ➤ Angular momentum conservation
 - Energy conservation
 - These expressions are the foundation of the Navier-Stokes equations, chapter 4.
- RTT allows us to analyse a system over a control volume

- System: Collection of materia with a fixed identity
 - Always the same atoms or fluid particles
 - A specific, and identifiable quantity of mass
- Control volume (CV): A fixed volume in space
 - Fluid flow through the CV
 - Geometrically constraint
 - Independent of mass

RTT:

$$\frac{\mathrm{d}}{\mathrm{d}t} \big(B_{\mathrm{Syst}} \big) = \frac{\mathrm{d}}{\mathrm{d}t} \big(\int_{\mathrm{CV}} \beta \rho \; \mathrm{d}V \big) + \int_{\mathrm{CS}} \beta \rho (\tilde{v}_r \circ \tilde{n}) \mathrm{d}A \qquad \text{Eq. (3.16)}$$
 Change of B Change of B B "flowing" in in the whole inside the CV and out of the CV system

- By letting B equal mass, linear momentum, angular momentum, or energy, we get the four laws
- **B** is an **extensive** property and has units e.g. [kg], [kg m/s]...
- β is an intensive property, i.e. amount of B per unit mass, with units of [kg/kg], [kg m/s²/kg]...

$$\beta = \frac{\mathrm{d}B}{\mathrm{d}m}$$

- For RTT to be true, the system and the CV must equal at the time t, syst=CV, $B_{\rm syst}(t) = B_{\rm CV}(t)$
 - At t + dt: $B_{\text{syst}}(t + dt) = B_{\text{CV}}(t + dt)$ (inflow of B)_{CS} + (outflow of B)_{CS}
 - > RTT can predict the change inside the CV at all times after t

Setting B = mass → mass conservation and assume steady-state (3.20)

$$\frac{\mathrm{d}}{\mathrm{d}t}(m) = 0 = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\mathrm{CV}} \rho \, \mathrm{d}V \right) + \int_{\mathrm{CS}} \rho(\tilde{v}_r \circ \tilde{n}) \mathrm{d}A \Rightarrow [\text{steady}] \Rightarrow \int_{\mathrm{CS}} \rho(\tilde{v} \circ \tilde{n}) \mathrm{d}A = 0$$

$$\tilde{v}_{\rm in} = \begin{bmatrix} u_{\rm in} \\ v_{\rm in} \end{bmatrix}, \quad \tilde{n}_{\rm in} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\tilde{v}_{\text{out}} = \begin{bmatrix} u_{\text{out}} \\ v_{\text{out}} \end{bmatrix}, \quad \tilde{n}_{\text{out}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• 1D mass conservation yield:

$$\sum_{i} (\rho_i A_i V_i)_{\text{in}} = \sum_{j} (\rho_j A_j V_j)_{\text{out}}$$
 (3.24)

$$\dot{m}_{\rm in} = \dot{m}_{\rm out} \tag{3.27}$$