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Chapter 5 - Quasi-One-Dimensional Flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and

real gas and explain the implication of each of these special cases

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

what does quasi-1D mean? either the flow is 1D or not, or?
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Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can

study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional

we will be able to establish important relations using the quasi-one-dimensional

approach
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Quasi-One-Dimensional Flow

Chapter 3

overall assumption

one-dimensional flow

steady state

constant cross-section area

applications

normal shock

1D flow with heat addition

1D flow with friction

Chapter 4

overall assumption

two-dimensional flow

steady state

uniform freestream

applications

oblique shocks

expansion fans

shock-expansion theory
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Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in streamtube area

(steady-state flow assumption still applied)

streamtube area A(x)

x
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Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)

x
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Quasi-One-Dimensional Flow - Nozzle Flow
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Numerical Simulation of Stirling

Engines Using an Unsteady

Quasi-One-Dimensional

ApproachAn existing computer code for solving the quasi-one-dimensional (Q1D) flow equations

governing unsteady compressible flow in tubes with smoothly varying cross section areas

has been adapted to the simulation of the oscillatory flow in Stirling engines for engine

design purposes. By utilizing an efficient smoothing algorithm for the area function that

preserves the total volume of the tube, it has been possible to achieve a highly accurate

and fully conservative numerical scheme. Submodels for wall friction and heat transfer

have been added, enabling the simulation of gas heaters, gas coolers, and regenerators.

The code has been used for the modeling of an a-type Stirling engine and validated for a

range of operating conditions with good results. [DOI: 10.1115/1.4029396]

1 Introduction
The detailed oscillatory flow inside Stirling engines is challeng-

ing to simulate numerically due to the complex geometry and the

complex physics. For example, there are cylinders with cyclic vol-

ume changes, tubes with sudden area changes, heat exchangers,

regenerators, and unsteady flow effects. The working medium, an

enclosed gas, is usually helium or hydrogen, and part of the ther-

modynamic cycle often lies in a regime with real gas effects. The

flow is in general subsonic, but the large pressure fluctuations still

induce significant compressibility effects.

Traditional design or analysis tools for Stirling engines are

based on simplified modeling concepts, where the pressure is

determined by the overall volume of the system and the pipe flow

is regarded as being quasi-stationary [1–3]. This leads to very fast

methods, but their ability to predict correct trends is questionable.

There have been some attempts to model the pipe flow in a more

detailed manner, based on a Q1D approach [4–6]. However, the

discretizations used have been rather coarse and/or the treatment

of sudden area changes has not been satisfactory. Furthermore,

full compressibility effects have often not been taken into

account. A review of “low-order” methods can be found in Ref.

[7].
It is in principle possible to use currently available three-dimen-

sional (3D) computational fluid dynamics (CFD) solvers for this

type of problem. However, the cost of such a 3D simulation would

be quite high, and would mainly be of interest as a means of

increasing the understanding of some of the details of the flow,

detailed analyses of engine subsystems, or verification analyses

done at late design stages. There are quite a few examples in the

literature where 3D CFD has been used for investigation of the

flow in Stirling engines [7–11]. Chen et al. [8] did an in-depth

investigation of a c-type Stirling engine in order to gain under-

standing of the heat transfer characteristics using a 3D CFD

approach based on laminar compressible Navier–Stokes. Salazar

and Chen [9] studied a b-type engine using axisymmetric CFD.

Costa et al. [10] did a detailed study of the pressure drop and the

heat transfer processes in a wound-woven wire matrix regenerator.

Mahkamov [7] investigated the working process of a solar Stirling

engine using axisymmetric CFD solving the Reynolds-Averaged

Navier–Stokes equations with a k-e turbulence model. A compari-

son with “lower-order” methods was conducted and showed that

the chosen approach gave a more accurate prediction of the per-

formance of the engine.

For system design purposes, a 3D CFD tool is currently not fea-

sible due to demands for large computer resources. The aim of the

work reported in the present publication is to develop a numerical

tool that can be used for optimization purposes, which further

increases the demands for low computational cost. It should be

noted, however, that in contrast to a 3D CFD approach, a tech-

nique based on a quasi-1D assumption, by definition, lacks infor-

mation about cross section gradients and secondary flows and

relies on submodels to account for these effects.

In the present work, an a-type Stirling engine (Fig. 1) has been

modeled by means of a quasi-1D approach, but with significantly

higher resolution than that reported in earlier work and with a

fully conservative density-based flow solver. The small lengths of

the pipe segments (cells) used have made it possible to smooth

out all sudden area changes to the extent that the same numerical

scheme may be applied everywhere in the domain. This ensures

correct numerical treatment of all area changes and unsteady com-

pressibility effects. Losses induced by the sudden area changes

are instead introduced via submodels.

The Q1D solver, on which the new developed tool is based, is

designed for robust and stable operation and for delivering accu-

rate solutions of adiabatic and inviscid flow in tubes with

smoothly varying cross section area. This means that it is neces-

sary to add submodels to handle all physical phenomena such as,

for example, wall friction, heat transfer, flow losses related to for

example sudden area changes, and the porous material in the

regenerator. Similar approaches have been used in several previ-

ously reported investigations. Campbell and Davis [12] used a

quasi-1D solver for system-level, transient simulations of propul-

sion systems including heat transfer. Nguyen [13] developed a

numerical tool based on the unsteady 1D Euler equations for sim-

ulation of closed-loop compressible flows. The main reasons for

applying the above-described approach for simulating the flow in

Stirling engines are the following:

(1) The flow is unsteady and compressible.

(2) The flow between the cylinders is essentially a pipe flow

with variable cross section area.

(3) The Q1D approach is fast and efficient.

Contributed by the Fluids Engineering Division of ASME for publication in the

JOURNAL OF FLUIDS ENGINEERING. Manuscript received May 21, 2014; final manuscript

received December 12, 2014; published online February 2, 2015. Assoc. Editor: John

Abraham.
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Chapter 5.2

Governing Equations
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Governing Equations

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Governing Equations - Assumptions

1. Inviscid flow (no boundary layers)

2. Steady-state flow (no unsteady effects)

3. No flow through Γ (control volume aligned with streamlines)

1

2

Ω

Γ

x

S1 S2
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Governing Equations - Conservation of Mass

d

dt

y

Ω

ρdV︸ ︷︷ ︸
=0

+
{

∂Ω

ρv · ndS︸ ︷︷ ︸
−ρ1u1A1+ρ2u2A2

= 0

ρ1u1A1 = ρ2u2A2
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Governing Equations - Conservation of Momentum

d

dt

y

Ω

ρvdV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρ(v · n)v + pn]dS = 0

{

∂Ω

ρ(v · n)vdS = −ρ1u
2
1A1 + ρ2u

2
2A2

{

∂Ω

pndS = −p1A1 + p2A2 −
ˆ A2

A1

pdA

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2

∆Ω

∆Γ

x

A A + dA

∆x
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Governing Equations - Conservation of Energy

d

dt

y

Ω

ρeodV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρho(v · n)]dS = 0

which gives

ρ1u1A1ho1 = ρ2u2A2ho2

from continuity we have that ρ1u1A1 = ρ2u2A2 ⇒

ho1 = ho2

Niklas Andersson - Chalmers 19 / 57



Governing Equations - Summary

ρ1u1A1 = ρ2u2A2

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2

ho1 = ho2
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Governing Equations - Differential Form

Continuity equation:

ρ1u1A1 = ρ2u2A2 or ρuA = c

where c is a constant ⇒

d(ρuA) = 0
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Governing Equations - Differential Form

Momentum equation:

(ρ1u
2
1 + p1)A1 +

ˆ A2

A1

pdA = (ρ2u
2
2 + p2)A2 ⇒

d
[
(ρu2 + p)A

]
= pdA ⇒

d(ρu2A) + d(pA) = pdA ⇒

ud(ρuA)︸ ︷︷ ︸
=0

+ρuAdu+ Adp+ pdA = pdA ⇒

ρuAdu+ Adp = 0 ⇒

dp = −ρudu (Euler’s equation)
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Governing Equations - Differential Form

Energy equation:

ho1 = ho2 ⇒ dho = 0

ho = h+
1

2
u2 ⇒

dh+ udu = 0
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Governing Equations - Differential Form

Summary (valid for all gases):

d(ρuA) = 0

dp = −ρudu

dh+ udu = 0

Assumptions:

1. quasi-one-dimensional flow

2. inviscid flow

3. steady-state flow
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Chapter 5.3

Area-Velocity Relation
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Area-Velocity Relation

d(ρuA) = 0 ⇒ uAdρ+ ρAdu+ ρudA = 0

divide by ρuA gives

dρ

ρ
+

du

u
+

dA

A
= 0

Euler’s equation:

dp = −ρudu ⇒ dp

ρ
=

dp

dρ

dρ

ρ
= −udu

Assuming adiabatic, reversible (isentropic) process and the definition of speed of

sound gives

dp

dρ
=

(
∂p

∂ρ

)
s

= a2 ⇒ a2
dρ

ρ
= −udu ⇒ dρ

ρ
= −M2du

u
Niklas Andersson - Chalmers 27 / 57



Area-Velocity Relation

Now, inserting the expression for
dρ

ρ
in the rewritten continuity equation gives

(1−M2)
du

u
+

dA

A
= 0

or

dA

A
= (M2 − 1)

du

u

which is the area-velocity relation

Niklas Andersson - Chalmers 28 / 57



The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

dA

A
=

du

u
(M2 − 1) dA > 0 du < 0

dp > 0

subsonic diffuser

du > 0

dp < 0

supersonic nozzle

dA < 0 du > 0

dp < 0

subsonic nozzle

du < 0

dp > 0

supersonic diffuser

Niklas Andersson - Chalmers 29 / 57



The Area-Velocity Relation

du

u
(M2 − 1) =

dA

A

What happens when M = 1?

M = 1 when dA = 0

maximum or minimum area
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The Area-Velocity Relation

du

u
(M2 − 1) =

dA

A

What happens when M = 1?

M = 1 when dA = 0

maximum or minimum area
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The Area-Velocity Relation

du

u
(M2 − 1) =

dA

A

What happens when M = 1?

M = 1 when dA = 0

maximum or minimum area
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The Area-Velocity Relation

subsonic supersonic

M < 1 M = 1 M > 1

Amin

subsonic subsonic

M < 1 M < 1 M < 1

supersonic supersonic

M > 1 M > 1 M > 1

Niklas Andersson - Chalmers 31 / 57



The Area-Velocity Relation

A converging-diverging nozzle is the only possibility to obtain supersonic flow!

A supersonic flow entering a convergent-divergent nozzle will slow down and, if

the conditions are right, become sonic at the throat - hard to obtain a

shock-free flow in this case
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Area-Velocity Relation

M → 0 ⇒ dA

A
= −du

u

dA

A
+

du

u
= 0 ⇒

1

Au
[udA+ Adu] = 0 ⇒

d(uA) = 0 ⇒ Au = c

where c is a constant
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Area-Velocity Relation

Note 1 The area-velocity relation is only valid for isentropic flow

not valid across a compression shock (due to entropy increase)

Note 2 The area-velocity relation is valid for all gases
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Area-Velocity Relation Examples - Rocket Engine

combustion

chamber

M < 1
M > 1

fuel

ox
id
iz
er

high-velocity gas

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH
2
/LOx rocket

engine: po ∼ 120 [bar], To ∼ 3600 [K], exit velocity ∼ 4000 [m/s]
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Area-Velocity Relation Examples - Wind Tunnel

M < 1 M > 1
M > 1 M = 1 M < 1

accelerating flow decelerating flowconstant velocity

nozzle diffusertest section
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Chapter 5.4

Nozzles
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Nozzle Flow with Varying Pressure Ratio

time for rocket science!
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Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:

To

T
=

(ao
a

)2

= 1 +
1

2
(γ − 1)M2

po

p
=

(
To

T

) γ
γ−1

ρo
ρ

=

(
To

T

) 1
γ−1
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Nozzle Flow - Relations

Critical conditions:

To

T∗ =
(ao
a∗

)2

=
1

2
(γ + 1)

po

p∗
=

(
To

T∗

) γ
γ−1

ρo
ρ∗

=

(
To

T∗

) 1
γ−1
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Nozzle Flow - Relations

M∗2 =
u2

a∗2
=

u2

a2
a2

a∗2
=

u2

a2
a2

a2o

a2o

a∗2
⇒

u2

a2
= M2

a2

a2o
=

[
1 +

1

2
(γ − 1)M2

]−1

a2o

a∗2
=

1

2
(γ + 1)


⇒ M∗2 = M2

1
2(γ + 1)

1 + 1
2(γ − 1)M2
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Nozzle Flow - Relations

For nozzle flow we have

ρuA = c

where c is a constant and therefore

ρ∗u∗A∗ = ρuA

or, since at critical conditions u∗ = a∗

ρ∗a∗A∗ = ρuA

which gives

A

A∗ =
ρ∗

ρ

a∗

u
=

ρ∗

ρo

ρo
ρ

a∗

u

Niklas Andersson - Chalmers 43 / 57



Nozzle Flow - Relations

A

A∗ =
ρ∗

ρo

ρo
ρ

a∗

u

ρ∗

ρo
=

(
To

T∗

) −1
γ−1

ρo
ρ

=

(
To

T

) 1
γ−1

a∗

u
=

1

M∗


⇒ A

A∗ =

[
1 + 1

2(γ − 1)M2
] 1
γ−1[

1
2(γ + 1)

] 1
γ−1 M∗
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Nozzle Flow - Relations

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] 2
γ−1[

1
2(γ + 1)

] 2
γ−1 M∗2

M∗2 = M2
1
2(γ + 1)

1 + 1
2(γ − 1)M2


⇒

(
A

A∗

)2

=

[
1 + 1

2(γ − 1)M2
] γ+1
γ−1[

1
2(γ + 1)

] γ+1
γ−1 M2

which is the area-Mach-number relation
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The Area-Mach-Number Relation

0 1 2 3 4 5 6 7 8 9 10
10−1

100

A

A∗

M subsonic

supersonic

(
A

A∗

)2

=
1

M2

[
2 + (γ − 1)M2

γ + 1

](γ+1)/(γ−1)

Note!
A

A∗ =
ρ∗u∗

ρu
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The Area-Mach-Number Relation

0 1 2 3 4 5 6 7 8 9 10
10−1

100

A

A∗

M subsonic

supersonic

(
A

A∗

)2

=
1

M2

[
2 + (γ − 1)M2

γ + 1

](γ+1)/(γ−1)

Note!
A

A∗ =
ρ∗u∗

ρu
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Area-Mach-Number Relation

Note 1 Critical conditions used here are those corresponding to isentropic flow.

Do not confuse these with the conditions in the cases of one-dimensional

flow with heat addition and friction

Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both

total and critical conditions are constant along streamlines unless

shocks are present (then the flow is no longer isentropic)

Note 3 The derived area-Mach-number relation is only valid for calorically

perfect gas and for isentropic flow. It is not valid across a compression

shock
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Nozzle Flow

Assumptions:

1. inviscid

2. steady-state

3. quasi-one-dimensional

4. calorically perfect gas

x

A1

At

A2
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The Area-Mach-Number Relation

0 1 2 3 4 5 6 7 8 9 10
10−1

100

1

throat

2

A

A∗

M subsonic

supersonic

x

A1

At

A2

M < 1 at nozzle throat

At > A∗

M1 < 1

M2 < 1

Sub-critical (non-choked) nozzle flow
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The Area-Mach-Number Relation

Subcritical nozzle flow (non-choked and subsonic ⇒ isentropic):

A∗ is constant throughout the nozzle (A∗ < At)

M1 given by the subsonic solution of(
A1

A∗

)2

=
1

M2
1

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

1)

] γ+1
γ−1

M2 given by the subsonic solution of(
A2

A∗

)2

=
1

M2
2

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

2)

] γ+1
γ−1

M is uniquely determined everywhere in the nozzle, with subsonic flow both

upstream and downstream of the throat
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The Area-Mach-Number Relation

0 1 2 3 4 5 6 7 8 9 10
10−1

100

1

throat

2

A

A∗

M subsonic

supersonic

x

A1

At

A2

M = 1 at nozzle throat
At = A∗

M1 < 1

M2 > 1

Critical (choked) nozzle flow
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The Area-Mach-Number Relation

Supercritical nozzle flow (choked flow without shocks ⇒ isentropic):

A∗ is constant throughout the nozzle (A∗ = At)

M1 given by the subsonic solution of(
A1

A∗

)2

=

(
A1

At

)2

=
1

M2
1

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

1)

] γ+1
γ−1

M2 given by the supersonic solution of(
A2

A∗

)2

=

(
A2

At

)2

=
1

M2
2

[
2

γ + 1
(1 +

1

2
(γ − 1)M2

2)

] γ+1
γ−1

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream

of the throat and supersonic flow downstream of the throat
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Nozzle Mass Flow

10−1 100 101
0

0.2

0.4

0.6

0.8

1

M

ρu

ρ∗u∗

ρuA = ρ∗A∗u∗ ⇒ A∗

A
=

ρu

ρ∗u∗

From the area-Mach-number relation

A∗

A
=


< 1 if M < 1
1 if M = 1
< 1 if M > 1

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions
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Nozzle Mass Flow

For a choked nozzle:

ṁ = ρ1u1A1 = ρ∗u∗A∗ = ρ2u2A2

ρ∗ =
ρ∗

ρo
ρo =

(
2

γ + 1

) 1
γ−1 po

RTo

a∗ =
a∗

ao
ao =

(
2

γ + 1

) 1
2 √

γRTo


⇒

ṁ =
poAt√
To

√
γ

R

(
2

γ + 1

) γ+1
γ−1
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Nozzle Mass Flow

ṁ =
poAt√
To

√
γ

R

(
2

γ + 1

) γ+1
γ−1

The maximum mass flow that can be sustained through the nozzle

Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically

perfect gas

Note! The massflow formula is valid even if there are shocks present

downstream of throat!
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Nozzle Mass Flow

ṁ =
poAt√
To

√
γ

R

(
2

γ + 1

) γ+1
γ−1

How can we increase mass flow through nozzle?

1. increase po

2. decrease To

3. increase At

4. decrease R
(increase molecular weight, without changing γ)
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