
MTF053 - Fluid Mechanics
2024-01-05 08.30 – 13.30

Approved aids:

– The formula sheet handed out with the exam (attached as an appendix)

– Beta - Mathematics Handbook for Science and Engineering

– Physics Handbook : for Science and Engineering

– Any calculator with cleared memory

Exam Outline:

– In total 6 problems each worth 10p

Grading:

number of points on exam (including bonus points) 24-35 36-47 48-60
grade 3 4 5



Problem 1 - Going Down a Slippery Slope (10 p.)

A mass (m = 5.0 kg) in the form of a rectangular block with the length L = 3.0 m, width
B = 1.0 m and height H = 0.5 m is sliding down an inclined plane (α = 15.0◦). There is an
oil film with the thickness h = 2.0 mm between the rectangular block and the inclined plane.
The oil film is built up from SAEW30 oil at 20.0◦C. The rectangular block can be assumed to
move at constant velocity down the plane and the flow in the oil film is laminar.
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(a) Find an expression describing the velocity distribution in the oil film (5.0 p.)
hint: Setup your coordinate system such that the x-direction is in the flow direction and
the y-direction is aligned with the normal direction of the inclined plane. Don’t forget that
gravity affects the flow.

(b) Using the data provided above, calculate the velocity of the rectangular block. (2.0 p.)

(c) If gravity is neglected in the derivation of the velocity distribution in the oil film, a simpler
expression is obtained. Will the difference in the calculated velocity of the rectangular
block be significant if doing so? (2.0 p.)

Theory questions related to the topic:

(d) Under what circumstances can the general formulation of the momentum equation be
reduced to the Navier-Stokes equation? (1.0 p.)



Problem 2 - Venturimeter (10 p.)

A Venturimeter (a pipe with a contraction and a manometer) setup according to the illustration
below is to be used to measure the flow velocity in a pipe. The fluid flowing through the pipe
is air at 20.0◦C. The diameter of the pipe is D = 20.0 cm and in the contraction the tube
diameter is reduced to d = 10.0 cm.
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(a) Find an expression for calculation of the flow velocity in the pipe as a function of the
manometer reading h, densities of the involved fluids, and pipe diameters. (5.0 p.)

(b) Due to space constraints, the manometer reading h is limited to 10.0 mm. One would
like to be able to measure pipe flow velocities up to 12.0 m/s. Find a suitable manometer
fluid that fulfills the requirements. (3.0 p.)

Theory questions related to the topic:

(c) Show how the volume flow Q and mass flow ṁ over a control volume surface can be
calculated in a general way (1.0 p.)

(d) How can we simplify the continuity equation on integral form under the following circum-
stances (assuming that the control volume is fixed)? (1.0 p.)
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i. inlets and outlets can be assumed to be one-dimensional

ii. steady-state flow

iii. incompressible unsteady flow



Problem 3 - Pipe Design (10 p.)

As part of a construction water @ 20.0◦C is to be transported through a 20.0 m horizontal
pipe at a flow rate of 1400.0 L/min. In a first design attempt, a cast iron pipe with an inner
diameter of 15.0 cm is used for this part of the construction.

(a) Calculate the pressure drop through the pipe due to friction (4.0 p.)

(b) For the next design iteration, the aim is to reduce the pressure loss of the 20.0 m pipe
section by 50%. Would it be possible to achieve the 50%-reduction by increasing the
pipe diameter and reduce the surface roughness if the inner diameter of the pipe due to
constrains set by surrounding devices is limited to 17.0 cm and if the budget allow for the
addition of a polishing operation that reduces wall roughness of the inner surface of the
pipe to 80% of the nominal surface roughness given by tabulated data? (4.0 p.)

Theory questions related to the topic:

(c) What does critical Reynolds number mean for a pipe flow? (0.5 p.)

(d) What do we mean when we say that a pipe flow is fully developed? (0.5 p.)

(e) Give three examples of sources of local losses in a pipe system (1.0 p.)



Problem 4 - Water Tank (10 p.)

A cylindrical tank according to the illustration below is filled with water. The tank diameter is
D = 1.0 m and the weight of the tank when empty is W = 150.0 N . Water is tapped out from
the tank through an outlet with the diameter d = 9.0 cm located at a position ho = 30.0 cm
above the bottom surface of the tank. The tank is filled continuously from above such that the
water level remains constant at h above the outlet. The friction coefficient between the bottom
of the tank and the surface on which the tank stands is µfriction = 0.01

Note!! Here µ is not a viscosity
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(a) Calculate the water level h for which the tank will start to move (slide along the surface
on which it stands) (5.0 p.)

For the water level calculated above

(b) Calculate the velocity of the water leaving the tank through the outlet (1.0 p.)

(c) Calculate the flow rate at which water has to be added to the tank from above in order
to keep the water level constant (1.0 p.)

Theory questions related to the topic:

(d) Show that the normal of a constant-pressure surface must be aligned with the gravity
vector in a fluid at rest. (1.0 p.)

(e) Derive the Bernoulli equation for steady-state, incompressible flow along a streamline
(2.0 p.)
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Problem 5 - Boundary-Layer Flow (10 p.)

As a fluid flows past a flat plate, a boundary layer is developed where the flow velocity is
gradually decelerated from the freestream velocity (U) a bit away from the flat plate to zero
at the surface (if the flat plate is stationary). A very simple approximation of the velocity
distribution u(y) from the surface of the flat plate (y = 0) to the outer part of the boundary
layer (y = δ) is given by the linear relation below.

u(y) = U
y

δ
for y in the range 0 ≤ y ≤ δ

u = U for y > δ

Using the provided velocity profile:

(a) Derive a relation describing the non-dimensional boundary-layer thickness δ/x as a func-
tion of local Reynolds number Rex (6.0 p.)
hint: the wall shear stress can be expressed in two ways

(b) Derive an expression for the overall drag coefficient CD for a flat surface with the length
L (2.0 p.)

Theory questions related to the topic:

(c) For laminar flow over a flat plate, the velocity profile is self-similar - what does that mean?
(0.5 p.)

(d) Show how the velocity profile as well as its first and second derivative and the pressure
gradient change in a boundary layer when the flow separates (1.0 p.)

(e) Why do dimpled golf balls have lower pressure drag than golf balls with smooth surfaces?
(0.5 p.)



Problem 6 - Supersonic Santa (10 p.)

In order to be able to deliver packages to all children, Santa and his reindeers have to move at
supersonic speed. Assume that a speed corresponding to M = 4.0 would be enough (although it
is probably not even close) and that we can treat the gas as being calorically perfect (although,
at the specified Mach number, we would be in the hypersonic flow regime).

(a) Calculate the temperature and pressure at the nose of the leading reindeer (4.0 p.)

(b) To make the working conditions for the reindeers somewhat better, Santa’s helpers builds
a 30.0◦ cone to be placed in front of the first reindeer that leads to the formation of an
oblique shock. Calculate the pressure and temperature downstream of this shock (assume
that 2D relations can be used) (3.0 p.)

Theory questions related to the topic:

(c) Which of the properties ho, To, ao, po, and ρo are constants in a flow if the flow is adiabatic
and isentropic, respectively? (1.0 p.)

(d) Show schematically how the oblique shock formed ahead of a wedge traveling at supersonic
speed if (1.0 p.)

i. θ < θmax

ii. θ > θmax

(e) Can the relations for total pressure and total temperature derived for a normal shock be
used for an oblique shock? Explain why/why not. (1.0 p.)




























