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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D
k basic acoustics

Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
Explain how the equations for aero-acoustics and classical acoustics are
derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Chapter 7.3
Reflected Shock Wave



One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?



Shock Reflection
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Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the shock) will be affected
by the moving shock and follow the blue path
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Shock Reflection Relations

In the frame of reference of the reflected shock we have

velocity ahead of shock: W, + up

velocity behind shock: W,

where W, is the velocity of the reflected shock and v, is the induced flow velocity
behind the incident shock



Shock Reflection Relations

Continuity:
p2(Wr +Up) = psW;
Momentum:
P2 + p2(W; + Up)® = ps + psW7?
Energy:

1 1
ha + 5 (Wr +Up)? =hs + §Wr2



Shock Reflection Relations

Reflected shock is determined such that us = 0

M, Ms 2y — 1) 1
= 1 Mz —1 —
ME—1 M§—1¢ B CESIE AR v

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction
between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible,
thus prolonging the duration of condition 5



Tailored v.s. Non-Tailored Shock Reflection

shock wave
contact surface
expansion wave

®

under-tailored

®
®

wall

®

Under-tailored conditions:

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions

tailored

wall

over-tailored

wall




Shock Reflection - Example

Shock reflection in shock tube (y = 1.4)

(Example 7.1 in Anderson)

Given data

p2/p1 100
To/T1 2.623
DP1 1.0 bar
T1 300.0 K

Calculated data

Ms  2.95

M, 2.09

ps/p2  4.978

Ts/To 1.77




Shock Reflection - Shock Tube

Very high pressure and temperature conditions in a specified location with very
high precision (o5, T5)

measurements of thermodynamic properties of various gases at extreme
conditions, e.g. dissociation energies, molecular relaxation times, etc.

measurements of chemical reaction properties of various gas mixtures at extreme
conditions
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The Shock Tube



Shock Tube

diaphragm

l

| ® | ®

P4

P1

T

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > p1:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube - Basic Principles

As the diaphragm is removed, a pressure discontinuity is generated

The only process that can generate a pressure discontinuity in the gas is a
shock

In chapter 3 we learned that the velocity upstream of the shock must be
supersonic

Since the gas is standing still when the shock tube is started, the shock must
move in order to establish the required relative velocity

The shock must move in to the gas with the lower pressure



Shock Tube - Basic Principles

By using light gases for the driver section (e.9. He) and heavier gases for the
driven section (e.g. air) the pressure p,4 required for a specific ps/p; ratio is
significantly reduced

If T4/ T is increased, the pressure p,4 required for a specific p2/p; is also
reduced
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves - Sound Pressure Level

sound wave L, [dB] Ap [Pa]
Weakest audible sound wave 0 2.83x107°
Loud sound wave 91 1.00 x 10°
Amplified music 120 2.80 x 10!
Jet engine @ 30 m 130 9.00 x 10*
Threshold of pain 140 2.83 x 102
Military jet @ 30 m 150 8.90 x 10?

Example (Loud sound wave):

Ap ~ 1 Pa (91 dB) gives Ap ~ 8.5 x 1075 kg/m* and Au ~ 2.4 x 10~% m/s



Sound Waves - Acoustic Analogy

Schlieren flow visualization of self-sustained
oscillation of an under-expanded free jet




Sound Waves - Acoustic Analogy

Screeching rectangular supersonic jet




Elements of Acoustic Theory

PDE:s for conservation of mass and momentum derived in Chapter 6:

conservation form non-conservation form
% v (v =0 8 p(vv =0

mass — . (pv) = _ V) =
ot v Dt r

15} v
momentum o (pv) + V - (pvww+pI) =0 p— +Vp=0
C




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Assume one-dimensional flow

T <D

I

Ds
i = 0
o dp op ou
continuity i + u& + pa =0
ou ou  op
momentum pﬁ + pua—x + x 0

s=constant




Elements of Acoustic Theory

- dp ap ou
continuit — =0
Yo o Yok TPax
ou ou op
t — — 4+ —=0
momentum pat + puax + 3
s=constant

More unknowns than equations = the equation system can not be solved

Can g—i be expressed in terms of density?

Leading question; it is possible so let’s do just that ...



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any two
other state variables

) () 4 (P
b =p(p.s) = db = <ap)sd”+ <8s>pds

s=constant gives



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P = poo + Ap P =Poc + AP T =Tc + AT U=Uso + AU = {Uss =0} = Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

6] el o
—(Ap) + Au— (Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6X( )

15} o 15}
(Pos + Ap) —(AU) + (poo + Ap)Au— (AU) +8° — (Ap) =0
ot ox Ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P = poo + Ap P =Poc + AP T =Tc + AT U=Uso + AU = {Uss =0} = Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

) 2 )
—(Ap) + Au— (Ap) + + Ap)—(Au) = 0
at( p) Bx( p) + (P p)aX( )

=
2] 2] 2 0
(oo + Ap) — (AU) + (poo + Ap)Au— (A +a% —(Ap) =0
ot ox ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable = a? = a*(p, s). With entropy
constant = a* = a*(p)

Taylor expansion around a», With (Ap = p — pso) gives

2= a2 + (;p(a%)w Aoty <§;(32))m () + ...

fo] Iol o
— (A Au— (A Ap)—(Au) =0
{ o5 (80) + AU (2p) + (poo + Ap) = ()
=

( +A)3<Au)+( +A)Au3(Au)+ a> +(i(a2)> Ap+ 2(A):o
Poo 2 Poo pIAUZ s % ~ Pt (B



Elements of Acoustic Theory - Acoustic Equations
Since Ap and Au are assumed to be small (Ap < poo, AU <K Q)

1. products of perturbations can be neglected
2. higher-order terms in the Taylor expansion can be neglected

O (Au) =

0
57 (AP) + poo

0

9 (a0 =0

8
Au +a

Poo bt

Note! The assumption is only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

(combine the time derivative of the continuity egn. and the divergence of the momentum eqn.)
General solution:

Ap(X,t) = F(X — acot) + G(X + acol)

wave traveling in wave traveling in
positive x-direction negative x-direction
with speed aoo with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

oF oF O(X — anol)
ot (X — axt) ot

oF oF O(X —ast)
Ox  O(x —ast)  Ox

spatial and temporal derivatives of G can of course be obtained in the same way...



Elements of Acoustic Theory - Wave Equation

F(x —axt) + G(x + axt) and the derivatives of F and G we get

with Ap(x,t) =
02
8t2(Ap) aZOF” +a§OG”
and
82
@(Ap) — F// + G//
which gives
0? 0?2
22 (Ap) —as a 5 (Ap) =

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — anot)

If Ap is constant (constant wave amplitude), (x — at) must be a constant which
implies
X =asl+cC

where ¢ is a constant

*_,
a



Elements of Acoustic Theory - Wave Equation

Let’s try to find a relation between Ap and Au

Ap(x,t) = F(x — ant) (wave in positive x direction) gives:

) 0
~(Ap) = —axF’ o (Ap) =F
8t and 8)(
B, )
—— ——
—aooF’ F’
or
) 10
“Z(Ap) = ——
8x( p) Q. at( p)



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

o) )
o= (A —a’, —(A
poo g (AU) = —a5 - (Ap) =

2
(a0 === 2 an) = { 2ap) = - San | = 2= 2 )

Poo OX oo O Poo OF
9 (A — Ap) =0= Au— aioAp = const

In undisturbed gas Au = Ap = 0 which implies that the constant must be zero and
thus

a
Au=">Ap
Poc




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction) we obtain:

Au=—22n,
Poo
Also, since Ap = a2 Ap we get:
. , , . Ao 1

Right going wave (+x direction) Au=—Ap= o Ap

Poo oo Poo
. . . oo 1
Left going wave (-x direction) Au=-——Ap=— Ap

Poo Ao Poo



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the positive x-direction

Au = iaooAp =

A
+ Qo
Poo Ao Poo

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the direction opposite to the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

Due to the assumptions made, the equation is not exact
More and more accurate as the perturbations becomes smaller and smaller

So, how should we describe waves with larger amplitudes”?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic equations become
poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations:

dp 8p ou
ot Yok TPax 0

ou ou 10p

E—i_uax—i_pax




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

Op _(9p) b _ 10p o _
ot \op/), ot aot ox
Inserted in the continuity equation this gives:
op ap 50U
ou_ ou 10p
ot ox  pox

(

dp
op

)

o _1ap
S Ox  azox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum equation:

ou ou 1 [odp op|
[at (u+a )ax:|+|:8t+( +a)8x}o

If we instead subtract 1/(pa) times the continuity equation from the momentum
equation, we get:

o -] e

e Rk SR B



Finite (Non-Linear) Waves

Since u = u(x,t), we have:

8u au 8u ou dx

ax )
Let P =Uu+agives
ou ou

. . adx
Interpretation: change of u in the direction of line i u+a



Finite (Non-Linear) Waves

In the same way we get:

_Op op dx

dp = Edt + aadt
and thus
_|op op
ap = {81‘ + (u+a)ax] dt

. . L . ax
Interpretation: change of p in the direction of line g u-+a



Finite (Non-Linear) Waves

Now, if we combine

ou +turad
ot ox
dU - |:af
ap
dp = {81‘

we get




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{dqudpo}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

We have found a path through a point (x, t) along which the governing partial
differential equations reduces to ordinary differential equations

These paths or lines are called characteristic lines

The Ct and C~ characteristic lines are physically the paths of right- and
left-running acoustic waves in the xt-plane



Characteristic Lines

_ o ax
C™ characteristic line: — =u-—a
dt
- ) dp
t compatibility equation: du— — =0
pa

/

+ - ax
C™ characteristic line: a =u+a
. dp
compatibility equation: du+ — =0
pa
VX

X1



Characteristic Lines - Summary

au 1 dp .
—+——=0 a + characterist
Ot + oa df along C™ characteristic
du 1d -
g pao’ﬁt) =0 along C~ characteristic
dp n _
au + p—a =0 along C" characteristic
o/
au — —Z =0 along C~ characteristic
P




Riemann Invariants

Integration gives:

a -
JT=u+ / —5 = constant along C* characteristic
P

a .
J =u-— / —Z = constant along C™~ characteristic
p

We need to rewrite do to be able to perform the integrations

pa



Riemann Invariants

For an isentropic processes the isentropic relations give:

p =c TV = cyg27/(v=1)
where ¢ and ¢y are constants and thus

ap =co < 271> al2v/(v=1)-1] 44

Assume calorically perfect gas: a*> = _® =p= Zg
P

with p = 282"/~ we get p = coyal2/ (=12



Riemann Invariants

2y

27 ) 512v/(v=1)-1]
C2(5-1)4 20
J+:u+/d§:u+/ (7 1) da:u+/ a
12

coyal2y/(v=1)-1] v —1




Riemann Invariants

If JT and J~ are known at some point (x, t), then

Jt 4 =au b= U d)

4a

+ g = -1
J J —7_1 a:L(J-&-_J—)

With the Riemann invariants known, the flow state is uniquely defined!



Method of Characteristics

t

1
tn

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here




Summary

Acoustic waves

. Ap, Au, etc - very small

. All parts of the wave propagate with
the same velocity a.,

. The wave shape stays the same

. The flow is governed by linear
relations

Finite (non-linear) waves

. Ap, Au, etc - can be large

. Each local part of the wave

propagates at the local velocity
u+a)

. The wave shape changes with

time

. The flow is governed by non-linear

relations



Summary

the method of characteristics is a central element in classic compressible flow theory



e

“It's time we face reality, my friend. ... We're not
exactly rocket scientists,”
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