MTF053 - Fluid Mechanics 2022-01-05 08.30 – 13.30

Approved aids:

- The formula sheet handed out with the exam (attached as an appendix)
- Beta Mathematics Handbook for Science and Engineering
- Physics Handbook : for Science and Engineering
- Graph drawing calculator with cleared memory

Exam Outline:

– In total 6 problems each worth 10p

Grading:

PROBLEM 1 - FLOW IN DUCTS (10 P.)

- (a) Gasoline 20° C is pumped through a 180.0 mm diameter pipe at a flow rate of 0.2 m^3/s . The pipe is made of cast iron and is $16.0 \; km$ long. Estimate the power delivered to the pump if the pump efficiency is $\eta = 0.75$ (note: the pump power is ρqQ times the pump head). (8p.)
- (b) Why does the Moody chart not give reliable values in the Reynolds number range 2000 < $Re_D < 4000$? (0.5p.)
- (c) How is the hydraulic diameter defined and how can it be used for calculation of the friction factor f for laminar and turbulent flow in non-circular ducts? (0.5p)
- (d) Explain the closure problem related to the Reynolds-averaged flow equations. (1p.)

PROBLEM 2 - SKIN FRICTION DRAG (10 P.)

(a) The figure below shows a schematic representation of a sailboat. Assume that the boat moves at 3 knots (1.54 m/s) in sea water with a temperature of 4 degrees Celsius, what is the skin friction drag from the keel?

In your calculations, you can assume that the keel can be approximated to be a flat plate with dimensions as indicated in the figure and that transition takes place at $Re_x = 10^6$.

Please note that the keel dimensions are given in inches in the figure -1.0 in is 25.4mm. (7p.)

- (b) Make a schematic sketch of the flow over a cylinder at $Re_D = 10^5$. Indicate the stagnation point, separation points and the wake region. (1p.)
- (c) Name two alternative to δ as measures the boundary layer thickness. How can these measures be interpreted physically? (1p.)
- (d) In what way is the transition location effected by (assume other properties to be constant) (1p.)
	- (a) increased freestream velocity U for a given $Re_{x,tr}$
	- (b) surface roughness ε
	- (c) freestream turbulence
	- (d) positive pressure gradient

PROBLEM 3 - FLOW RATE AND MASSFLOW (10 P.)

(a) A flow nozzle is a device inserted into a pipe as shown in the illustration below. As shown in the figure, a mercury manometer (manometer fluid density: ρ_{Hg}) is used to measure the pressure drop over the flow nozzle. A If A_1 and A_2 are the inlet and exit areas of the flow nozzle and the density of the fluid flowing through the flow nozzle is ρ , show that for incompressible flow, the flow rate, Q, can be obtained as

$$
Q = C_d \left[\frac{A_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2\rho_{Hg} g \Delta h}{\rho}} \right]
$$

where C_d is a *discharge coefficient* that accounts for viscous losses or losses related to secondary flow and is defined as

$$
C_d = \frac{Q_{real}}{Q_{ideal}}
$$

The value of the discharge coefficient is usually obtained experimentally

(8p.)

- (b) Show how the volume flow Q and massflow \dot{m} over a control volume surface can be calculated in a general way. (1p.)
- (c) Give examples of when it is appropriate to use fixed control volume, moving control volume, and deformable control volume, respectively. (1p.)

PROBLEM 4 - THRUST REVERSER (10 P.)

- (a) A so-called thrust reverser is used for reducing the forward speed of an aircraft at landing. In the specific case illustrated below, the aft-going flow is turned by the thrust reverser, when deployed, such that the flow leaves the engine at an angle of 20° from the vertical direction (both upwards and downwards), i.e. a weakly forward oriented flow. The massflow through the engine is 70 $\lfloor kq/s \rfloor$. Air enters the engine at 100 $\lfloor m/s \rfloor$ and leaves the engine with a velocity of $450[m/s]$. It can be assumed that the flow velocity at the exit is unchanged when the thrust reverser is deployed. Calculate the engine mount force under normal operating conditions (no thrust reverser) and when the thrust reverser is deployed.
	- (7p.)
- (b) How can we simplify the continuity equation on integral form under the following circumstances (assuming that the control volume is fixed)? (1p.)

$$
\int_{cv} \frac{\partial \rho}{\partial t} dV + \int_{cs} \rho (\mathbf{V} \cdot \mathbf{n}) dA = 0
$$

- (a) inlets and outlets can be assumed to be one-dimensional
- (b) steady-state flow
- (c) incompressible flow
- (c) Explain the physical meaning of each of the terms I, II , and III in the momentum equation on integral form. (1p.)

$$
\underbrace{\sum_{I} \mathbf{F}}_{I} = \underbrace{\frac{d}{dt} \left(\int_{cv} \mathbf{V} \rho dV \right)}_{II} + \underbrace{\int_{cs} \mathbf{V} \rho (\mathbf{V}_r \cdot \mathbf{n}) dA}_{III}
$$

(d) The Bernoulli equation is a simplified form of the energy equation.

$$
\frac{p_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{p_2}{\rho} + \frac{1}{2}V_2^2 + gz_2 = const
$$

In what ways are the Bernoulli equation above more limited than the energy equation on the form given below?

$$
\left(\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1\right) = \left(\frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2\right) + \frac{\hat{u}_2 - \hat{u}_1 - q}{g}
$$

PROBLEM 5 - VISCOSITY (10 P.)

- (a) A piston of weight 9.5 kg slides in a lubricated vertical pipe (see figure below). The clearance between the piston and the pipe is 0.0254 mm. If the piston decelerates at 0.64 $m/s²$ when the speed is 6.4 m/s , what is the viscosity of the fluid used for lubrication? (7p.)
- (b) What does it mean that a fluid is Newtonian? (1p.)
- (c) How does the fluid viscosity vary with temperature in liquids and gases, respectively. (1p.)
- (d) How does the turbulence viscosity μ_t compare to the fluid viscosity μ in the viscous sublayer and in the fully turbulent region, respectively? (1p.)

PROBLEM 6 - WEDGE FLOW (10 P.)

A 20° wedge with a 10° shoulder (depicted in the figure below) is situated in a flow with a free stream Mach number of $M = 2.0$.

- (a) draw a schematic sketch of the important flow features in the flow over the wedge. (2p.)
- (b) calculate the Mach numbers in regions 2 and 3 (7p.)
- (c) assume that the flow would pass a simple $10[°]$ wedge (without the shoulder), the resulting flow direction would be the same. Would the total pressure in the directed flow be greater or lower than in the case with the shoulder? (justify your answer) (1p.)

Need to estimate the forsta factor (f)

Cost real
$$
\Rightarrow
$$
 $\epsilon = 0.26 \Rightarrow \epsilon / D = 0.0014$

\nLet $\theta = 0.26 \Rightarrow \theta = 0.26 \Rightarrow \theta = 0.0014$

\nLet $\theta = 0.5 \times 10^5$ is given by the formula $\theta = 0.5 \times 10^5$ (a) $\theta = 0.44 = \frac{40.0}{\pi} \times 10^{10}$ (b) $\theta = 0.44 = \frac{40.0}{\pi} \times 10^{10}$ (c) $\theta = 0.44 = \frac{40.0}{\pi} \times 10^{10}$ (d) $\theta = 0.5 \times 10^5$ (e) $\theta = 0.0019$

\nThen, $\theta = 0.0019$

\nwhere $\theta = 0.0019$ is given by $\theta = 0.0019$ is given by $\theta = 0.0019$.

\nSo $\theta = 0.0019$ is given by $\theta = 0.0019$ is given by $\theta = 0.0019$.

\nSo $\theta = 0.0019$ is given by $\theta = 0.0019$ is given by $\theta = 0.0019$.

\nSo $\theta = 0.0019$ is given by $\theta = 0.0019$ is given by $\theta = 0.0019$.

b)

For THE SPECIFIED RANCIE OF REGINELOS Nungers (2000 < Rep < 4000) THERE WILL BE A TRANSITION FROM UTTINAR Flow TO TWEBLUENT FLOW. THE TRANSITION PELLESS DEPENDS ON EXTERNAL CONDITIONS. THERE IS NO RELIGISE THEORY GOVERNME THE TRANGITION AND THUS THE VEHLES GIVEN TO THE YOUDY SHARE FUR THESE REYNEWS NUMBERS ARE NOT RELIGERE AND THEREFURE THIS BANKE OF REYNLION NUMBERS SHOULD BE AVOIDED.

C) Hyperance DIAMETER:

$$
D_{h} = \frac{qA}{\rho}
$$

WHERE A is THE CREUS-SECTION AREA AND P IS THE WETTED PERITHETER.

Reynmer NAMBER: Rep. = VDM Feronco FACTER : $\frac{1}{3}$ = $\frac{C}{R_{\text{max}}}$

WHERE C is COTANED FROM TABLE.

- d) WHEN APPLYING REYNVLAS-AVERAGING TO THE GUVERNING EQUATIONS, NEW UNKNOWN ARE ADDED TO THE EQUATION (THE REGINOLOS STREATES) WITH THE SAME NUMBER OF ECUATION AND GRAF UNDENOWING, IT IS NOT POIJIBLE TO SULVE THE EQUATION
	- THIS IS KNOWN AS THE COUNTER PREBLETZ

$$
D(L) \approx \frac{1.528}{\sqrt{\kappa_{\epsilon}}} \frac{1}{2} sV^2 bL
$$

L is NUT CONSTANT =>

$$
APPRLH T = ImFarAL
$$
\n
\n
$$
b: 38^{\circ} \left\{\begin{array}{c}\n12:15^{\prime\prime} + 19^{\prime\prime} \\
12:15^{\prime\prime} \\
11:15^{\prime\prime}\n\end{array}\right\}
$$

D (4) =
$$
\frac{1.328}{\sqrt{V_{L(2)}}} \frac{1}{2}8V^2 d_2 L(2) =
$$

\n= $\frac{1.5283V^2}{2NV_0}$ $\sqrt{L(2)} d_2$
\nD = $\frac{1.3283V^2}{2V_0V_0}$ $(0.381 + 0.67)^{1/2}$

VARIABEC-SUD STITUTION:

$$
0.381 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

\n
$$
0.881 + 0.5 = 9 \Rightarrow dq = 0.5d
$$

APPROACH II - AVERTER LEONGTH:

$$
L_{Av} = \frac{1}{2} (L_1 + L_2)
$$

\n
$$
L_{ev} = \frac{sV L_{Av}}{\mu} = 6.02 \cdot t_0S
$$

\n
$$
D = \frac{1.328}{\sqrt{Re_{Lav}}} = \frac{1}{2} sV^2 b L_{Av} = 2.50 N
$$

b) How corec cylinder (a)
$$
kep = 10^{\circ}
$$

\n LEp
\n SEp
\nWate:
\nWate:
\nWate:
\nM
\nS
\nB
\n*REp*
\n*SPa*
\n*REp*
\n*W*
\

- (S*) THE DISPLACEMENT THOCKNED TO THE DOTATIE THAT GIVES THE MADELION THAT CORRESPOND To THE DEFICITE OF MADELLY DUE TO THE DRESENCE OF THE DOUNDARY Urger.
- (G) THE MOMENTUM THICKNED OF THE DISTANCE THAT CUVES THE TWAENTUR THAT CORDESPONDS TO THE DEFICITE CF TUNTENTIM DUE TO THE PRESENCE OF THE BULMOARS LAYER.
	- TRANSITIN CECATION CHANKER: b)
		- a) EARLIER **DJTARIER** C) EARLIER
			- 1110022

For THE SPLECIFIED FUN NIATLE, SHEW THAT $Q = Cp \left[\frac{A_L}{\sqrt{1-(A_z/\lambda)^2}} \sqrt{\frac{2g_{\mu_2}B\Delta W}{s}} \right]$ WHERE $C_0 = \frac{C_0 e_{\epsilon m}}{C_0 \sqrt{C_0} m}$

SET UP THE BERNUMU, EQN (3.54) OVER THE FLOW NUETLE.

$$
\frac{\rho_{i}}{83} + \frac{u_{i}^{2}}{20} + \frac{y_{i}}{2} = \frac{\rho_{i}}{85} + \frac{u_{2}^{2}}{20} + \frac{y_{2}}{20}
$$
\nwhere: $u_{i} = \frac{Q}{A_{i}}$ and $u_{2} = \frac{Q}{A_{i}}$
\n
$$
\Rightarrow \frac{\rho_{i}}{89} + \frac{Q^{2}}{29A_{i}^{2}} = \frac{\rho_{2}}{39} + \frac{Q^{2}}{29A_{i}^{2}}
$$
\n
$$
\frac{Q^{2}}{2\lambda} \left(\frac{1}{A_{i}} - \frac{1}{A_{i}}\right) = \frac{1}{3\lambda} (P_{2} - P_{i})
$$
\n
$$
Q^{2} \left(\frac{A_{i}^{2} - A_{i}^{2}}{A_{i}^{2}A_{i}^{2}}\right) = \frac{2}{3} (P_{2} - P_{i})
$$
\n
$$
Q^{2} \left(\frac{(A_{i} / A_{i})^{2} - 1}{A_{i}^{2}}\right) = \frac{2}{3} (P_{2} - P_{i})
$$
\n
$$
Q^{2} \left(\frac{(A_{i} / A_{i})^{2} - 1}{A_{i}^{2}}\right) = \frac{2}{3} (P_{2} - P_{i})
$$

$$
Q^{2} = \frac{A_{1}^{2}}{(A_{1}/A_{1})^{2}-1} \frac{2}{3} (P_{2} - P_{1})
$$

$$
Q^{2} = \frac{A_{2}^{2}}{1-(A_{1}/A_{2})^{2}} \frac{2}{3} (P_{1} - P_{2})
$$

$$
Q = \frac{A_{2}}{\sqrt{1-(A_{1}/A_{2})^{2}}} \sqrt{\frac{2}{3} (P_{1} - P_{2})}
$$

THE MANUMETER READING GIVES:

$$
\rho_{1} - \rho_{1} \eta \Delta h = P_{2}
$$
\n
$$
\Rightarrow \rho_{1} - \rho_{2} = \rho_{1} \eta \Delta h
$$
\n
$$
(e_{3} \mu_{1} \ (2.14))
$$

 \Rightarrow

$$
\mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{A} \
$$

This is the left volume from a point of the x.
\n
$$
Q = C_0 \left[\frac{A_2}{\sqrt{1 - (A_1/a_2)^2}} \sqrt{\frac{2 S_{4/2} S \Delta h}{S}} \right]
$$

$$
V_{\text{out}} = \int_{c_3}^{c_3} (v \cdot n) dA
$$

$$
V_{\text{out}} = \int_{c_3}^{c_3} (v \cdot n) dA
$$

FIXED CONTROL VOLUME. ANALYZING THE FLOW THRUKLH A STATIONARY VOLUME (EXAMPLE: NOZZLE FLCW ANACYLIS) -cu سمع

 c_j

MOUING CONTROL VOLUME. ANALYZING THE FIGU ARCUIND A WUUNG OBJECT (EXAMPLE: BOAT MUVING AT CONSTANT SPEED)

DEFURMADLE CONTRU VOLUME: ANALY FING THE FILLS IN A VOLUME THAT CHANUES OVER THE EXAMPLE: FCCWIN THE CONDUMN CHAMBER CF-MA INTERATION CONSULTION ENGINE

PREBIEM 4 - THRENT REVERIER

EQN. (S.40)

$$
\sum \pi = \frac{d}{dt} \left(\int_{\omega} V \, dU \right) + \sum_{i} (\dot{w}_{i} V_{i})_{cm} +
$$

$$
- \sum_{i} (\dot{w}_{i} V_{i})_{m}
$$

STEADY-STATE FLEW =>

$$
\sum \mathbf{F} = \sum_i (\dot{w}_i \mathbf{V}_i)_{\text{out}} - \sum_i (\dot{w}_i \mathbf{V}_i)_{\text{in}}
$$

No THRUST REVERSER \Rightarrow

$$
F_X = \hat{w} (V_{out} - V_m) = 24.5 kN
$$

Fig = Mg (not known)

WITH THRUST REVERSER DEPLOYED:

$$
\sqrt{m}
$$
\n
$$
\sqrt{m}
$$

b)
\n
$$
\int_{C_{u}} \frac{\partial s}{\partial t} dV + \int_{C_{1}} s(V \cdot n) dA = 0
$$
\n
$$
(\pm x \in O \text{ context } u \text{ current})
$$
\na)
$$
\int_{\frac{\pi}{2}} \frac{\partial s}{\partial t} dV + \sum_{i} (s_{i} A_{i} V_{i})_{\text{out}} - \sum_{i} (s_{i} A_{i} V_{i})_{\text{in}}
$$
\nb)
\n
$$
\int_{\frac{\pi}{2}} \frac{\partial s}{\partial t} dV + \sum_{i} (s_{i} A_{i} V_{i})_{\text{out}} - \sum_{i} (s_{i} A_{i} V_{i})_{\text{in}}
$$
\nb)
\n
$$
\int_{\frac{\pi}{2}} s(\theta \cdot n) dA = 0
$$
\nc)
\n
$$
\int_{\frac{\pi}{2}} (v \cdot n) dA = 0
$$
\n
$$
= \sum_{i} s(v \cdot n) dA = 0
$$
\n
$$
= \sum_{i} s(v \cdot n) dA = 0
$$
\n
$$
= \sum_{i} (v \cdot n) dA = 0
$$

$$
C_J \sum_{T} F = \underbrace{\frac{d}{dt} (\bigvee_{s} V_s dV)}_{T} + \underbrace{\bigvee_{c} V_s (V_r \cdot r) dA}_{T}
$$

- I: Sun of Au Funces
- II: PATE OF CHANNE OF WOMENTUM WITHIN THE CONTRUL VOLUME COU)
- III: THE NET FUIX OF WINENTUM WER THE CONTROL VULLIME SURFACE (CS)
- d) THE BERNOLINI GENATION IS DEPLIVED WITH THE AQUINATION OF FRICTION GEAL FLCW ALCOUG A STREAMLINE. IT RESEMBLES THE ENERGY FRUATION BUT IT BUES NOT INCLUDE VIOLENS WORK ANY CHANGES IN INTERNATENERY BUE TO HEAT ADDITION.

ESTIMATE THE VIOLUSITY OF THE FULLIO WOED FUR LUBBLE AT ICN:

THE CLEARANTE IS TURNED STUALLER THAN THE PADILIO LF THE PISTEN

$$
\left(\frac{D_1}{2}\right) \ll c \left(\frac{D_2 - D_1}{2}\right)
$$

=> IT IS PUNTALE TO USE CARTESION CCCROINATES LOCALLY.

THE FULCE CU THE FUSTEN SACULO BE BALANCED DY THE FRICTION FRINT THE LUBRICATION FUIO.

$$
m(g+a) = \Upsilon_w A \qquad (1)
$$

WATE2E:
$$
M = 9.5^{2}
$$

\n
$$
q = 9.81 \text{ m/s}^2
$$
\n
$$
q = -0.61 \text{ m/s}^2
$$
\n
$$
A = \pi DL = 6.06 \cdot 10^{-2} \text{ m}^2
$$

$$
\begin{aligned}\n\Upsilon_{w} &= \mu \frac{\partial u}{\partial y} = \mu \frac{u}{\Delta u} \qquad (2) \\
\text{where:} \qquad u = 6.4 \text{ m/s} \\
\Delta u = 0.0254 \text{ mm}\n\end{aligned}
$$

 (1) and (2) =>

$$
m (3 - a) = \mu \frac{u}{\Delta h} \pi D L
$$

\n
$$
\Rightarrow \mu = 6.5 \cdot 10^{-5} N s / m^3
$$

b) IN A NEWTON IAN FULLED, THE SHEAR STREED IS PREPORTIONALTO THE VELLETS GRADIENT.

 c_j

 L sauros:

THE VIDOUSITY DECREPOES WITH INCRESED TEMPERATURE

GATO: THE VIDOGSTIM INCLEASES WITH

$$
\mathcal{L}^{\text{max}}(\mathcal{L}^{\text{max}})
$$

d) IN THE VISUN INBUNJER THE FULL IS DOMNATED BY THE TWIECARAR VERSITY

$\mu > \mu_{2}$

IN THE FULLY THE BULENT RECUIN THE FILL IS BOTHNATED BY THE TURBUCENT UBCUSITY.

$$
\mu_{\rm L} \gg \mu
$$

b) CALCULATE THE TURCH NUMBER IN REGIUMS 2 AMOS 3 $1 \rightarrow 2$: Obriant stroic $(M_1 = 2.0, 0.005)$ THE ODLEQUE SHOCK SHOWLD DEFLECT THE M-2.0 Fin 20. $\theta - \beta - \gamma$ -RELATION (Fig 7.1) and $8 = 53^{\circ}$ $M_{N_1} = M_1 \, \, \text{cm} \, (16)$ (9.82) M_{NL} = M2 Sn $(\beta-\epsilon)$ \Rightarrow $M_2 = 1.21$

2-3 3 :
$$
Paramon -Neyea ExParation
$$

\n $(9,97) \Rightarrow \omega_1 = \omega (M_2) = 5.81^{\circ}$
\n $\omega_2 = \omega_1 + 56 = 3.81 + 10^{\circ} = 13.81^{\circ}$
\n $(9,99)(\omega_1 + Nf) = 13.81^{\circ}$
\n $\omega_1H + \omega_2(M_3) = 13.81^{\circ}$
\n $\Rightarrow M_3 = 1.56$

C)
A 20-DECNEE FICIN DEFLECTION RESULTS IN A STRUNKTR SHOCK THAN A 10-DEGREE FULLY DEFLECTION AND THUS TURE LUSTES AND CONSEQUENTLY LONER TETAL PRESSURE IN THE DRECTED FLOW.

> $1 - 2$ with $71 = 2.0$ ANO $4 = 10^{-7}$ $\Rightarrow \beta = 39.3$ $M_2 = 1.6$ (A SIGNIFICANTLY WEALER SHOCK)