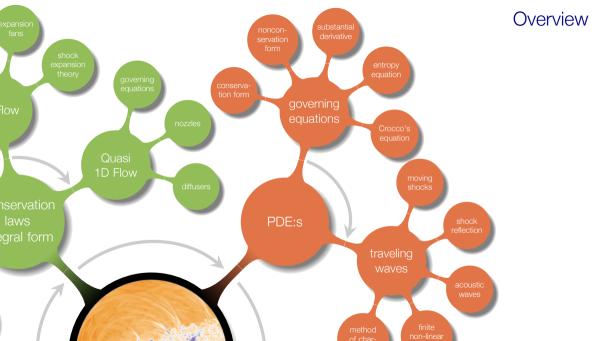
Compressible Flow - TME085 Lecture 11

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

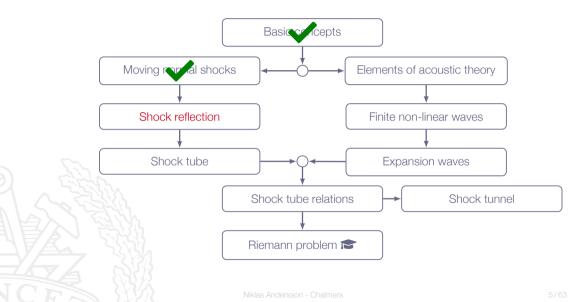
Chapter 7 - Unsteady Wave Motion



Learning Outcomes

- 3 **Describe** typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - unsteady waves and discontinuities in 1D
 - basic acoustics
 - **Solve** engineering problems involving the above-mentioned phenomena (8a-8k) **Explain** how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations
 - moving normal shocks frame of reference seems to be the key here?!

Roadmap - Unsteady Wave Motion



Chapter 7.3 Reflected Shock Wave

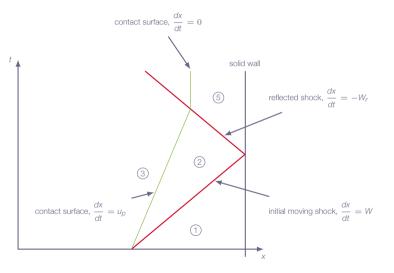
Niklas Andersson - Chalmers

One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?

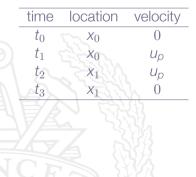
Niklas Andersson - Chalmers

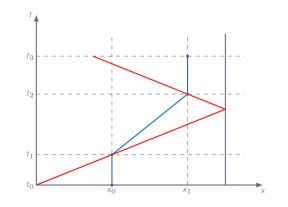
Shock Reflection



Shock Reflection - Particle Path

A fluid particle located at x_0 at time t_0 (a location ahead of the shock) will be affected by the moving shock and follow the blue path





Shock Reflection Relations

In the frame of reference of the reflected shock we have

```
velocity ahead of shock: W_r + u_p
```

velocity behind shock: Wr

where W_r is the velocity of the reflected shock and u_p is the induced flow velocity behind the incident shock

Shock Reflection Relations

Continuity:

 $\rho_2(W_r + u_p) = \rho_5 W_r$

Momentum:

$$D_2 + \rho_2 (W_r + u_p)^2 = \rho_5 + \rho_5 W_r^2$$

$$h_2 + \frac{1}{2}(W_r + u_p)^2 = h_5 + \frac{1}{2}W_r^2$$

Shock Reflection Relations

Reflected shock is determined such that $u_5 = 0$

$$\frac{M_r}{M_r^2 - 1} = \frac{M_s}{M_s^2 - 1} \sqrt{1 + \frac{2(\gamma - 1)}{(\gamma + 1)^2} (M_s^2 - 1) \left(\gamma + \frac{1}{M_s^2}\right)}$$

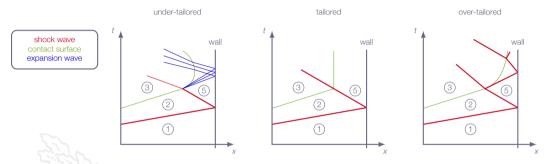
$$M_r = \frac{W_r + u_p}{a_2}$$

Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible, thus prolonging the duration of condition 5

Tailored v.s. Non-Tailored Shock Reflection



Under-tailored conditions:

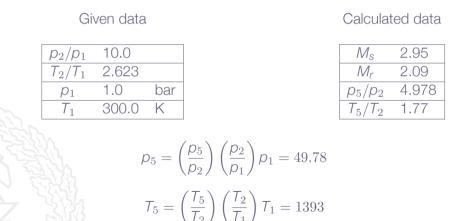
Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions

Shock Reflection - Example

Shock reflection in shock tube ($\gamma=1.4)$ (Example 7.1 in Anderson)



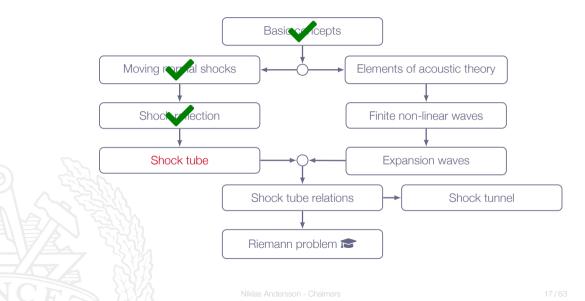
Niklas Andersson - Chalmers

Very high pressure and temperature conditions in a specified location with very high precision (p_5, T_5)

measurements of thermodynamic properties of various gases at extreme conditions, *e.g.* dissociation energies, molecular relaxation times, etc.

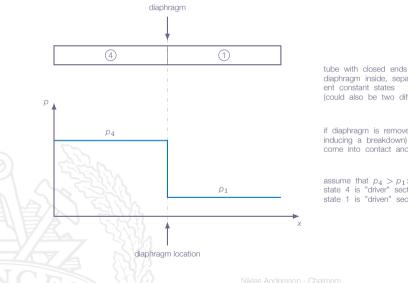
measurements of chemical reaction properties of various gas mixtures at extreme conditions

Roadmap - Unsteady Wave Motion



The Shock Tube

Shock Tube

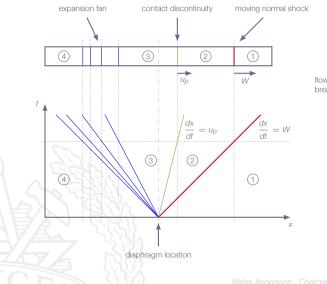


diaphragm inside, separating two different constant states (could also be two different gases)

if diaphragm is removed suddenly (by inducing a breakdown) the two states come into contact and a flow develops

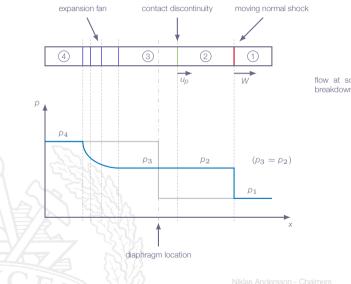
assume that $p_4 > p_1$: state 4 is "driver" section state 1 is "driven" section

Shock Tube



flow at some time after diaphragm breakdown

Shock Tube



flow at some time after diaphragm breakdown

Shock Tube - Basic Principles

As the diaphragm is removed, a pressure discontinuity is generated

The only process that can generate a pressure **discontinuity** in the gas is a **shock**

In chapter 3 we learned that the velocity upstream of the shock **must be supersonic**

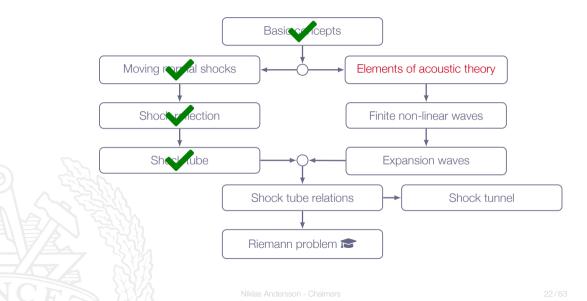
Since the gas is standing still when the shock tube is started, **the shock must move** in order to establish the required **relative velocity**

The shock must move in to the gas with the lower pressure

By using light gases for the **driver section** (*e.g.* He) and heavier gases for the **driven section** (*e.g.* air) the pressure p_4 required for a specific p_2/p_1 ratio is significantly reduced

If T_4/T_1 is increased, the pressure p_4 required for a specific p_2/p_1 is also reduced

Roadmap - Unsteady Wave Motion



Chapter 7.5 Elements of Acoustic Theory

Sound Waves - Sound Pressure Level

sound wave	L_p [dB]	Δp [Pa]
Weakest audible sound wave	0	2.83×10^{-5}
Loud sound wave	91	$1.00 imes 10^0$
Amplified music	120	2.80×10^1
Jet engine @ 30 m	130	9.00×10^1
Threshold of pain	140	2.83×10^2
Military jet @ 30 m	150	8.90×10^2

Example (Loud sound wave):

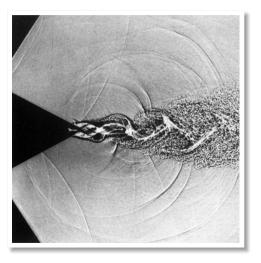
 $\Delta \rho \sim$ 1 Pa (91 dB) gives $\Delta \rho \sim 8.5 \times 10^{-6}$ kg/m³ and $\Delta u \sim 2.4 \times 10^{-3}$ m/s

Sound Waves - Acoustic Analogy

Schlieren flow visualization of self-sustained oscillation of an under-expanded free jet

A. Hirschberg

"Introduction to aero-acoustics of internal flows", Advances in Aeroacoustics, VKI, 12-16 March 2001



Sound Waves - Acoustic Analogy

Screeching rectangular supersonic jet

PDE:s for conservation of mass and momentum derived in Chapter 6:

	conservation form	non-conservation form
mass	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$	$\frac{D\rho}{Dt} + \rho(\nabla \cdot \mathbf{v}) = 0$
momentum	$\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + \rho \mathbf{I}) = 0$	$\rho \frac{D\mathbf{v}}{Dt} + \nabla \rho = 0$

Niklas Andersson - Chalmer

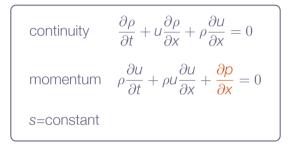
For adiabatic inviscid flow we also have the entropy equation as

 $\frac{Ds}{Dt} = 0$

Assume one-dimensional flow

$$\left. \begin{array}{cc}
\rho &= \rho(\mathbf{x},t) \\
\mathbf{v} &= u(\mathbf{x},t)\mathbf{e}_{\mathbf{x}} \\
\rho &= \rho(\mathbf{x},t) \\
\dots \end{array} \right\} \Rightarrow$$

continuity $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$ momentum $\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = 0$ *s*=constant



More unknowns than equations \Rightarrow the equation system can not be solved Can $\frac{\partial \rho}{\partial x}$ be expressed in terms of density? Leading question; it is possible so let's do just that ...

From Chapter 1: any thermodynamic state variable is uniquely defined by any two other state variables

$$p = p(\rho, s) \Rightarrow dp = \left(\frac{\partial p}{\partial \rho}\right)_s d\rho + \left(\frac{\partial p}{\partial s}\right)_\rho ds$$

s=constant gives

$$dp = \left(rac{\partial
ho}{\partial
ho}
ight)_{
m S} d
ho = a^2 d
ho$$

$$\Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0\\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + a^2 \frac{\partial \rho}{\partial x} = 0 \end{cases}$$

Niklas Andersson - Chalmers

Assume **small perturbations** around stagnant reference condition:

 $\rho = \rho_{\infty} + \Delta \rho \qquad p = p_{\infty} + \Delta p \qquad T = T_{\infty} + \Delta T \qquad u = u_{\infty} + \Delta u = \{u_{\infty} = 0\} = \Delta u$

where ρ_{∞} , p_{∞} , and T_{∞} are constant

Now, insert $\rho = (\rho_{\infty} + \Delta \rho)$ and $u = \Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t} (\Delta \rho) + \Delta u \frac{\partial}{\partial x} (\Delta \rho) + (\rho_{\infty} + \Delta \rho) \frac{\partial}{\partial x} (\Delta u) = 0 \\ (\rho_{\infty} + \Delta \rho) \frac{\partial}{\partial t} (\Delta u) + (\rho_{\infty} + \Delta \rho) \Delta u \frac{\partial}{\partial x} (\Delta u) + a^2 \frac{\partial}{\partial x} (\Delta \rho) = 0 \end{cases}$$

Assume **small perturbations** around stagnant reference condition:

 $\rho = \rho_{\infty} + \Delta \rho \qquad p = p_{\infty} + \Delta p \qquad T = T_{\infty} + \Delta T \qquad u = u_{\infty} + \Delta u = \{u_{\infty} = 0\} = \Delta u$

where ρ_{∞} , p_{∞} , and T_{∞} are constant

Now, insert $\rho = (\rho_{\infty} + \Delta \rho)$ and $u = \Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t}(\Delta\rho) + \Delta u \frac{\partial}{\partial x}(\Delta\rho) + (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial x}(\Delta u) = 0\\ (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial t}(\Delta u) + (\rho_{\infty} + \Delta\rho) \Delta u \frac{\partial}{\partial x}(\Delta u) + a^{2} \frac{\partial}{\partial x}(\Delta\rho) = 0 \end{cases}$$

Speed of sound is a thermodynamic state variable $\Rightarrow a^2 = a^2(\rho, s)$. With entropy constant $\Rightarrow a^2 = a^2(\rho)$

Taylor expansion around a_∞ with $(\Delta\rho=\rho-\rho_\infty)$ gives

$$a^{2} = a_{\infty}^{2} + \left(\frac{\partial}{\partial\rho}(a^{2})\right)_{\infty} \Delta\rho + \frac{1}{2} \left(\frac{\partial^{2}}{\partial\rho^{2}}(a^{2})\right)_{\infty} (\Delta\rho)^{2} + \dots$$

$$\begin{cases} \frac{\partial}{\partial t}(\Delta\rho) + \Delta u \frac{\partial}{\partial x}(\Delta\rho) + (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial x}(\Delta u) = 0\\ (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial t}(\Delta u) + (\rho_{\infty} + \Delta\rho) \Delta u \frac{\partial}{\partial x}(\Delta u) + \left[a_{\infty}^{2} + \left(\frac{\partial}{\partial\rho}(a^{2})\right)_{\infty} \Delta\rho + \dots\right] \frac{\partial}{\partial x}(\Delta\rho) = 0 \end{cases}$$

Elements of Acoustic Theory - Acoustic Equations

Since $\Delta \rho$ and Δu are assumed to be small ($\Delta \rho \ll \rho_{\infty}$, $\Delta u \ll a$)

- 1. products of perturbations can be neglected
- 2. higher-order terms in the Taylor expansion can be neglected

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t}(\Delta \rho) + \rho_{\infty}\frac{\partial}{\partial x}(\Delta u) = 0\\ \rho_{\infty}\frac{\partial}{\partial t}(\Delta u) + a_{\infty}^{2}\frac{\partial}{\partial x}(\Delta \rho) = 0 \end{cases}$$

Note! The assumption is only valid for small perturbations (sound waves)

This type of derivation is based on linearization, *i.e.* the acoustic equations are linear

Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

"... describe the motion of gas induced by the passage of a sound wave ..."

Combining linearized continuity and the momentum equations we get

$$\boxed{\frac{\partial^2}{\partial t^2}(\Delta \rho) = a_\infty^2 \frac{\partial^2}{\partial x^2}(\Delta \rho)}$$

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

$$\Delta \rho(x,t) = F(x - a_{\infty}t) + G(x + a_{\infty}t)$$

wave traveling in positive *x*-direction with speed a_{∞}

wave traveling in negative *x*-direction with speed a_{∞}

F and G may be arbitrary functions

Wave shape is determined by functions F and G

Spatial and temporal derivatives of F are obtained according to

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial (x - a_{\infty}t)} \frac{\partial (x - a_{\infty}t)}{\partial t} = -a_{\infty}F'$$
$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial (x - a_{\infty}t)} \frac{\partial (x - a_{\infty}t)}{\partial x} = F'$$

spatial and temporal derivatives of G can of course be obtained in the same way...

with $\Delta \rho(x,t) = F(x - a_{\infty}t) + G(x + a_{\infty}t)$ and the derivatives of *F* and *G* we get

$$\frac{\partial^2}{\partial t^2}(\Delta\rho) = a_\infty^2 F'' + a_\infty^2 G''$$

and

$$\frac{\partial^2}{\partial x^2}(\Delta \rho) = F'' + G''$$

which gives

$$\frac{\partial^2}{\partial t^2}(\Delta \rho) - a_{\infty}^2 \frac{\partial^2}{\partial x^2}(\Delta \rho) = 0$$

i.e., the proposed solution fulfils the wave equation

Niklas Andersson - Chalmers

F and *G* may be arbitrary functions, assume G = 0

 $\Delta \rho(\mathbf{x}, t) = F(\mathbf{x} - \mathbf{a}_{\infty} t)$

If $\Delta \rho$ is constant (constant wave amplitude), $(x - a_{\infty}t)$ must be a constant which implies

where *c* is a constant

$$x = a_{\infty}t + c$$

 $\frac{dx}{dt} = a_{\infty}$

Let's try to find a relation between $\Delta \rho$ and Δu

 $\Delta \rho(x,t) = F(x - a_{\infty}t)$ (wave in positive *x* direction) gives:

 $\frac{\partial}{\partial t}(\Delta \rho) = -a_{\infty}F'$ and $\frac{\partial}{\partial x}(\Delta \rho) = F'$

$$\underbrace{\frac{\partial}{\partial t}(\Delta \rho)}_{-a_{\infty}F'} + a_{\infty} \underbrace{\frac{\partial}{\partial x}(\Delta \rho)}_{F'} = 0$$

 $\frac{\partial}{\partial \mathbf{x}}(\Delta \rho) = -\frac{1}{a} \frac{\partial}{\partial t}(\Delta \rho)$

Niklas Andersson - Chalmers

Linearized momentum equation:

$$\rho_{\infty}\frac{\partial}{\partial t}(\Delta u) = -a_{\infty}^{2}\frac{\partial}{\partial x}(\Delta \rho) \Rightarrow$$

$$\frac{\partial}{\partial t}(\Delta U) = -\frac{a_{\infty}^2}{\rho_{\infty}}\frac{\partial}{\partial x}(\Delta \rho) = \left\{\frac{\partial}{\partial x}(\Delta \rho) = -\frac{1}{a_{\infty}}\frac{\partial}{\partial t}(\Delta \rho)\right\} = \frac{a_{\infty}}{\rho_{\infty}}\frac{\partial}{\partial t}(\Delta \rho)$$

$$\frac{\partial}{\partial t} \left(\Delta u - \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho \right) = 0 \Rightarrow \Delta u - \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho = \text{const}$$

In undisturbed gas $\Delta u = \Delta \rho = 0$ which implies that the constant must be zero and thus

$$\Delta u = \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho$$

Niklas Andersson - Chalmers

Similarly, for $\Delta \rho(x,t) = G(x + a_{\infty}t)$ (wave in negative *x* direction) we obtain:

$$\boxed{\Delta u = -\frac{a_{\infty}}{\rho_{\infty}}\Delta\rho}$$

Also, since $\Delta p = a_{\infty}^2 \Delta \rho$ we get:

Right going wave (+x direction)
$$\Delta u = \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho = \frac{1}{a_{\infty}\rho_{\infty}} \Delta \rho$$

Left going wave

(-x direction)
$$\Delta u = -\frac{a_{\infty}}{\rho_{\infty}}\Delta \rho = -\frac{1}{a_{\infty}\rho_{\infty}}\Delta \rho$$

 Δu denotes **induced mass motion** and is positive in the positive *x*-direction

$$\Delta u = \pm \frac{a_{\infty} \Delta \rho}{\rho_{\infty}} = \pm \frac{\Delta \rho}{a_{\infty} \rho_{\infty}}$$

condensation (the part of the sound wave where $\Delta \rho > 0$): Δu is always in the **same** direction as the wave motion

rarefaction (the part of the sound wave where $\Delta \rho < 0$): Δu is always in the direction **opposite** to the wave motion

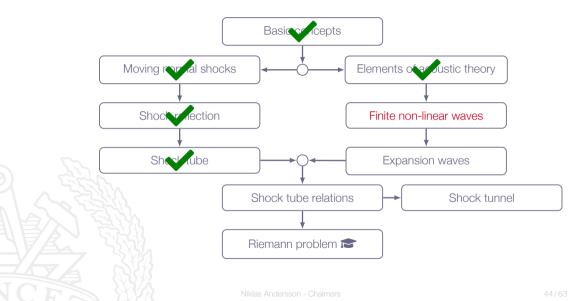
Combining linearized continuity and the momentum equations we get

$$\boxed{\frac{\partial^2}{\partial t^2}(\Delta \rho) = a_{\infty}^2 \frac{\partial^2}{\partial x^2}(\Delta \rho)}$$

Due to the assumptions made, the **equation is not exact** More and more accurate as the perturbations becomes smaller and smaller

So, how should we describe waves with larger amplitudes?

Roadmap - Unsteady Wave Motion



Chapter 7.6 Finite (Non-Linear) Waves

When $\Delta \rho$, Δu , Δp , ... Become large, the **linearized acoustic equations become poor approximations**

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations:

$$\frac{\frac{\partial \rho}{\partial t} + u\frac{\partial \rho}{\partial x} + \rho\frac{\partial u}{\partial x} = 0}{\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{1}{\rho}\frac{\partial \rho}{\partial x} = 0}$$

We still assume isentropic flow, ds = 0

$$\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \rho}\right)_s \frac{\partial \rho}{\partial t} = \frac{1}{a^2} \frac{\partial \rho}{\partial t}$$

$$\frac{\partial \rho}{\partial x} = \left(\frac{\partial \rho}{\partial p}\right)_{s} \frac{\partial p}{\partial x} = \frac{1}{a^{2}} \frac{\partial p}{\partial x}$$

Inserted in the continuity equation this gives:

$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho a^2 \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$

Add $1/(\rho a)$ times the continuity equation to the momentum equation:

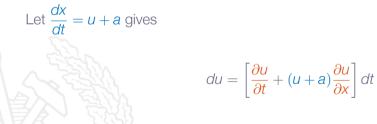
$$\left[\frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x}\right] + \frac{1}{\rho a}\left[\frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x}\right] = 0$$

If we instead **subtract** $1/(\rho a)$ times the continuity equation from the momentum equation, we get:

$$\left[\frac{\partial u}{\partial t} + (u-a)\frac{\partial u}{\partial x}\right] - \frac{1}{\rho a}\left[\frac{\partial p}{\partial t} + (u-a)\frac{\partial p}{\partial x}\right] = 0$$

Since u = u(x, t), we have:

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial x}dx = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial x}\frac{dx}{dt}dt$$



Interpretation: change of u in the direction of line $\frac{dx}{dt} = u + a$

Niklas Andersson - Chalmers

In the same way we get:

$$dp = \frac{\partial p}{\partial t}dt + \frac{\partial p}{\partial x}\frac{dx}{dt}dt$$

and thus

$$dp = \left[rac{\partial p}{\partial t} + (u+a)rac{\partial p}{\partial x}
ight] dt$$

Interpretation: change of p in the direction of line $\frac{dx}{dt} = u + a$

Now, if we combine

$$\begin{bmatrix} \frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x} \end{bmatrix} + \frac{1}{\rho a} \begin{bmatrix} \frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x} \end{bmatrix} = 0$$
$$du = \begin{bmatrix} \frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x} \end{bmatrix} dt$$
$$dp = \begin{bmatrix} \frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x} \end{bmatrix} dt$$
$$\begin{bmatrix} \frac{\partial u}{\partial t} + \frac{1}{\rho a}\frac{dp}{dt} = 0 \end{bmatrix}$$

Characteristic Lines

Thus, along a line dx = (u + a)dt we have

$$du + \frac{dp}{\rho a} = 0$$

In the same way we get along a line where dx = (u - a)dt

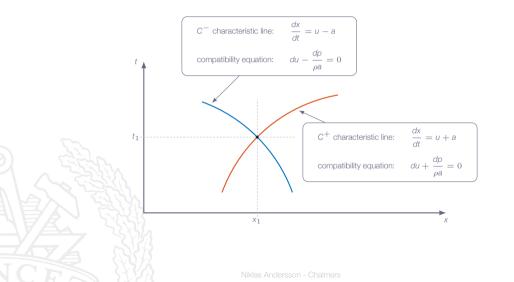
$$du - \frac{dp}{\rho a} = 0$$

We have found a path through a point (x, t) along which the governing partial differential equations reduces to ordinary differential equations

These paths or lines are called characteristic lines

The C^+ and C^- characteristic lines are physically the paths of **right- and left-running acoustic waves** in the *xt*-plane

Characteristic Lines



Characteristic Lines - Summary

$$\frac{du}{dt} + \frac{1}{\rho a} \frac{dp}{dt} = 0 \quad \text{along } C^+ \text{ characteristic}$$
$$\frac{du}{dt} - \frac{1}{\rho a} \frac{dp}{dt} = 0 \quad \text{along } C^- \text{ characteristic}$$

$$du + \frac{dp}{\rho a} = 0 \quad \text{along } C^+ \text{ characteristic}$$
$$du - \frac{dp}{\rho a} = 0 \quad \text{along } C^- \text{ characteristic}$$

Integration gives:

$$J^+ = u + \int \frac{dp}{\rho a} = \text{constant along } C^+ \text{ characteristic}$$

 $J^- = u - \int \frac{dp}{\rho a} = \text{constant along } C^- \text{ characteristic}$

We need to rewrite $\frac{dp}{\rho a}$ to be able to perform the integrations

For an isentropic processes the **isentropic relations** give:

$$p = c_1 T^{\gamma/(\gamma-1)} = c_2 a^{2\gamma/(\gamma-1)}$$

where c_1 and c_2 are constants and thus

$$d
ho=c_2\left(rac{2\gamma}{\gamma-1}
ight)a^{[2\gamma/(\gamma-1)-1]}da$$

Assume calorically perfect gas: $a^2 = \frac{\gamma \rho}{\rho} \Rightarrow \rho = \frac{\gamma \rho}{a^2}$

with $\rho = c_2 a^{2\gamma/(\gamma-1)}$ we get $\rho = c_2 \gamma a^{[2\gamma/(\gamma-1)-2]}$

$$J^{+} = u + \int \frac{dp}{\rho a} = u + \int \frac{C_{2}\left(\frac{2\gamma}{\gamma-1}\right)a^{[2\gamma/(\gamma-1)-1]}}{C_{2}\gamma a^{[2\gamma/(\gamma-1)-1]}}da = u + \int \frac{2da}{\gamma-1}$$

$$J^{+} = u + \frac{2a}{\gamma - 1}$$
$$J^{-} = u - \frac{2a}{\gamma - 1}$$

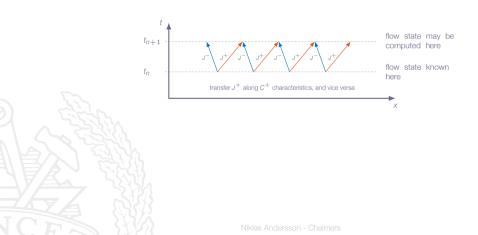
Niklas Andersson - Chalmers

If J^+ and J^- are known at some point (x, t), then

$$\begin{cases} J^{+} + J^{-} = 2u \\ J^{+} - J^{-} = \frac{4a}{\gamma - 1} \end{cases} \Rightarrow \begin{cases} u = \frac{1}{2}(J^{+} + J^{-}) \\ a = \frac{\gamma - 1}{4}(J^{+} - J^{-}) \end{cases}$$

With the Riemann invariants known, the flow state is uniquely defined!

Method of Characteristics



Summary

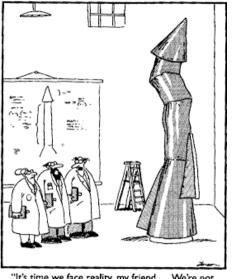
Acoustic waves

- 1. $\Delta \rho$, Δu , etc **very small**
- 2. All parts of the wave propagate with the same **velocity** a_{∞}
- 3. The wave shape stays the same
 - The flow is governed by linear relations

Finite (non-linear) waves

- 1. $\Delta \rho$, Δu , etc can be **large**
- 2. Each local part of the wave propagates at the **local velocity** (u + a)
- 3. The wave **shape changes** with time
- 4. The flow is governed by **non-linear** relations

the method of characteristics is a central element in classic compressible flow theory



"It's time we face reality, my friend. ... We're not exactly rocket scientists."