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Control Surfaces
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Lift and Drag
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Lift and Drag
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Figure 5.6 Sketch of a typical lift curve.
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Lift and Drag - Pressure Coefficient
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Lift and Drag - Fuselage Lift

About the same as the lift on the
wing of planform area S, which

Lift on wing-body
combination :
includes that part of the wing
masked by the fuselage
b
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Lift and Drag

D= DDfeSSUfe + Driction + Dwave



Friction Drag
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Wave Drag - The Supercritical Airfoil

Relatively
strong shock

Relatively
weak shock
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NACA 64,-A215 airfoil
M., =0.69

Supercritical airfoil (13.5% thick)
M,=0.79



Wave Drag - The Supercritical Airfoil
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Critical Mach Number

Ml;o; Mpeas = 0.435
(a)
The critical Mach number is the My 0572
lowest freestream Mach number for .
which the flow will accelerate to @)
sonic conditions over the wing . m——l Myean = 1.0 sonic flow frst encountered on sirfoil
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Critical Pressure Coefficient

Cp at point of maximum velocity

{minimum pressure) on the airfoil
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Critical Pressure Coefficient

Thick C>
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C, at minimum pressure point on the airfoil
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Critical Pressure Coefficient
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—= Cp =-0412

$ Locally supersonic flow

Locally subsonic flow

M_ =0.808
R, =6.12x10°
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Finite Wing Span
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Induced Drag

The higher pressure on the lower
side of the wing leads to a flow
leakage over the wing tip

The flow below the wing has a
velocity component towards the
wing tip

The flow over the wing has a
velocity component towards the
fuselage

Streamline over
the top surface
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Induced Drag

Vortex
Low pressure
@
High pressure
The flow from high pressure regions Front view of wing

to low pressure regions forms a “
vortex at the wing tip

A net downwash flow is induced

Wing-tip
vortices

leading to a reduction of lift



Induced Drag - Downwash




Induced Drag

AR =b%/S
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High AR (low
induced drag)
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Induced Drag - Winglets




High-Lift Devices

A: Cruise configuration

g "
C: Landing configuration



High-Lift Devices - Flaps
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High-Lift Devices - Slats
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Swept Wings - Subsonic Aircraft

Voo | Mo
Assume that M., for
wing =0.7.
T
» The wing profile "sees” a flow with L(i_fmrrm. section
with Mg = 0.7
the Mach number normal to the 5
|eading edge Now sweep the same wing by 30°.
(a)
> Increases the critical freestream M for swept wing = —2T_

Mach number

» Possible to operate at higher Mach
number with lower drag

0.
= =0.808
0.866 2
Airfoil “sees” only
this component
of velocity,

Airfoil section
with Mg = 0.7

» Comes with the price of lower lift

(b)



Swept Wings - Supersonic Aircraft

If the wing is within the Mach angle
cone, the trailing-edge-normal flow
is subsonic




Swept Wings

Segment of
swept wing
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Swept Wings
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The Delta Wing

Secondary vortex

z el
T/'\ \/ e Primary vortex core
a

Secondary attachment line (A2)

Attachment streamline
Primary attachment line (A,)

Primary separation line (S; )/
Secondary separation line (5,)

leakage of flow from high-pressure regions to low-pressure regions leads to the
formation of vortices on the upper side of the wing



The Delta Wing
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Secondary vortex

z el
T/'\ \/ e Primary vortex core
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Secondary attachment line (A2)

Attachment streamline
Primary attachment line (A,)

Primary separation line (S; )/
Secondary separation line (5,)

The vortical structures on the upper side of the wing reduces the pressure
and increases lift



The Delta Wing

Visualization of vortex structures over a delta wing in a water tunnel experiment



The Delta Wing
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The Sound Barrier
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Area Rule
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Ax) with cross-sectional
area A = f(x)

Area distribution
(schematic only)




Area Rule

Designing the whole aircraft such
that the variation in cross-section
area is smooth reduces the peak in
drag near Mach 1

Planview

A(x)

Area distribution T~

(schematic only)




Area Rule

Without
area rule

With area
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Blended Wing Body




Blended Wing Body
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CHALLENGES
WITH AN INSIGHTRL GUESTION !

= .

50, KIDS, THE. AIR ABOVE THE WING
TRAVELS A LONGER DISTANCE, SO
T HAS To GO FASTER TO KEEF UR
FRSTER AR EXERTS LESS PRESSURE,
SOTHE WING 1S LIFTED UPLIARD.

BUT THEN WHY
CAM PLANES RY
UPSIDE DOWN?

RIGHT

Wow, GOoD QUESTION!
~MAYBE THIS PICTURE |5
SMPUIFIED—OR WRONG!
WE SHOULD LEARN MORE.

\

ITS... COMPUCATED.

Lnu{)mnsso

To MOVE ON.
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