

Fluid Mechanics MTF053

Formulas, Tables & Graphs

Division of Fluid Dynamics Department of Mechanics and Maritime Sciences Chalmers University of Technology

Contents

No	on-dimensional Numbers	3									
Co	Conversion Factors										
1	Introduction 1.6 Thermodynamic Properties of a Fluid	4 4 4									
2	Pressure Distribution in a Fluid2.3Hydrostatic Pressure Distribution2.8Buoyancy and Stability	5 5 5									
3	Integral Relations for a Control Volume3.1Basic Physical Laws of Fluid Mechanics3.2The Reynolds Transport Theorem3.3Conservation of Mass3.4Conservation of Linear Momentum3.5Frictionless Flow: The Bernoulli Equation3.6The Angular Momentum Theorem3.7The Energy Equation	6 6 6 7 7 7 7									
4	Differential Relations for Fluid Flow4.1The Acceleration Field of a Fluid4.2The Differential Equation of Mass Conservation4.3The Differential Equation of Linear Momentum4.5The Differential Equation of Energy4.7The Stream Function4.8Vorticity and Irrotationality	8 9 9 10 10 10									
5	Dimensional Analysis and Similarity5.4Nondimensionalization of the Basic Equations	11 11									
6	Viscous Flow in Ducts6.3Head Loss – The Friction Factor6.4Laminar Fully Developed Pipe Flow6.5Turbulence Modeling6.6Turbulent Pipe Flow6.8Flow in Noncircular Ducts	11 11 12 13 16									
7	Flow Past Immersed Bodies7.1Reynolds Number and Geometry Effects7.2Momentum Integral Estimates7.3The Boundary Layer Equations7.4The Flat-Plate Boundary Layer7.5Experimental External Flows	17 17 17 18 18 20									
9	Compressible Flow9.1Introduction: Review of Thermodynamics9.2The Speed of Sound9.3Adiabatic and Isentropic Steady Flow9.4Isentropic Flow with Area Changes9.5The Normal Shock Wave9.9Mach Waves and Oblique Shock Waves9.10Prandtl-Meyer Expansion Waves	 25 25 25 26 27 28 28 									
Α	Physical Properties of Fluids	30									
В	Compressible Flow Tables	35									
D	Equations of Motion in Cylindrical Coordinates	37									

parameter	definition	interpretation	importance
Reynolds number	$Re = \frac{\rho UL}{\mu}$	$\frac{\text{inertia}}{\text{viscosity}}$	almost always
Mach number	$M = \frac{U}{a}$	flow speed speed of sound	compressible flow
Froude number	$Fr = \frac{U^2}{gL}$	$\frac{\text{inertia}}{\text{gravity}}$	free-surface flow
Weber number	$We = \frac{\rho U^2 L}{\Upsilon}$	$\frac{\text{inertia}}{\text{surface tension}}$	free-surface flow
Prandtl number	$Pr = \frac{\mu C_p}{k}$	$\frac{\text{dissipation}}{\text{conduction}}$	heat convection
specific heat ratio	$\gamma = \frac{C_p}{C_v}$	$\frac{\text{enthalpy}}{\text{internal energy}}$	compressible flow
Strouhal number	$St = \frac{\omega L}{U}$	$\frac{\text{oscillation}}{\text{mean speed}}$	oscillating flow
roughness ratio	$\frac{\varepsilon}{L}$	$\frac{\text{wall roughness}}{\text{body length}}$	turbulent flow
pressure coefficient	$C_p = \frac{p - p_\infty}{0.5\rho U^2}$	static pressure dynamic pressure	aerodynamics
lift coefficient	$C_L = \frac{F_L}{0.5\rho U^2 A}$	$\frac{\text{lift force}}{\text{dynamic force}}$	aerodynamics
drag coefficient	$C_D = \frac{F_D}{0.5\rho U^2 A}$	drag force dynamic force	aerodynamics
skin friction coefficient	$c_f = \frac{\tau_{wall}}{0.5\rho U^2}$	wall shear stress dynamic pressure	boundary layers

Non-dimensional Numbers

Conversion Factors

It is recommended to only use SI units when doing the calculations. To convert from non-SI to SI units the following may help:

1 foot = 0.3048 m 1 inch = 0.0254 m 1 slug = 14.593902937 kg 1 pound (force) = 4.448221615 N 1 atm = 101325 Pa 1 psi = 6894.757293178 Pa 1 degree R = 0.555556 degree K 1 lb/ft² = 47.88025898 Pa

1 Introduction

1.6 Thermodynamic Properties of a Fluid

Perfect-gas law

$$p = \rho RT \tag{1.10}$$

Gas constant R and specific heats

$$R = C_p - C_v$$

Internal energy \hat{u} and specific heat at constant volume C_v

$$C_{v} = \left(\frac{\partial \hat{u}}{\partial T}\right)_{\rho} = \frac{d\hat{u}}{dT} = C_{v}(T)$$
$$d\hat{u} = C_{v}(T)dT$$
(1.14)

Enthalpy h and specific heat at constant pressure ${\cal C}_p$

$$h = \hat{u} + \frac{p}{\rho} = \hat{u} + RT = h(T)$$

$$C_p = \left(\frac{\partial h}{\partial T}\right)_p = \frac{dh}{dT} = C_p(T)$$

$$dh = C_p(T)dT$$
(1.15)

Ratio of specific heats γ

$$\gamma = \frac{C_p}{C_v}$$
(1.16)
$$C_v = \frac{R}{\gamma - 1}, \quad C_p = \frac{\gamma R}{\gamma - 1}$$

1.7 Viscosity and Other Secondary Properties

Shear stress for Newtonian fluids:

$$\tau = \mu \frac{du}{dy} \tag{1.23}$$

The Reynolds number:

$$Re = \frac{\rho VL}{\mu} = \frac{VL}{\nu} \tag{1.24}$$

Dynamic and kinematic viscosity:

$$\nu = \frac{\mu}{\rho} \tag{1.25}$$

Sutherland's law:

$$\frac{\mu}{\mu_0} \approx \frac{(T/T_0)^{3/2} (T_0 + S)}{T + S}$$
(1.27)

where μ_0 is a known viscosity at the temperature T_0 (usually 273 K) and S is a constant.

2 Pressure Distribution in a Fluid

2.3 Hydrostatic Pressure Distribution

$$\sum \mathbf{f} = \mathbf{f}_{press} + \mathbf{f}_{grav} + \mathbf{f}_{visc} = -\nabla p + \rho \mathbf{g} + \mathbf{f}_{visc} = \rho \mathbf{a}$$
(2.8)

For a fluid at rest Eqn. 2.8 reduces to

$$\nabla p = \rho \mathbf{g} \tag{2.9}$$

and with $\mathbf{g} = -g\mathbf{e}_z$

$$\frac{dp}{dz} = -\rho g \Leftrightarrow p_2 - p_1 = -\int_1^2 \rho g dz \tag{2.12}$$

$$p_2 - p_1 = -\rho g(z_2 - z_1) \tag{2.14}$$

Hydrostatic Pressure in Gases

$$\ln \frac{p_2}{p_1} = -\frac{g}{R} \int_1^2 \frac{dz}{T}$$
(2.17)

$$p_2 = p_1 \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$$
(2.18)

$$T \approx T_0 - Bz \tag{2.19}$$

 $T_0=288.16\ K,\ B=0.00650\ K/m$ can be used for air and altitudes from 0 to 11000 m.

$$p = p_a \left(1 - \frac{Bz}{T_0}\right)^{g/(RB)}, \ \rho = \rho_o \left(1 - \frac{Bz}{T_0}\right)^{g/(RB) - 1}$$
(2.20)

where $\rho_o = 1.2255 \ kg/m^3$ and $p_a = 101350 \ Pa$ for air.

2.8 Buoyancy and Stability

$$(F_B)_{LF} = \sum \rho_i g(displaced \ volume)_i \tag{2.35}$$

Figure 2.7: Temperature and pressure distribution in standard atmosphere (Table A.6)

3 Integral Relations for a Control Volume

3.1 Basic Physical Laws of Fluid Mechanics

Volume flow through surface S:

$$Q = \int_{s} (\mathbf{V} \cdot \mathbf{n}) dA \tag{3.7}$$

Mass flow through surface S:

$$\dot{m} = \int_{s} \rho(\mathbf{V} \cdot \mathbf{n}) dA$$

3.2 The Reynolds Transport Theorem

$$\frac{d}{dt}(B_{sys}) = \frac{d}{dt} \left(\int_{cv} \beta \rho d\mathcal{V} \right) + \int_{cs} \beta \rho (\mathbf{V}_r \cdot \mathbf{n}) dA$$
(3.16)

where B is an extensive property of the fluid and β the corresponding intensive property (the amount of B per unit mass) $\beta = dB/dm$.

3.3 Conservation of Mass

General form:

$$\frac{d}{dt}\left(\int_{cv}\rho d\mathcal{V}\right) + \int_{cs}\rho(\mathbf{V}_r\cdot\mathbf{n})dA = 0$$
(3.20)

Fixed control volume:

$$\int_{cv} \frac{\partial \rho}{\partial t} d\mathcal{V} + \int_{cs} \rho \left(\mathbf{V} \cdot \mathbf{n} \right) dA = 0$$
(3.21)

Fixed control volume and a finite number of inlets and outlets with one-dimensional flow:

$$\int_{cv} \frac{\partial \rho}{\partial t} d\mathcal{V} + \sum_{i} (\rho_i A_i V_i)_{out} - \sum_{i} (\rho_i A_i V_i)_{in} = 0$$
(3.22)

3.4 Conservation of Linear Momentum

General form:

$$\sum \mathbf{F} = \frac{d}{dt} \left(\int_{cv} \mathbf{V} \rho d\mathcal{V} \right) + \int_{cs} \mathbf{V} \rho (\mathbf{V}_r \cdot \mathbf{n}) dA$$
(3.35)

Finite number of inlets and outlets:

$$\sum \mathbf{F} = \frac{d}{dt} \left(\int_{cv} \mathbf{V} \rho d\mathcal{V} \right) + \sum_{i} (\dot{m}_i \mathbf{V}_i)_{out} - \sum_{i} (\dot{m}_i \mathbf{V}_i)_{in}$$
(3.40)

3.5 Frictionless Flow: The Bernoulli Equation

Unsteady frictionless flow along a streamline:

$$\int_{1}^{2} \frac{\partial V}{\partial t} ds + \int_{1}^{2} \frac{dp}{\rho} + \frac{1}{2} (V_{2}^{2} - V_{1}^{2}) + g(z_{2} - z_{1}) = 0$$
(3.53)

Steady-state, incompressible flow

$$\frac{p_1}{\rho} + \frac{1}{2}V_1^2 + gz_1 = \frac{p_2}{\rho} + \frac{1}{2}V_2^2 + gz_2 = const$$
(3.54)

3.6 The Angular Momentum Theorem

General form:

$$\sum \mathbf{M}_{o} = \frac{d}{dt} \left(\int_{cv} (\mathbf{r} \times \mathbf{V}) \rho d\mathcal{V} \right) + \int_{cs} (\mathbf{r} \times \mathbf{V}) \rho(\mathbf{V}_{\mathbf{r}} \cdot \mathbf{n}) dA$$
(3.56)

3.7 The Energy Equation

General form:

$$\frac{dQ}{dt} - \frac{dW}{dt} = \frac{dE}{dt} = \frac{d}{dt} \left(\int_{cv} e\rho d\mathcal{V} \right) + \int_{cs} e\rho (\mathbf{V} \cdot \mathbf{n}) dA$$
(3.61)

where

$$e = \hat{u} + \frac{1}{2}V^2 + gz \tag{3.62}$$

Work divided into viscous work, shaft work, and surface pressure work (surface integral term):

$$\frac{dQ}{dt} - \frac{dW_s}{dt} - \frac{dW_\nu}{dt} = \frac{d}{dt} \left(\int_{cv} e\rho d\mathcal{V} \right) + \int_{cs} \left(e + \frac{p}{\rho} \right) \rho(\mathbf{V} \cdot \mathbf{n}) dA$$
(3.66)

Modified surface integral term (enthalpy-form):

$$\hat{h} = \hat{u} + \frac{p}{\rho}$$

$$\frac{dQ}{dt} - \frac{dW_s}{dt} - \frac{dW_\nu}{dt} = \frac{d}{dt} \left(\int_{cv} (\hat{u} + \frac{1}{2}V^2 + gz)\rho d\mathcal{V} \right) + \int_{cs} (\hat{h} + \frac{1}{2}V^2 + gz)\rho (\mathbf{V} \cdot \mathbf{n}) dA \quad (3.67)$$

Steady flow with one inlet and one outlet, both one-dimensional:

$$\hat{h}_1 + \frac{1}{2}V_1^2 + gz_1 = \hat{h}_2 + \frac{1}{2}V_2^2 + gz_2 - q + w_s + w_\nu$$
(3.70)

Steady-state, incompressible flow with shaft and friction work:

$$\left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_{in} = \left(\frac{p}{\rho g} + \frac{V^2}{2g} + z\right)_{out} + h_{turbine} - h_{pump} + h_{friction}$$
(3.73)

Kinetic energy correction factor (α) :

$$\left(\frac{p}{\rho g} + \frac{\alpha V_{av}^2}{2g} + z\right)_{in} = \left(\frac{p}{\rho g} + \frac{\alpha V_{av}^2}{2g} + z\right)_{out} + h_{turbine} - h_{pump} + h_{friction}$$
(3.75)

$$\int_{in/out} \left(\frac{1}{2}V^2\right) \rho(\mathbf{V} \cdot \mathbf{n}) dA = \alpha \left(\frac{1}{2}V_{av}^2\right) \dot{m}, \quad \text{where} \quad V_{av} = \frac{1}{A} \int u dA$$

4 Differential Relations for Fluid Flow

4.1 The Acceleration Field of a Fluid

$$\mathbf{a} = \frac{D\mathbf{V}}{Dt} = \frac{\partial \mathbf{V}}{\partial t} + u\frac{\partial \mathbf{V}}{\partial x} + v\frac{\partial \mathbf{V}}{\partial y} + w\frac{\partial \mathbf{V}}{\partial z} = \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla)\mathbf{V}$$
(4.2)

where $D\mathbf{V}/Dt$ is the substantial derivative, an operator that can be applied on any variable φ

$$\frac{D\varphi}{Dt} = \frac{\partial\varphi}{\partial t} + (\mathbf{V}\cdot\nabla)\varphi = \frac{\partial\varphi}{\partial t} + u\frac{\partial\varphi}{\partial x} + v\frac{\partial\varphi}{\partial y} + w\frac{\partial\varphi}{\partial z}$$
(4.3)

4.2 The Differential Equation of Mass Conservation

Continuity (for cylindrical coordinates see Eqn. D.2):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) + \frac{\partial}{\partial z}(\rho w) = 0$$
(4.4)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \tag{4.6}$$

4.3 The Differential Equation of Linear Momentum

The viscous stress tensor τ_{ij} :

$$\tau_{ij} = \begin{vmatrix} \tau_{xx} & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \tau_{yy} & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \tau_{zz} \end{vmatrix}$$
(4.31)

Conservation of linear momentum on vector form (DV/Dt from Eqn. 4.2):

$$\rho \frac{D\mathbf{V}}{Dt} = \rho \mathbf{g} - \nabla p + \nabla \cdot \tau_{ij} \tag{4.32}$$

Viscous stress components for Newtonian fluids:

$$\tau_{xx} = \mu \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \right) = 2\mu \frac{\partial u}{\partial x}$$

$$\tau_{yx} = \tau_{xy} = \mu \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)$$

$$\tau_{yy} = \mu \left(\frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \right) = 2\mu \frac{\partial v}{\partial y}$$

$$\tau_{yz} = \tau_{zy} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$$

$$\tau_{zz} = \mu \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial z} \right) = 2\mu \frac{\partial w}{\partial z}$$

(4.37)

Conservation of linear momentum (Du/Dt, Dv/Dt, and Dw/Dt from Eqn. 4.3, for cylindrical coordinates see Eqns. D.5-D.7):

$$\rho \frac{Du}{Dt} = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$\rho \frac{Dv}{Dt} = \rho g_y - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$

$$\rho \frac{Dw}{Dt} = \rho g_z - \frac{\partial p}{\partial z} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$
(4.38)

4.5 The Differential Equation of Energy

The internal energy (\hat{u}) formulation of the differential energy equation $(D\hat{u}/Dt$ from Eqn. 4.3):

$$\rho \frac{D\hat{u}}{Dt} + p(\nabla \cdot \mathbf{V}) = \nabla \cdot (k\nabla T) + \Phi$$
(4.51)

where k is the thermal conductivity and Φ is the viscous dissipation function defined as:

$$\Phi = \mu \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + 2 \left(\frac{\partial w}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^2 \right]$$
(4.50)

for moderate temperatures $\hat{u}=C_vT$ and thus if $\nabla\cdot\mathbf{V}=0$

$$\rho C_v \frac{DT}{Dt} = k \nabla^2 T + \Phi \tag{4.53}$$

4.7 The Stream Function

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$
 (4.89)

$$\frac{\partial\psi}{\partial y}\frac{\partial}{\partial x}(\nabla^2\psi) - \frac{\partial\psi}{\partial x}\frac{\partial}{\partial x}(\nabla^2\psi) = \nu\nabla^2(\nabla^2\psi)$$
(4.91)

 $(\psi \text{ is constant along a streamline})$

4.8 Vorticity and Irrotationality

Flow rotation (ω) :

$$\omega = \frac{1}{2}(curl\mathbf{V}) = \frac{1}{2} \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$
(4.114)

$$\omega_x = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)$$

$$\omega_y = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

$$\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

(4.113)

Flow vorticity (ζ) :

$$\zeta = 2\omega = curl\mathbf{V} \tag{4.115}$$

5 Dimensional Analysis and Similarity

5.4 Nondimensionalization of the Basic Equations

Continuity and momentum equations on non-dimensional form:

$$\nabla^* \cdot \mathbf{V}^* = 0 \tag{5.12a}$$

$$\frac{D\mathbf{V}^*}{Dt^*} = -\nabla^* p^* + \frac{\mu}{\rho UL} \nabla^{*^2}(\mathbf{V}^*)$$
(5.12b)

Drag coefficients for cylinders and spheres:

$$C_{D_{cylinder}} = \frac{F_D}{\frac{1}{2}\rho U^2 L d}$$
(5.14)

$$C_{D_{sphere}} = \frac{F_D}{\frac{1}{2}\rho U^2 \frac{1}{4}\pi d^2}$$
(5.14)

6 Viscous Flow in Ducts

6.3 Head Loss – The Friction Factor

Head loss (h_f) and the Darcy friction factor (f):

$$h_f = f \frac{L}{d} \frac{V^2}{2g}$$
, where $f = fcn(Re_d, \epsilon/d, \text{duct shape})$ (6.10)

$$f = \frac{8\tau_w}{\rho V^2} \tag{6.11}$$

6.4 Laminar Fully Developed Pipe Flow

$$f_{lam} = \frac{64}{Re_d} \tag{6.13}$$

Figure 5.2: C_D for cylinders and spheres as a function of Reynolds number

6.5 Turbulence Modeling

Reynolds decomposition of a flow variable ϕ

$$\phi = \phi + \phi'$$
$$\overline{\phi} = \frac{1}{T} \int_0^T \phi dt$$
$$\overline{\phi'} = \frac{1}{T} \int_0^T (\phi - \overline{\phi}) dt = \overline{\phi} - \overline{\phi} = 0$$
$$\overline{\phi'}^2 = \frac{1}{T} \int_0^T {\phi'}^2 dt \neq 0$$

The Reynolds-Averaged Navier-Stokes (RANS) equations $(D\overline{u}/Dt$ from Eqn. 4.3):

$$\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{w}}{\partial z} = 0 \tag{6.20}$$

$$\rho \frac{D\overline{u}}{Dt} = -\frac{\partial \overline{p}}{\partial x} + \rho g_x + \frac{\partial}{\partial x} \left(\mu \frac{\partial \overline{u}}{\partial x} - \rho \overline{u'^2} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u'v'} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \overline{u}}{\partial z} - \rho \overline{u'w'} \right) \quad (6.21)$$

RANS equations for duct and boundary layer flows $(D\overline{u}/Dt$ from Eqn. 4.3):

$$\rho \frac{D\overline{u}}{Dt} \approx -\frac{\partial \overline{p}}{\partial x} + \rho g_x + \frac{\partial \tau}{\partial y} \tag{6.22}$$

where

$$\tau = \tau_{lam} + \tau_{turb} = \mu \frac{\partial \overline{u}}{\partial y} - \rho \overline{u'v'}$$
(6.23)

The friction velocity u^* is defined as

$$u^* = \sqrt{\frac{\tau_w}{\rho}}$$

Velocity distribution in the log-region (see Fig. 6.10):

$$\frac{u}{u^*} = \frac{1}{\kappa} \ln \frac{yu^*}{\nu} + B$$
(6.28)

Note that the constant B in Eqn. 6.28 is case dependent but unless another value is suggested, B can be assumed to be 5.0

Velocity distribution in the viscous sublayer (see Fig. 6.10):

$$u^{+} = \frac{u}{u^{*}} = \frac{yu^{*}}{\nu} = y^{+}$$
(6.29)

Prandtl's mixing length concept

Eddy viscosity μ_t (turbulent viscosity):

$$-\rho \overline{u'v'} \approx \mu_t \frac{du}{dy} \quad \text{where } \mu_t \approx \rho l^2 \left| \frac{du}{dy} \right|$$
 (6.30)

 $l \approx \kappa y$ where κ is von Kármán's constant $\kappa \approx 0.41$ (6.31)

6.6 Turbulent Pipe Flow

$$\frac{u(r)}{u^*} \approx \frac{1}{\kappa} \ln \frac{(R-r)u^*}{\nu} + B \tag{6.32}$$

Average velocity:

$$V = \frac{Q}{A} = \frac{1}{\pi R^2} \int_0^R u^* \left(\frac{1}{\kappa} \ln \frac{(R-r)u^*}{\nu} + B\right) 2\pi r dr = \frac{1}{2} u^* \left(\frac{2}{\kappa} \ln \frac{Ru^*}{\nu} + 2B - \frac{3}{\kappa}\right)$$
(6.33)

Friction factor:

$$\frac{1}{\sqrt{f}} = 2.0 \log_{10}(Re_d\sqrt{f}) - 0.8 \tag{6.38}$$

Effect of rough walls

Non-dimensional wall roughness ε^+ (compare with y^+ , Eqn. 6.29):

$$\varepsilon^+ = \frac{\varepsilon u^*}{\nu}$$

 $\begin{array}{ll} \varepsilon^+ < 5 & \mbox{hydraulically smooth} \\ 5 \geq \varepsilon^+ \leq 70 & \mbox{transitional} \\ \varepsilon^+ > 70 & \mbox{fully rough} \end{array}$

Log-law downshift (added to Eqn. 6.28, see Fig. 6.10):

$$\Delta B \approx \frac{1}{\kappa} \ln \varepsilon^{+} - 3.5, \text{(for fully rough surfaces)}$$
(6.45)

$$u^+ = \frac{1}{\kappa} \ln y^+ + B - \Delta B \tag{6.46}$$

Figure 6.10: Velocity in a turbulent boundary layer (left). Log-law shift ΔB due to surface roughness (right). Boundary layer regions: I – the viscous sublayer, II – the buffer layer, III – the log-law region, and IV – the outer layer.

Friction factor

Colebrook/Moody implicit friction factor formula (f, see Fig. 6.13):

$$\frac{1}{\sqrt{f}} = -2.0 \log_{10} \left(\frac{\varepsilon/d}{3.7} + \frac{2.51}{Re_d \sqrt{f}} \right)$$
(6.48)

Haaland's explicit friction factor formula (f):

$$\frac{1}{\sqrt{f}} \approx -1.8 \log_{10} \left(\frac{6.9}{Re_d} + \left(\frac{\varepsilon/d}{3.7} \right)^{1.11} \right) \tag{6.49}$$

Material	Condition	$\varepsilon \; [{\rm mm}]$	Uncertainty [%]
Steel	Sheet metal (new) Stainless (new) Commercial (new) Riveted Rusted	$\begin{array}{c} 0.05 \\ 0.002 \\ 0.046 \\ 3.0 \\ 2.0 \end{array}$	$\pm 60 \\ \pm 50 \\ \pm 30 \\ \pm 70 \\ \pm 50$
Iron	Cast,new Wrought (new) Galvanized (new) Asphalted cast	$0.26 \\ 0.046 \\ 0.15 \\ 0.12$	$\pm 50 \\ \pm 20 \\ \pm 40 \\ \pm 50$
Concrete	Smoothed Rough	$\begin{array}{c} 0.04 \\ 2.0 \end{array}$	$\pm 60 \\ \pm 50$
Brass Plastic Glass Rubber Wood	Drawn (new) Drawn tubing – Smoothed Stave	$\begin{array}{c} 0.002 \\ 0.0015 \\ { m Smooth} \\ 0.01 \\ 0.5 \end{array}$	$\pm 50 \\ \pm 60 \\ - \\ \pm 60 \\ \pm 40$

Table 6.1: Recommended roughness values (ε) for commercial ducts

Figure 6.13: The Moody chart for pipe flow friction

6.8 Flow in Noncircular Ducts

For non-circular cross section ducts, the diameter D is replaced with the hydraulic diameter ${\cal D}_h$ calculated as

$$D_h = \frac{4A}{\mathcal{P}} \tag{6.56}$$

The Reynolds number based on the hydraulic diameter Re_{D_h} is obtained as

$$Re_{D_h} = \frac{VD_h}{\nu}$$

where A is the cross-section area and \mathcal{P} is the wetted perimeter.

Turbulent Flow

Use the same formulas (or the Moody chart) as for flow in circular pipes but replace the diameter with the hydraulic diameter D_h

$$\Delta p_f = f \frac{L}{D_h} \frac{\rho V^2}{2}$$

Non-dimensional surface roughness is calculated as

$$\frac{\varepsilon}{D_h}$$

Laminar Flow

Calculate the friction factor as

$$f = \frac{C}{Re_{D_h}}$$

where Re_{D_h} is the Reynolds number based on the hydraulic diameter and C is a constant that depends on duct shape (for circular cross sections C = 64 and $D_h = D$). The table below gives values of C for a selection of cross sections.

7 Flow Past Immersed Bodies

7.1 Reynolds Number and Geometry Effects

Boundary-layer thickness:

$$\frac{\delta}{x} \approx \begin{cases} \frac{5.0}{Re_x^{1/2}} \text{ laminar } 10^3 < Re_x < 10^6 \\ \frac{0.16}{Re_x^{1/7}} \text{ turbulent } 10^6 < Re_x \end{cases}$$
(7.1)

7.2 Momentum Integral Estimates

Drag force (D), momentum thickness (θ) and wall-shear stress (τ_w) :

$$D(x) = \rho b \int_0^{\delta(x)} u(U-u)dy \tag{7.2}$$

$$D(x) = \rho b U^2 \theta$$
, where $\theta = \int_0^\delta \frac{u}{U} \left(1 - \frac{u}{U}\right) dy$ (7.3)

$$D(x) = b \int_0^x \tau_w(x) dx \tag{7.4}$$

$$\frac{dD}{dx} = \rho b U^2 \frac{d\theta}{dx}$$

$$\tau_w = \rho U^2 \frac{d\theta}{dx} \tag{7.5}$$

Displacement thickness (δ^*):

$$\delta^* = \int_0^\delta \left(1 - \frac{u}{U}\right) dy \tag{7.12}$$

7.3 The Boundary Layer Equations

Governing equations (continuity and momentum) for boundary layer flows:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{7.19a}$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} \approx U\frac{dU}{dx} + \frac{1}{\rho}\frac{\partial \tau}{\partial y}$$
 (7.19b)

where

$$\tau = \begin{cases} \mu \frac{\partial u}{\partial y}, \text{ for laminar flows} \\ \\ \mu \frac{\partial u}{\partial y} - \rho \overline{u'v'}, \text{ for turbulent flows} \end{cases}$$

7.4 The Flat-Plate Boundary Layer

Laminar Flow - Blasius

Boundary layer thickness (δ) :

$$\frac{\delta}{x} \approx \frac{5.0}{Re_x^{1/2}} \tag{7.24}$$

Skin friction coefficient (c_f) , displacement thickness (δ^*) :

$$c_f = \frac{2\tau_w}{\rho U^2} \approx \frac{0.664}{Re_x^{1/2}}, \quad \frac{\delta^*}{x} \approx \frac{1.721}{Re_x^{1/2}}$$
(7.25)

Wall-shear stress (τ_w) :

$$\tau_w(x) \approx \frac{0.332\rho^{1/2}\mu^{1/2}U^{3/2}}{x^{1/2}}$$

Drag force (D):

$$D(x) = b \int_0^x \tau_w(x) dx \approx 0.664 b \rho^{1/2} \mu^{1/2} U^{3/2} x^{1/2}$$
(7.26)

Drag coefficient (C_D) :

$$C_D = \frac{2D(L)}{\rho U^2 bL} = 2c_f(L) \approx \frac{1.328}{Re_L^{1/2}}$$
(7.27)

Momentum thickness (θ) :

$$\frac{\theta}{x} \approx \frac{0.664}{Re_x^{1/2}} \tag{7.30}$$

Shape factor (H):

$$H = \frac{\delta^*}{\theta} \approx 2.59 \tag{7.31}$$

$y[U/(\nu x)]^{1/2}$	u/U	$y[U/(\nu x)]^{1/2}$	u/U
0.0	0.00000	2.8	0.81152
0.2	0.06641	3.0	0.84605
0.4	0.13277	3.2	0.87609
0.6	0.19894	3.4	0.90177
0.8	0.26471	3.6	0.92333
1.0	0.32979	3.8	0.94112
1.2	0.39378	4.0	0.95552
1.4	0.45627	4.2	0.96696
1.6	0.51676	4.4	0.97587
1.8	0.57477	4.6	0.98269
2.0	0.62977	4.8	0.98779
2.2	0.68132	5.0	0.99155
2.4	0.72899	∞	1.00000
2.6	0.77246		

Table 7.1: The Blasius velocity profile

Turbulent Flow

Prandtl's one-seventh-power law:

$$\left(\frac{u}{U}\right)_{turb} \approx \left(\frac{y}{\delta}\right)^{1/7}$$
 (7.39)

Momentum thickness (θ) :

$$\theta \approx \int_0^\delta \left(\frac{y}{\delta}\right)^{1/7} \left(1 - \left(\frac{y}{\delta}\right)^{1/7}\right) dy = \frac{7}{72}\delta \tag{7.40}$$

Boundary layer thickness (δ):

$$Re_{\delta} \approx 0.16 Re_x^{6/7}, \text{ or } \frac{\delta}{x} \approx \frac{0.16}{Re_x^{1/7}}$$
 (7.42)

Skin friction coefficient (c_f) :

$$c_f = \frac{2\tau_w}{\rho U^2} \approx \frac{0.027}{R e_x^{1/7}} \tag{7.43}$$

Wall-shear stress (τ_w) :

$$\tau_w \approx \frac{0.0135\mu^{1/7}\rho^{6/7}U^{13/7}}{x^{1/7}} \tag{7.44}$$

Drag coefficient (C_D) :

$$C_D = \frac{7}{6}c_f(L) \approx \frac{0.031}{Re_L^{1/7}}$$
(7.45)

Displacement thickness (δ^*) :

$$\delta^* \approx \int_0^\delta \left(1 - \left(\frac{y}{\delta}\right)^{1/7} \right) dy = \frac{1}{8}\delta \tag{7.46}$$

Shape factor (H):

$$H = \frac{\delta^*}{\theta} \approx 1.3 \tag{7.47}$$

Boundary layer drag for flat plate with transition (Eqns. 7.43 and 7.25 combined):

$$D \approx b \frac{1}{2} \rho U^2 \left[\int_{>0}^{x_{cr}} \frac{0.664}{Re_x^{1/2}} dx + \int_{x_{cr}}^L \frac{0.027}{Re_x^{1/7}} dx \right]$$

where b is the width of the flat plate and x_{cr} is the transition location.

Skin friction coefficient (c_f) and drag coefficient (C_D) for rough surfaces with the surface roughness ε :

$$c_f \approx \left(2.87 + 1.58 \log_{10} \frac{x}{\varepsilon}\right)^{-2.5}$$
 (7.48a)

$$C_D \approx \left(1.89 + 1.62 \log_{10} \frac{L}{\varepsilon}\right)^{-2.5} \tag{7.48b}$$

Drag coefficient in transition region from Schlichting for two transition point Reynolds numbers (see Fig. 7.6):

$$C_D = \begin{cases} \frac{0.031}{Re_L^{1/7}} - \frac{1400}{Re_L} & Re_{trans} = 5 \times 10^5 \\ \frac{0.031}{Re_L^{1/7}} - \frac{8700}{Re_L} & Re_{trans} = 3 \times 10^6 \end{cases}$$
(7.49)

7.5 Experimental External Flows

Lift (C_L) and drag (C_D) :

$$C_L = \frac{F_L}{\frac{1}{2}\rho V^2 A_p} \tag{7.66a}$$

$$C_D = \frac{F_D}{\frac{1}{2}\rho V^2 A_p}$$
(7.66b)

Lift (C_L) of finite span wings:

$$C_L = \frac{2\pi \sin(\alpha + 2h/c)}{1 + 2/AR}, \text{ where } AR = \frac{b^2}{A_p} = \frac{b}{c}$$
 (7.70)

Figure 7.6: Drag coefficient of laminar and turbulent boundary layers

Figure 7.16: Drag coefficient for smooth bodies at low Mach numbers: (left) 2D bodies, (right) 3D bodies.

Figure 7.25: Lift and drag of a symmetric NACA 0009 airfoil

Figure 7.26: Lift-drag polar plot for standard (0009) and laminar flow (63-009) NACA airfoil

Shape	C _D based on frontal area	Sh	C or ape	D based frontal area		Sh	ape	C _D on fi	based rontal rea
Square cylinder:		Half-cylir	der:		PI	ate:			
	2.1			1.2		→		2	.0
Half tube:	1.6	→ Equilatera	D d triangle:	1.7	Th nc a v	nin plate ormal to wall:		1	.4
	1.2	>	\langle	1.6					
→)	2.3			2.0	Но —	exagon:		> 1	.0 0.7
	Shape			(C _D based	on fron	ital area		
Rounded nose sec	ction:								
→ (Н	L/H:	0.5	1.0	2.0	4.0	6.0	4
	<i>L</i>		C_D :	1.16	0.90	0.70	0.68	0.64	ŧ
Flat nose section									
	H -	<i>UH</i> : 0.1 <i>C</i> _D : 1.9	0.4	0.7	1.2 2.1	2.0 1.8	2.5 1.4	3.0 1.3	6.0 0.9
Elliptical cylinder		Laminar	Turb	ulent					
1:1	\bigcirc	1.2	0.	3					
2:1	\bigcirc	0.6	0.	2					
4:1 <	\bigcirc	0.35	0.	15					
8:1 <		> 0.25	0.	1					

9 Compressible Flow

9.1 Introduction: Review of Thermodynamics

Mach number (M):

$$M = \frac{V}{a}$$

Ratio of specific heats (γ) :

$$\gamma = \frac{C_p}{C_v} \tag{9.1}$$

Eqns. 1.14 and 1.15 and constant specific heats gives:

$$\hat{u}_2 - \hat{u}_1 = C_v(T_2 - T_1), \quad \hat{h}_2 - \hat{h}_1 = C_p(T_2 - T_1)$$
(9.5)

Entropy change (from the first and second law of thermodynamics):

$$Tds = dh - \frac{dp}{\rho} \tag{9.6}$$

$$\int_{1}^{2} ds = \int_{1}^{2} C_{p} \frac{dT}{T} - R \int_{1}^{2} \frac{dp}{p}$$
(9.7)

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = C_v \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1}$$
(9.8)

Isentropic relations:

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\gamma/(\gamma-1)} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$$
(9.9)

9.2 The Speed of Sound

$$a^2 = \left(\frac{\partial p}{\partial \rho}\right)_s \tag{9.15}$$

$$a = \sqrt{\gamma RT} = \sqrt{\frac{\gamma p}{\rho}} \tag{9.16}$$

9.3 Adiabatic and Isentropic Steady Flow

Adiabatic energy equation without viscous work or shaft work (Eqn. 3.70):

$$h + \frac{1}{2}V^2 = h_o = const$$
 (9.22)

Eqn. 9.22 with $h = C_p T$ gives:

$$C_p T + \frac{1}{2} V^2 = C_p T_o \tag{9.23}$$

Isentropic flow relations (Table B.1)

$$\frac{T_o}{T} = 1 + \frac{\gamma - 1}{2}M^2 \tag{9.26}$$

$$\frac{a_o}{a} = \left(\frac{T_o}{T}\right)^{1/2} \tag{9.27}$$

$$\frac{p_o}{p} = \left(\frac{T_o}{T}\right)^{\gamma/(\gamma-1)} \tag{9.28a}$$

$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{1/(\gamma-1)} \tag{9.28b}$$

Critical Values at the Sonic Point

$$\frac{T^*}{T_o} = \left(\frac{2}{\gamma+1}\right)$$

$$\frac{p^*}{p_o} = \left(\frac{T^*}{T_o}\right)^{\gamma/(\gamma-1)}$$

$$\frac{\rho^*}{\rho_o} = \left(\frac{T^*}{T_o}\right)^{1/(\gamma-1)}$$

$$\frac{a^*}{a_o} = \left(\frac{T^*}{T_o}\right)^{1/2}$$
(9.32)

9.4 Isentropic Flow with Area Changes

The area-velocity relation:

$$\frac{dV}{V}(M^2 - 1) = \frac{dA}{A}$$
(9.40)

The area-Mach-number relation (Table ${\color{black}B.1}):$

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1}\right]^{(\gamma + 1)/(\gamma - 1)}$$
(9.44)

Choked mass flow:

$$\dot{m} = \frac{p_o A^*}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

9.5 The Normal Shock Wave

Governing equations (continuity, momentum and energy):

$$\rho_1 V_1 = \rho_2 V_2 \tag{9.49a}$$

$$p_1 - p_2 = \rho_2 V_2^2 - \rho_1 V_1^2 \tag{9.49b}$$

$$h_1 + \frac{1}{2}V_1^2 = h_2 + \frac{1}{2}V_2^2 = h_o = \text{constant}$$
 (9.49c)

The Rankine-Hugoniot relation:

$$h_2 - h_1 = \frac{1}{2}(p_2 - p_1)\left(\frac{1}{\rho_2} + \frac{1}{\rho_1}\right)$$
(9.50)

The normal shock relations (Table ${\color{black} B.2}):$

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma+1}(M_1^2 - 1) \tag{9.55}$$

$$M_2^2 = \frac{(\gamma - 1)M_1^2 + 2}{2\gamma M_1^2 - (\gamma - 1)}$$
(9.57)

$$\frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{(\gamma+1)M_1^2}{(\gamma-1)M_1^2 + 2}$$
(9.58)

$$\frac{T_2}{T_1} = \left(2 + (\gamma - 1)M_1^2\right) \frac{2\gamma M_1^2 - (\gamma - 1)}{(\gamma + 1)^2 M_1^2}$$
(9.58)

$$T_{o_1} = T_{o_2} \tag{9.58}$$

$$\frac{p_{o_2}}{p_{o_1}} = \frac{\rho_{o_2}}{\rho_{o_1}} = \left[\frac{(\gamma+1)M_1^2}{2+(\gamma-1)M_1^2}\right]^{\gamma/(\gamma-1)} \left[\frac{\gamma+1}{2\gamma M_1^2-(\gamma-1)}\right]^{1/(\gamma-1)}$$
(9.58)

$$\left(\frac{A_2^*}{A_1^*}\right)^2 = \left(\frac{M_2}{M_1}\right)^2 \left[\frac{2 + (\gamma - 1)M_1^2}{2 + (\gamma - 1)M_2^2}\right]^{(\gamma + 1)/(\gamma - 1)}$$
(9.59)

9.9 Mach Waves and Oblique Shock Waves

Mach Waves

Mach wave angle (μ) :

$$\mu = \sin^{-1} \frac{1}{M} \tag{9.79}$$

The Oblique Shock Wave

Governing equations (continuity, momentum in the shock normal and shock tangential directions, and energy):

$$\rho_1 V_{n_1} = \rho_2 V_{n_2} \tag{9.80a}$$

$$p_1 - p_2 = \rho_2 V_{n_2}^2 - \rho_1 V_{n_1}^2 \tag{9.80b}$$

$$0 = \rho_1 V_{n_1} (V_{t_2} - V_{t_1}) \tag{9.80c}$$

$$h_1 + \frac{1}{2}V_{n_1}^2 + \frac{1}{2}V_{t_1}^2 = h_2 + \frac{1}{2}V_{n_2}^2 + \frac{1}{2}V_{t_2}^2 = h_o$$
(9.80d)

$$V_{t_2} = V_{t_1} = V_t = \text{const} \tag{9.81}$$

Shock-normal Mach numbers $(M_{n_1} \text{ and } M_{n_2})$:

$$M_{n_1} = M_1 \sin \beta$$

$$M_{n_2} = M_2 \sin(\beta - \theta)$$
(9.82)

The θ - β -Mach relation (see Fig. 9.23):

$$\tan \theta = \frac{2 \cot \beta (M_1^2 \sin^2 \beta - 1)}{M_1^2 (\gamma + \cos(2\beta)) + 2}$$
(9.86)

9.10 Prandtl-Meyer Expansion Waves

The Prandtl-Meyer supersonic expansion function (Table B.5):

$$\omega(M) = \sqrt{\frac{\gamma+1}{\gamma-1}} \tan^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}(M^2-1)} - \tan^{-1} \sqrt{M^2-1}$$
(9.99)

$$\Delta \theta = \omega(M_2) - \omega(M_1) \tag{9.101}$$

Figure 9.23: Oblique shock deflection versus wave angle for various Mach numbers ($\gamma = 1.4$). Dashed line indicates division of weak and strong solutions and the dash-dotted line connects the maximum deflection aggles θ_{max} for each Mach number.

A Physical Properties of Fluids

Figure A.1: Absolute viscosity (μ) of common fluids at 1 atm

Figure A.2: Kinematic viscosity (ν) of common fluids at 1 atm

Table A.1: Viscosity and density of water at 1 atm

)] $\nu \ [m^2/s]$
$\begin{array}{c} 1.788 \text{E-06} \\ 1.307 \text{E-06} \\ 1.005 \text{E-06} \\ 0.802 \text{E-06} \\ 0.662 \text{E-06} \\ 0.555 \text{E-06} \\ 0.475 \text{E-06} \\ 0.414 \text{E-06} \end{array}$
0.365 E-06 0.327 E-06 0.295 E-06

Suggested curve fits for water in the range $273K \le T \le 373K$:

$$\begin{split} \rho &= 1000.0 - 0.0178 |T - 277|^{1.7} \pm 0.2\% \\ \ln \left(\frac{\mu}{\mu_0}\right) &\approx -1.704 - 5.306z + 7.003z^2 \\ z &= \frac{273}{T}, \, \mu_0 {=} 1.788 \text{ E-03 kg/ms} \end{split}$$

T [K]	$T \ [^{\circ}C]$	$\rho \; [kg/m^3]$	$\mu \; [kg/(ms)]$	$\nu \ [m^2/s]$
233	-40	1.520	1.51 E-05	0.99 E-05
273	0	1.290	1.71 E-05	1.33 ± 05
293	20	1.200	1.80 E-05	1.50 ± 0.05
323	50	1.090	1.95 E-05	1.79 E-05
373	100	0.946	2.17 E-05	2.30 E-05
423	100	0.835	2.38 E-05	2.85 E-05
473 523	200 250	0.740 0.675	2.57 E-05 2 75 E-05	3.45 E-05 4 08 E-05
573	300	0.616	2.93 E-05	4.75 E-05
673	400	0.525	3.25 E-05	6.20 E-05
773	500	0.457	3.55 E-05	7.77 E-05

Table A.2: Viscosity and density of air at 1 atm

Suggested curve fits for air:

 $\rho = \frac{p}{RT}$ Power law: $\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{0.7}$ Sutherland: $\frac{\mu}{\mu_0} \approx \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right)$ $= 207 \ 1/(k\sigma K), \ T_0 = 273 \ K,$ with $R{=}287$ J/(kg K), $T_0{=}273$ K, $\mu_0{=}1.71$ E-05 kg/ms, and $S{=}110.4$ K

Table A.3: Properties of common liquids at 1 atm and 20°C

Liquid	$ ho [kg/m^3]$	$\mu \ [kg/(ms)]$	Υ^{a} $[N/m]$	$\frac{p_v}{[N/m^2]}$	Bulk modulus $[N/m^2]$	Viscosity parameter C^b
Ammonia Benzene Carbon tetrachloride Ethanol Ethylene glycol Freon 12 Gasoline Glycerin Kerosene Mercury Methanol SAE 10W oil SAE 10W30 oil SAE 30W oil	608 881 1590 789 1117 1327 680 1260 804 13,550 791 870 876 891	2.20 E-04 6.51 E-04 9.67 E-04 1.20 E-03 2.14 E-02 2.62 E-04 2.92 E-04 1.49 1.92 E-03 1.56 E-03 5.98 E-04 1.04 E-01 ^c 1.70 E-01 ^c	2.13 E-02 2.88 E-02 2.70 E-02 2.28 E-02 4.84 E-02 - 2.16 E-02 6.33 E-02 2.80 E-02 4.84 E-01 2.25 E-02 3.60 E-02	9.10 E+05 1.01 E+04 1.20 E+04 5.70 E+03 1.20 E+01 - 5.51 E+04 1.40 E-02 3.11 E+03 1.10 E-03 1.34 E+04 - -	1.82 E+09 1.47 E+09 1.32 E+09 1.09 E+09 3.05 E+09 7.95 E+08 1.30 E+09 4.35 E+09 1.41 E+09 2.85 E+10 1.03 E+09 1.31 E+09	$ \begin{array}{c} 1.05\\ 4.34\\ 4.45\\ 5.72\\ 11.7\\ 1.76\\ 3.68\\ 28.0\\ 5.56\\ 1.07\\ 4.63\\ 15.7\\ 14.0\\ 18.3\\ \end{array} $
SAE 50W oil Water Seawater (30‰)	902 998 1025	$\begin{array}{c} 8.60 \ \text{E-}01^c \\ 1.00 \ \text{E-}03 \\ 1.07 \ \text{E-}03 \end{array}$	- 7.28 E-02 7.28 E-02	-2.34 E+03 2.34 E+03	- 2.19 E+09 2.33 E+09	20.2 Table A.1 7.28

^a In contact with air

^b The viscosity temperature variation of these liquids may be fitted to the empirical expression $\mu \qquad \left[\sim (293) \right]$

$$\frac{\mu}{293} = exp \left| C \left(\frac{293}{293} - \right) \right|$$

1 $p [\bigcup \bigcup \overline{T}$

 $\begin{array}{c} \mu_{293K} & \stackrel{-}{\longrightarrow} P \left[\begin{smallmatrix} 0 \\ T \end{smallmatrix} \right] \\ \text{with an accuracy of } \pm 6 \text{ percent in the range } 273K \leq T \leq 373K \\ \stackrel{\circ}{\xrightarrow} \text{Representative values. The SAE oil classification allow a viscosity variation of up to } \pm 50 \text{ percent, especially} \end{array}$ at lower temperatures.

Gas	Molecular weight	$R \left[m^2/(s^2 K) \right]$	$\rho g \ [N/m^3]$	$\mu \; [kg/(ms)]$	$\nu \ [m^2/s]$	Specific-heat ratio	Power-law exponent n^a
H_2	2.016	4124	0.822	9.05 E-06	1.08 E-04	1.41	0.68
$He H_2O$	$4.003 \\ 18.02$	2077 461	$1.03 \\ 7.35$	1.97 E-05 1.02 E-05	1.18 E-04 1.36 E-05	1.00	0.67 1.15
Ar	39.944	208	16.3	2.24 E-05	1.35 E-05	1.67	0.72
Dry air	28.96	287	11.8	1.80 E-05	1.49 E-05	1.40	0.67
CO_2	44.01	189	17.9	1.48 E-05	8.09 E-06	1.30	0.79
CO	28.01	297	11.4	1.82 E-05	1.56 E-05	1.40	0.71
N_2	28.02	297	11.4	1.76 E-05	1.51 E-05	1.40	0.67
O_2	32.00	260	13.1	2.00 E-05	1.50 E-05	1.40	0.69
NO	30.01	277	12.1	1.90 E-05	1.52 E-05	1.40	0.78
N_2O	44.02	189	17.9	1.45 E-05	7.93 E-06	1.31	0.89
Cl_2	70.91	117	28.9	1.03 E-05	3.49 E-06	1.34	1.00
CH_4	16.04	518	6.54	1.34 E-05	2.01 E-05	1.32	0.87

Table A.4: Properties of common gases at 1 atm and $20^{\circ}C$

^a The power-law curve $\mu/\mu_{293K}\approx (T/293)^n$ fits these gases to within ±4 percent in the range $250K\leq T\leq 1000K$

Τ	able	e A.5	5: S	Surface	tension,	vapor	pressure,	and	sound	speed	of	water
							r					

$T \ [^{\circ}C]$	$\Upsilon \ [N/m]$	$p_v \ [Pa]$	$a \ [m/s]$
0	0.0756	6.1100 E02	1402
10	0.0742	1.2270 E03	1447
20	0.0728	2.3370 E03	1482
30	0.0712	4.2420 E03	1509
40	0.0696	7.3750 E03	1529
50	0.0679	1.2340 E04	1542
60	0.0662	1.9920 E04	1551
70	0.0644	3.1160 E04	1553
80	0.0626	4.7350 E04	1554
90	0.0608	7.0110 E04	1550
100	0.0589	1.0130 E05	1543
120	0.0550	1.9850 E05	1518
140	0.0509	3.6130 E05	1483
160	0.0466	6.1780 E05	1440
180	0.0422	1.0020 E06	1389
200	0.0377	1.5540 E06	1334
220	0.0331	2.3180 E06	1268
240	0.0284	3.3440 E06	1192
260	0.0237	4.6880 E06	1110
280	0.0190	6.4120 E06	1022
300	0.0144	8.5810 E06	920
320	0.0099	$1.1274 \ E07$	800
340	0.0056	1.4586 E07	630
360	0.0019	1.8651 E07	370
* 374	0.0	2.2090 E07	0

* critical point

$z \ [m]$	T [K]	$p \ [Pa]$	$\rho \; [kg/m^3]$	$a \ [m/s]$	z [m]	T [K]	$p \ [Pa]$	$\rho \; [kg/m^3]$	$a \ [m/s]$
-500	291.41	107,508	1.2854	342.2	12,500	216.66	17,847	0.2870	295.1
0	288.16	101,350	1.2255	340.3	13,000	216.66	16,494	0.2652	295.1
500	284.91	95,480	1.1677	338.4	13,500	216.66	15,243	0.2451	295.1
1000	281.66	89,889	1.1120	336.5	14,000	216.66	14,087	0.2265	295.1
1500	278.41	84,565	1.0583	334.5	14,500	216.66	13,018	0.2094	295.1
2000	275.16	79,500	1.0067	332.6	15,000	216.66	12,031	0.1935	295.1
2500	271.91	$74,\!684$	0.9570	330.6	15,500	216.66	11,118	0.1788	295.1
3000	268.66	70,107	0.9092	328.6	16,000	216.66	10,275	0.1652	295.1
3500	265.41	65,759	0.8633	326.6	16,500	216.66	9496	0.1527	295.1
4000	262.16	$61,\!633$	0.8191	324.6	17,000	216.66	8775	0.1411	295.1
4500	258.91	57,718	0.7768	322.6	17,500	216.66	8110	0.1304	295.1
5000	255.66	54,008	0.7361	320.6	18,000	216.66	7495	0.1205	295.1
5500	252.41	50,493	0.6970	318.5	18,500	216.66	6926	0.1114	295.1
6000	249.16	47,166	0.6596	316.5	19,000	216.66	6401	0.1029	295.1
6500	245.91	44,018	0.6237	314.4	19,500	216.66	5915	0.0951	295.1
7000	242.66	41,043	0.5893	312.3	20,000	216.66	5467	0.0879	295.1
7500	239.41	38,233	0.5564	310.2	22,000	218.60	4048	0.0645	296.4
8000	236.16	35,581	0.5250	308.1	24,000	220.60	2972	0.0469	297.8
8500	232.91	33,080	0.4949	306.0	26,000	222.50	2189	0.0343	299.1
9000	229.66	30,723	0.4661	303.8	28,000	224.50	1616	0.0251	300.4
9500	226.41	28,504	0.4387	301.7	30,000	226.50	1197	0.0184	301.7
10,000	223.16	26,416	0.4125	299.5	40,000	250.40	287	0.0040	317.2
10,500	219.91	24,455	0.3875	297.3	50,000	270.70	80	0.0010	329.9
11,000	216.66	$22,\!612$	0.3637	295.1	60,000	255.70	22	0.0003	320.6
11,500	216.66	20,897	0.3361	295.1	70,000	219.70	6	0.0001	297.2
12,000	216.66	19,312	0.3106	295.1					

 Table A.6: Properties of the Standard Atmosphere

М	p/p_o	$ ho/ ho_o$	T/T_o	A/A^*	M	p/p_o	$ ho/ ho_o$	T/T_o	A/A^*
0.00	1.0000	1.0000	1.0000	∞	2.10	0.1094	0.2058	0.5313	1.8369
0.10	0.9930	0.9950	0.9980	5.8218	2.20	0.0935	0.1841	0.5081	2.0050
0.20	0.9725	0.9803	0.9921	2.9635	2.30	0.0800	0.1646	0.4859	2.1931
0.30	0.9395	0.9564	0.9823	2.0351	2.40	0.0684	0.1472	0.4647	2.4031
0.40	0.8956	0.9243	0.9690	1.5901	2.50	0.0585	0.1317	0.4444	2.6367
0.50	0.8430	0.8852	0.9524	1.3398	2.60	0.0501	0.1179	0.4252	2.8960
0.60	0.7840	0.8405	0.9328	1.1882	2.70	0.0430	0.1056	0.4068	3.1830
0.70	0.7209	0.7916	0.9107	1.0944	2.80	0.0368	0.0946	0.3894	3.5001
0.80	0.6560	0.7400	0.8865	1.0382	2.90	0.0317	0.0849	0.3729	3.8498
0.90	0.5913	0.6870	0.8606	1.0089	3.00	0.0272	0.0762	0.3571	4.2346
1.00	0.5283	0.6339	0.8333	1.0000	3.10	0.0234	0.0685	0.3422	4.6573
1.10	0.4684	0.5817	0.8052	1.0079	3.20	0.0202	0.0617	0.3281	5.1210
1.20	0.4124	0.5311	0.7764	1.0304	3.30	0.0175	0.0555	0.3147	5.6286
1.30	0.3609	0.4829	0.7474	1.0663	3.40	0.0151	0.0501	0.3019	6.1837
1.40	0.3142	0.4374	0.7184	1.1149	3.50	0.0131	0.0452	0.2899	6.7896
1.50	0.2724	0.3950	0.6897	1.1762	3.60	0.0114	0.0409	0.2784	7.4501
1.60	0.2353	0.3557	0.6614	1.2502	3.70	0.0099	0.0370	0.2675	8.1691
1.70	0.2026	0.3197	0.6337	1.3376	3.80	0.0086	0.0335	0.2572	8.9506
1.80	0.1740	0.2868	0.6068	1.4390	3.90	0.0075	0.0304	0.2474	9.7990
1.90	0.1492	0.2570	0.5807	1.5553	4.00	0.0066	0.0277	0.2381	10.7188
2.00	0.1278	0.2300	0.5556	1.6875					

Table B.1: Is entropic flow of a perfect gas $\gamma=1.4$

Tabulated data obtained using Eqns. 9.26, 9.28, and 9.44.

М	$\omega[deg]$	M	$\omega[deg]$	M	$\omega[deg]$	M	$\omega[deg]$
1.00	00.00	3.10	51.65	5.10	77.84	7.10	91.49
1.10	01.34	3.20	53.47	5.20	78.73	7.20	92.00
1.20	03.56	3.30	55.22	5.30	79.60	7.30	92.49
1.30	06.17	3.40	56.91	5.40	80.43	7.40	92.97
1.40	08.99	3.50	58.53	5.50	81.24	7.50	93.44
1.50	11.91	3.60	60.09	5.60	82.03	7.60	93.90
1.60	14.86	3.70	61.60	5.70	82.80	7.70	94.34
1.70	17.81	3.80	63.04	5.80	83.54	7.80	94.78
1.80	20.73	3.90	64.44	5.90	84.26	7.90	95.21
1.90	23.59	4.00	65.78	6.00	84.96	8.00	95.62
2.00	26.38	4.10	67.08	6.10	85.63	8.10	96.03
2.10	29.10	4.20	68.33	6.20	86.29	8.20	96.43
2.20	31.73	4.30	69.54	6.30	86.94	8.30	96.82
2.30	34.28	4.40	70.71	6.40	87.56	8.40	97.20
2.40	36.75	4.50	71.83	6.50	88.17	8.50	97.57
2.50	39.12	4.60	72.92	6.60	88.76	8.60	97.94
2.60	41.41	4.70	73.97	6.70	89.33	8.70	98.29
2.70	43.62	4.80	74.99	6.80	89.89	8.80	98.64
2.80	45.75	4.90	75.97	6.90	90.44	8.90	98.98
2.90	47.79	5.00	76.92	7.00	90.97	9.00	99.32
3.00	49.76						

Table B.5: Prandtl-Meyer supersonic expansion function for $\gamma=1.4$

Tabulated data obtained using Eqn. 9.99.

M_{n_1}	M_{n_2}	p_{2}/p_{1}	$V_1/V_2 = \rho_2/\rho_1$	T_2/T_1	p_{o_2}/p_{o_1}	A_{2}^{*}/A_{1}^{*}
1.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.10	0.9118	1.2450	1.1691	1.0649	0.9989	1.0011
1.20	0.8422	1.5133	1.3416	1.1280	0.9928	1.0073
1.30	0.7860	1.8050	1.5157	1.1909	0.9794	1.0211
1.40	0.7397	2.1200	1.6897	1.2547	0.9582	1.0436
1.50	0.7011	2.4583	1.8621	1.3202	0.9298	1.0755
1.60	0.6684	2.8200	2.0317	1.3880	0.8952	1.1171
1.70	0.6405	3.2050	2.1977	1.4583	0.8557	1.1686
1.80	0.6165	3.6133	2.3592	1.5316	0.8127	1.2305
1.90	0.5956	4.0450	2.5157	1.6079	0.7674	1.3032
2.00	0.5774	4.5000	2.6667	1.6875	0.7209	1.3872
2.10	0.5613	4.9783	2.8119	1.7705	0.6742	1.4832
2.20	0.5471	5.4800	2.9512	1.8569	0.6281	1.5920
2.30	0.5344	6.0050	3.0845	1.9468	0.5833	1.7144
2.40	0.5231	6.5533	3.2119	2.0403	0.5401	1.8514
2.50	0.5130	7.1250	3.3333	2.1375	0.4990	2.0039
2.60	0.5039	7.7200	3.4490	2.2383	0.4601	2.1733
2.70	0.4956	8.3383	3.5590	2.3429	0.4236	2.3608
2.80	0.4882	8.9800	3.6636	2.4512	0.3895	2.5676
2.90	0.4814	9.6450	3.7629	2.5632	0.3577	2.7954
3.00	0.4752	10.3333	3.8571	2.6790	0.3283	3.0456
3.10	0.4695	11.0450	3.9466	2.7986	0.3012	3.3199
3.20	0.4643	11.7800	4.0315	2.9220	0.2762	3.6202
3.30	0.4596	12.5383	4.1120	3.0492	0.2533	3.9483
3.40	0.4552	13.3200	4.1884	3.1802	0.2322	4.3062
3.50	0.4512	14.1250	4.2609	3.3151	0.2129	4.6960
3.60	0.4474	14.9533	4.3296	3.4537	0.1953	5.1200
3.70	0.4439	15.8050	4.3949	3.5962	0.1792	5.5806
3.80	0.4407	16.6800	4.4568	3.7426	0.1645	6.0801
3.90	0.4377	17.5783	4.5156	3.8928	0.1510	6.6213
4.00	0.4350	18.5000	4.5714	4.0469	0.1388	7.2069
4.10	0.4324	19.4450	4.6245	4.2048	0.1276	7.8397
4.20	0.4299	20.4133	4.6749	4.3666	0.1173	8.5227
4.30	0.4277	21.4050	4.7229	4.5322	0.1080	9.2591
4.40	0.4255	22.4200	4.7685	4.7017	0.0995	10.0522
4.50	0.4236	23.4583	4.8119	4.8751	0.0917	10.9054
4.60	0.4217	24.5200	4.8532	5.0523	0.0846	11.8222
4.70	0.4199	25.6050	4.8926	5.2334	0.0781	12.8065
4.80	0.4183	26.7133	4.9301	5.4184	0.0721	13.8620
4.90	0.4167	27.8450	4.9659	5.6073	0.0667	14.9928
5.00	0.4152	29.0000	5.0000	5.8000	0.0617	16.2032

Table B.2: Normal shock relations for a perfect gas $\gamma=1.4$

Tabulated data obtained using Eqns. 9.57, 9.55, 9.58, and 9.59.

D Equations of Motion in Cylindrical Coordinates

The equations of motion of an incompressible newtonian fluid with constant μ , k, and C_p are given here in cylindrical coordinates (r, θ, z) , which are related to cartesian coordinates (x, y, z) as follows

$$z = r\cos\theta, \quad y = r\sin\theta \tag{D.1}$$

Continuity:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_\theta) + \frac{\partial}{\partial z}(v_z) = 0$$
(D.2)

Convective derivative:

$$\mathbf{V} \cdot \nabla = v_r \frac{\partial}{\partial r} + \frac{1}{r} v_\theta \frac{\partial}{\partial \theta} + v_z \frac{\partial}{\partial z}$$
(D.3)

Laplacian operator:

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$
(D.4)

The r-momentum equation:

$$\frac{\partial v_r}{\partial t} + (\mathbf{V} \cdot \nabla) v_r - \frac{1}{r} v_{\theta}^2 = -\frac{1}{\rho} \frac{\partial p}{\partial r} + g_r + \nu \left(\nabla^2 v_r - \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_{\theta}}{\partial \theta} \right) \tag{D.5}$$

The $\theta\text{-momentum}$ equation:

$$\frac{\partial v_{\theta}}{\partial t} + (\mathbf{V} \cdot \nabla) v_{\theta} - \frac{1}{r} v_r v_{\theta} = -\frac{1}{\rho r} \frac{\partial p}{\partial \theta} + g_{\theta} + \nu \left(\nabla^2 v_{\theta} - \frac{v_{\theta}}{r^2} - \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \right)$$
(D.6)

The z-momentum equation:

$$\frac{\partial v_z}{\partial t} + (\mathbf{V} \cdot \nabla) v_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z + \nu \nabla^2 v_z \tag{D.7}$$