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Learning Outcomes

12 Explain the main principles behind a modern Finite Volume CFD code and such

concepts as explicit/implicit time stepping, CFL number, conservation, handling

of compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

time for CFD!
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Motivation

Computational Fluid Dynamics (CFD) is the backbone of all practical engineering

compressible flow analysis

As an engineer doing numerical compressible flow analyzes it is extremely

important to have knowledge about the fundamental numerical principles and

their limitations

Going through the material covered in this section will not make you understand

all the details but you will get a feeling, which is a good start
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The Time-Marching Technique

The problems that we like to investigate numerically within the field of compressible

flows can be categorized as

steady-state

compressible flows

unsteady

compressible flows

The Time-marching technique is a solver framework that addresses both problem

categories
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The Time-Marching Technique

Steady-state problems:

1. define simple initial solution

2. apply specified boundary conditions

3. march in time until steady-state solution is reached

Unsteady problems:

1. apply specified initial solution

2. apply specified boundary conditions

3. march in time for specified total time to reach a desired unsteady solution

establish fully developed flow before initiating data sampling
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The Time-Marching Technique

The time-marching approach is a good alternative for simulating flows where there

are both supersonic and subsonic regions

supersonic/hyperbolic:

perturbations propagate in preferred directions

zone of influence/zone of dependence

PDEs can be transformed into ODEs

subsonic/elliptic:

perturbations propagate in all directions
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Zone of Influence and Zone of Dependence

M∞ > 1.0

B

A

C

µ
D

µ
E

A, B and C at the same axial position in the flow

D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but not in A and C

Mach waves generated at E will affect the flow in C but not in A and B

The flow in A is unaffected by the both D and E
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Zone of Influence and Zone of Dependence
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The zone of dependence for point A and the zone of influence of point A are

defined by C+ and C− characteristic lines
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Characterization of CFD Methods

Density-based Pressure-based

Fully coupled Segregated

Structured Unstructured

Explicit Implicit
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Characterization of CFD Methods

Approach taken in this presentation

Density-based Pressure-based

Fully coupled Segregated

Structured Unstructured

Explicit Implicit
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Characterization of CFD Methods - Equations

Density-based

solve for density in the continuity equation

suitable for transonic/supersonic flows

Pressure-based

the continuity and momentum equations are combined to form a pressure

correction equation

suitable for subsonic/transonic flows
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Characterization of CFD Methods - Solver Approach

Fully coupled

all equations (continuity, momentum, energy, ...) are solved simultaneously

suitable for transonic/supersonic flows

Segregated

the governing equations are solved in sequence

suitable for subsonic flows
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Characterization of CFD Methods - Time Stepping

Explicit

- short time steps

+ very stable

Implicit

+ longer time steps possible
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Characterization of CFD Methods - Time Stepping

Explicit Time

Stepping

Implicit Time

Stepping

In general implicit solvers are more efficient than explicit solvers

For high-supersonic flows, explicit solvers may very well outperform implicit

solvers
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Governing Equations

Niklas Andersson - Chalmers 19 / 100



Quasi-One-Dimensional Flow - Conceptual Idea

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

d

dt

y

Ω

ρudV +
{

∂Ω

[ρ(v · n)u+ p(n · ex)]dS = 0

d

dt

y

Ω

ρeodV +
{

∂Ω

ρho(v · n)dS = 0
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Quasi-One-Dimensional Flow - Example: Nozzle Flow
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Spatial Discretization

Niklas Andersson - Chalmers 24 / 100



Spatial Discretization

Discretization in space and time:

Method of Lines (a very common approach):

1. discretize in space ⇒ system of ordinary differential equations (ODEs)

2. discretize in time ⇒ time-stepping scheme for system of ODEs

Spatial discretization techniques:

FDM Finite-Difference Method

FVM Finite-Volume Method

FEM Finite-Element Method
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Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length ∆x

Ωi

Γi

x

A
i− 1

2
A
i+1

2

∆xi

x
i− 1

2
x
i+1

2

Streamtube with area A(x)

Ai− 1
2
= A(xi− 1

2
)

Ai+ 1
2
= A(xi+ 1

2
)

∆xi = xi+ 1
2
− xi− 1

2

Ωi - control volume enclosed by Ai− 1
2
,

Ai+ 1
2
, and Γi

⇒ spatial discretization
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Quasi-One-Dimensional Flow - Spatial Discretization

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

Integer indices: control volumes or cells

Fractional indices: interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum, energy to control

volume Ωi
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

Conservation of mass:

d

dt

y

Ωi

ρdV

︸ ︷︷ ︸
VOLi

d
dt
ρ̄i

+
x

x
i− 1

2

ρv · ndS

︸ ︷︷ ︸
−(ρu)

i− 1
2
A
i− 1

2

+
x

x
i+1

2

ρv · ndS

︸ ︷︷ ︸
(ρu)

i+1
2
A
i+1

2

+
x

Γi

ρv · ndS

︸ ︷︷ ︸
0

= 0

where

VOLi =
y

Ωi

dV

ρ̄i =
1

VOLi

y

Ωi

ρdV

(ρu)i− 1
2
=

1

Ai− 1
2

x

x
i− 1

2

ρudS

(ρu)i+ 1
2
=

1

Ai+ 1
2

x

x
i+1

2

ρudS
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

Conservation of momentum:

d

dt

y

Ωi

ρudV

︸ ︷︷ ︸
VOLi

d
dt
(ρu)i

+
x

x
i− 1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
−(ρu2+p)

i− 1
2
A
i− 1

2

+

+
x

x
i+1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
(ρu2+p)

i+1
2
A
i+1

2

+
x

Γi

[ρ(v · n)u+ p(n · ex)]dS︸ ︷︷ ︸
−
s

Γi
pdA

= 0
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

Conservation of energy:

d

dt

y

Ωi

ρeodV

︸ ︷︷ ︸
VOLi

d
dt
(ρeo)i

+
x

x
i− 1

2

ρho(v · n)dS

︸ ︷︷ ︸
−(ρuho)i− 1

2
A
i− 1

2

+

+
x

x
i+1

2

ρho(v · n)dS

︸ ︷︷ ︸
(ρuho)i+1

2
A
i+1

2

+
x

Γi

ρho(v · n)dS

︸ ︷︷ ︸
0

= 0
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Quasi-One-Dimensional Flow - Spatial Discretization

Lower order term due to varying stream tube area:

x

Γi

pdA ≈ p̄i

(
Ai+ 1

2
− Ai− 1

2

)

where p̄i is calculated from cell-averaged quantities (DOFs)
{
ρ̄, (ρu), (ρeo)

}
i
as

p̄i = (γ − 1)

(
(ρeo)i −

1

2
ρ̄iū

2
i

)
, ūi =

(ρu)i
ρ̄i
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

VOLi
d

dt
ρ̄i − (ρu)i− 1

2
Ai− 1

2
+ (ρu)i+ 1

2
Ai+ 1

2
= 0

VOLi
d

dt
(ρu)i − (ρu2 + p)i− 1

2
Ai− 1

2
+ (ρu2 + p)i+ 1

2
Ai+ 1

2
= p̄i

(
Ai+ 1

2
− Ai− 1

2

)
VOLi

d

dt
(ρeo)i − (ρuho)i− 1

2
Ai− 1

2
+ (ρuho)i+ 1

2
Ai+ 1

2
= 0

Application of these equations to all cells i ∈ {1, 2, .....,N} of the computational

domain results in a system of ODEs
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Spatial Discretization - Summary

Steps to achieve spatial discretization:

1. Choose primary variables (degrees of freedom)

2. Approximate all other quantities in terms of the primary variables

⇒ System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose
{
ρ̄, (ρu), (ρeo)

}
i
in all control volumes Ωi, i ∈ {1, 2, ...,N} as degrees of

freedom, or primary variables

Note that these are cell-averaged quantities

What about the face values?
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Numerical Schemes
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Flux Term Approximation



(ρu)

(ρu2 + p)

(ρuho)


i+ 1

2

= f




ρ

(ρu)

(ρeo)


i

,


ρ

(ρu)

(ρeo)


i+1

, ...


cell face values cell-averaged values

Simple example:

(ρu)i+ 1
2
≈ 1

2

[
(ρu)i + (ρu)i+1

]
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Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy

more cell values involved (wider flux molecule)

boundary conditions more difficult to implement

Optimized numerical dissipation:

upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)

artificial damping
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q(x) = A+ Bx + Cx2 + Dx3

Assume constant area: A(x) = 1.0
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =
1

VOL1

ˆ −1

−2
Q(x)dx

VOL1 = A1∆x1 = {A1 = 1.0, ∆x1 = 1.0} = 1.0

⇒ Q1 =

ˆ −1

−2
Q(x)dx
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =

ˆ −1

−2
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]−1

−2

Q2 =

ˆ 0

−1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]0
−1

Q3 =

ˆ 1

0
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]1
0

Q4 =

ˆ 2

1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]2
1
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 = A− 3

2
B+

7

3
C− 15

4
D

Q2 = A− 1

2
B+

1

3
C− 1

4
D

Q3 = A+
1

2
B+

1

3
C+

1

4
D

Q4 = A+
3

2
B+

7

3
C+

15

4
D
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

A =
1

12

[
−Q1 + 7Q2 + 7Q3 −Q4

]
B =

1

12

[
Q1 − 15Q2 + 15Q3 −Q4

]
C =

1

4

[
Q1 −Q2 −Q3 +Q4

]
D =

1

6

[
−Q1 + 3Q2 − 3Q3 +Q4

]
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = Q(0) + δQ′′′(0) ⇒ Q0 = A+ 6δD

δ = 0 ⇒ fourth-order central scheme

δ = 1/12 ⇒ third-order upwind scheme

δ = 1/96 ⇒ third-order low-dissipation upwind scheme
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = A+ 6δD = {δ = 1/12} = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0left = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0right = −1

6
Q4 +

5

6
Q3 +

1

3
Q2

method of characteristics used in order to decide whether left- or

right-upwinded flow quantities should be used
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Flux Term Approximation

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

Conservative scheme

”The flux leaving one control volume equals the flux entering neighbouring

control volume”

Conservation of for mass, momentum and energy is crucial for the correct

prediction of shocks∗

∗
correct prediction of shocks:

strength

position

velocity
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Shock Capturing

Jameson shock detector:

νi+ 1
2
= max {νi, νi+1}

where νi is a scaled pressure derivative

νi =
|pi+1 − 2pi + pi−1|
pi+1 + 2pi + pi−1

For a smooth pressure field ν O(∆x2) and near a shock ν O(1)

Artificial damping term (α is a user-defined constant):

α (|u|+ c)i+ 1
2
νi+ 1

2
Ai+ 1

2
(Qi+1 −Qi)
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Density Discontinuities

Jameson-type detector:

νi+ 1
2
= max {νi, νi+1}

where νi is a scaled density derivative

νi =
|ρi+1 − 2ρi + ρi−1|
ρi+1 + 2ρi + ρi−1

For a smooth density field ν O(∆x2) and near a density discontinuity ν O(1)

Artificial damping term (β is a user-defined constant):

β |u|i+ 1
2
νi+ 1

2
Ai+ 1

2
(Qi+1 −Qi)
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Time Stepping
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

VOLi
d

dt
ρ̄i − (ρu)i− 1

2
Ai− 1

2
+ (ρu)i+ 1

2
Ai+ 1

2
= 0

VOLi
d

dt
(ρu)i − (ρu2 + p)i− 1

2
Ai− 1

2
+ (ρu2 + p)i+ 1

2
Ai+ 1

2
= p̄i

(
Ai+ 1

2
− Ai− 1

2

)
VOLi

d

dt
(ρeo)i − (ρuho)i− 1

2
Ai− 1

2
+ (ρuho)i+ 1

2
Ai+ 1

2
= 0

Application of these equations to all cells i ∈ {1, 2, .....,N} of the computational

domain results in a system of ODEs
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

VOLi
d

dt
ρ̄i = (ρu)i− 1

2
Ai− 1

2
− (ρu)i+ 1

2
Ai+ 1

2

VOLi
d

dt
(ρu)i = (ρu2 + p)i− 1

2
Ai− 1

2
− (ρu2 + p)i+ 1

2
Ai+ 1

2
+ p̄i

(
Ai+ 1

2
− Ai− 1

2

)
VOLi

d

dt
(ρeo)i = (ρuho)i− 1

2
Ai− 1

2
− (ρuho)i+ 1

2
Ai+ 1

2
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

d

dt
ρ̄i =

1

VOLi

[
(ρu)i− 1

2
Ai− 1

2
− (ρu)i+ 1

2
Ai+ 1

2

]
d

dt
(ρu)i =

1

VOLi

[
(ρu2 + p)i− 1

2
Ai− 1

2
− (ρu2 + p)i+ 1

2
Ai+ 1

2
+ p̄i

(
Ai+ 1

2
− Ai− 1

2

)]
d

dt
(ρeo)i =

1

VOLi

[
(ρuho)i− 1

2
Ai− 1

2
− (ρuho)i+ 1

2
Ai+ 1

2

]

d

dt
Qi = F(Qi) where Qi = [ρ, ρu, ρeo]i, i ∈ {1 : NCells}
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Time Stepping

The system of ODEs obtained from the spatial discretization in vector notation

d

dt
Q = F(Q)

Q is a vector containing all DOFs in all cells

F(Q) is the time derivative of Q resulting from above mentioned flux

approximations - non-linear vector-valued function
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Time Stepping

Three-stage Runge-Kutta - one example of many:

Explicit time-marching scheme

Second-order accurate
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Time Stepping - Three-stage Runge-Kutta

d

dt
Q = F(Q)

Let Qn = Q(tn) and Qn+1 = Q(tn+1)

tn is the current time level and tn+1 is the next time level

∆t = tn+1 − tn is the solver time step

Algorithm:

1. Q∗ = Qn +∆tF(Qn)

2. Q∗∗ = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗)

3. Qn+1 = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗∗)
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Time Stepping - Three-stage Runge-Kutta

1 void RungeKutta : : fwd ( Domain *dom ) {
2 G3DCopy ( dom−>cons , cons0 ) ;
3

4 /* Runge−Kut ta step 1 * /
5

6 dom−>update ( ) ;

7 if ( ! G3DMode : : constdt ) { LocalTimeStep ( dom ) ; }
8 dcons−>evaluate ( dom ) ;
9 G3DWAXPY ( dom−>cons , 1 . 0 , dcons , cons0 ) ;

10 G3DAXPBY ( cons0 , 0 . 5 , 0 . 5 , dom−>cons ) ;
11

12 /* Runge−Kut ta step 2 * /
13

14 dom−>update ( ) ;

15 dcons−>evaluate ( dom ) ;
16 G3DWAXPY ( dom−>cons , 0 . 5 , dcons , cons0 ) ;
17

18 /* Runge−Kut ta step 3 * /
19

20 dom−>update ( ) ;

21 dcons−>evaluate ( dom ) ;
22 G3DWAXPY ( dom−>cons , 0 . 5 , dcons , cons0 ) ;

23 }
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Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

+ Easy to implement in computer codes

+ Efficient execution on most computers

+ Easy to adapt for parallel execution on distributed memory systems (e.g.

Linux clusters)

- Time step limitation (CFL number)

- Convergence to steady-state often slow (there are, however, some remedies

for this)
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Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

CFLi =
∆t(|ui|+ ai)

∆xi
≤ 1

Interpretation: The fastest characteristic (C+ or C−) must not travel longer than ∆x

during one time step
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Time Stepping - Explicit Schemes

t

x

∆
t

∆x ∆x

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

max(|u − a|, |u + a|)∆t = (|u| + a)∆t ≤ ∆x ⇒

(|u| + a)∆t

∆x
= CFL ≤ 1
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Time Stepping - Explicit Schemes

Steady-state problems:

local time stepping

each cell has an individual time step

∆ti maximum allowed value based on CFL criteria

Unsteady problems:

time accurate

all cells have the same time step

∆ti = min {∆t1, ...,∆tN}
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Boundary Conditions
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Boundary Conditions

Boundary conditions are very important for numerical simulation of compressible

flows

Main reason: both flow and acoustics involved!

Example 1:

Finite-volume CFD code for Quasi-1D compressible flow (Time-marching procedure)

What boundary conditions should be applied at the left and right ends?

x1/2 x3/2 x5/2 xN−1/2

xN+1/2

computational domain

left boundary right boundary
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Boundary Conditions

three characteristics:

1. C+

2. C−

3. advection

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

left boundary

C
+

C
−

dx

dt
= u + a

dx

dt
= u − a

dx

dt
= u

right boundary

t

x

computational domain
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Boundary Conditions

C+ and C− characteristics describe the transport of isentropic pressure

waves (often referred to as acoustics)

The advection characteristic simply describes the transport of certain quantities

with the fluid itself (for example entropy)

In one space dimension and time, these three characteristics, together with the

quantities that are known to be constant along them, give a complete

description of the time evolution of the flow

We can use the characteristics as a guide to tell us what information that should

be specifed at the boundaries
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Left Boundary - Subsonic Inflow

C
− advection

C
+

we have three PDEs, and are solving for three unknowns

Subsonic inflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

one outgoing characteristic

two ingoing characteristics

Two variables should be specified at the boundary

The third variable must be left free
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Left Boundary - Subsonic Outflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Subsonic outflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

two outgoing characteristics

one ingoing characteristic

One variable should be specified at the boundary

The second and third variables must be left free
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Left Boundary - Supersonic Inflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u > a

u− a > 0
u > 0
u+ a > 0

no outgoing characteristics

three ingoing characteristics

All three variables should be specified at the boundary

No variables must be left free
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Left Boundary - Supersonic Outflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u < −a

u− a < 0
u < 0
u+ a < 0

three outgoing characteristics

no ingoing characteristics

No variables should be specified at the boundary

All variables must be left free
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Right Boundary - Subsonic Inflow

C
+advection

C
−

we have three PDEs, and are solving for three unknowns

Subsonic inflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

two ingoing characteristics

one outgoing characteristic

Two variables should be specified at the boundary

The third variables must be left free
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Right Boundary - Subsonic Outflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Subsonic outflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

one ingoing characteristic

two outgoing characteristics

One variable should be specified at the boundary

The second and third variables must be left free
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Right Boundary - Supersonic Inflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u < −a

u− a < 0
u < 0
u+ a < 0

three ingoing characteristics

no outgoing characteristics

All three variables should be specified at the boundary

No variables must be left free
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Right Boundary - Supersonic Outflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u > a

u− a > 0
u > 0
u+ a > 0

no ingoing characteristics

three outgoing characteristics

No variables should be specified at the boundary

All three variables must be left free
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1D Boundary Conditions (Summary)

Characteristic 1D subsonic inflow (left) 1D subsonic inflow (right)

advection v · n (u, 0, 0) · (−1, 0, 0) = −u < 0 (−u, 0, 0) · (1, 0, 0) = −u < 0

C
− v · n − a −u − a < 0 −u − a < 0

C
+ v · n + a −u + a > 0 −u + a > 0

Characteristic 1D subsonic outflow (left) 1D subsonic outflow (right)

advection v · n (−u, 0, 0) · (−1, 0, 0) = u > 0 (u, 0, 0) · (1, 0, 0) = u > 0

C
− v · n − a u − a < 0 u − a < 0

C
+ v · n + a u + a > 0 u + a > 0

Characteristic 1D supersonic inflow (left) 1D supersonic inflow (right)

advection v · n (u, 0, 0) · (−1, 0, 0) = −u < 0 (−u, 0, 0) · (1, 0, 0) = −u < 0

C
− v · n − a −u − a < 0 −u − a < 0

C
+ v · n + a −u + a < 0 −u + a < 0

Characteristic 1D supersonic outflow (left) 1D supersonic outflow (right)

advection v · n (−u, 0, 0) · (−1, 0, 0) = u > 0 (u, 0, 0) · (1, 0, 0) = u > 0

C
− v · n − a u − a > 0 u − a > 0

C
+ v · n + a u + a > 0 u + a > 0
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Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt specified specified well-posed non-reflective

variable 1 variable 2

1 po To X

2 ρu To X

3 s J+ X X

well posed:

1. the problem has a solution

2. the solution is unique

3. the solution’s behaviour changes continuously with initial conditions
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Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt specified well-posed non-reflective

variable

1 p X

2 ρu X

3 J+ X X
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Subsonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic inflow

Assumption:

−a < v · n < 0

Four ingoing characteristics

One outgoing characteristic

Specify four variables at the boundary:

po, To, and flow direction (two angles)
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Subsonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic outflow

Assumption:

0 < v · n < a

One ingoing characteristics

Four outgoing characteristic

Specify one variables at the boundary:

static pressure

Niklas Andersson - Chalmers 78 / 100



Supersonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic inflow

Assumption:

v · n < −a

Five ingoing characteristics

No outgoing characteristics

Specify five variables at the boundary:

solver variables
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Supersonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic outflow

Assumption:

v · n > a

No ingoing characteristics

Five outgoing characteristics

No variables specified at the boundary
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Explicit Finite-Volume Method - Summary

The described numerical approach can be categorized as

Density-based Fully coupled

Structured Explicit

with the following features

High-order

convective scheme

Shock handling

(artificial damping)
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Explicit Finite-Volume Method - Summary

Spatial discretization:

Control volume formulations of conservation equations are applied to the cells of

the discretized domain

Cell-averaged flow quantities (ρ, ρu, ρeo) are chosen as degrees of freedom

Flux terms are approximated in terms of the chosen degrees of freedom

high-order, upwind type of flux approximation is used for optimum results

A fully conservative scheme is obtained

the flux leaving one cell is identical to the flux entering the neighboring cell

The result of the spatial discretization is a system of ODEs
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Explicit Finite-Volume Method - Summary

Time marching:

Three-stage, second-order accurate Runge-Kutta scheme

Explicit time-stepping

Time step length limited by the CFL condition (CFL ≤ 1)
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Practical Examples:

Grid Resolution and Numerical

Schemes
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Numerical Approach

Code: G3D::Flow (Chalmers in-house CFD code)

Finite-Volume Method

Three-stage, second-order accurate Runge-Kutta time stepping

First-order, second-order, and third-order characteristic upwinding scheme

Shock handling: TVD and artificial diffusion based on Jameson shock detection
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Grid Resolution: Compression Ramp

coarse mesh
71×21

density

Mach number

medium mesh
141×41

density

Mach number

fine mesh
281×81

density

Mach number
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Grid Resolution: Space Shuttle

coarse mesh
81×21

Mach number

medium mesh
161×41

Mach number

fine mesh
321×81

Mach number
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Grid Resolution: Axi-symmetric Slender Body

coarse mesh
31×21

density

Mach number

medium mesh
61×41

density

Mach number

fine mesh
121×81

density

Mach number
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Numerical Scheme: Compression Ramp

first-order upwind

density

Mach number

second-order upwind

density

Mach number

third-order upwind
density

Mach number
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Artificial Numerical Damping: Compression Ramp
Low artificial numerical damping
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Artificial Numerical Damping: Compression Ramp
High artificial numerical damping

0 1 2 3 4 5 6

0

1

2

x

y
1

2

3

1

2

3

0 2 4 6 8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

x

M

Mach number along line 1

0 2 4 6 8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

x

M

Mach number along line 2

0 2 4 6 8
0.5

1

1.5

2

2.5

x

M

Mach number along line 3

2.9 2.95 3 3.05
1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

first-order upwind scheme

second-order upwind scheme

third-order upwind scheme

Niklas Andersson - Chalmers 93 / 100



Roadmap - The Time-Marching Technique

Basic concepts and definitions

Finite Volume Method (FVM)

Practical examples

Available CFD codes

Time integration

Numerical schemes

Spatial discretization

Governing equations

Quasi-1D equations

Boundary conditions

�

�

�

�

� �

�

�

Niklas Andersson - Chalmers 94 / 100



Available CFD Codes
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CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly documented

Commercial codes are often claimed to be suitable for all types of flows

The reality is that the user must make sure of this!

Niklas Andersson - Chalmers 96 / 100

http://www.cfd-online.com/Wiki/Codes


CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options

otherwise you may obtain completely wrong solution!

1. coupled solver

2. equation of state

3. energy equation included

Use a high-quality grid

a poor grid will either not give you any solution at all (no convergence)

or at best a very inaccurate solution!
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ANSYS-FLUENTr/STAR-CCM+r - Typical Experiences

1. Very robust solvers - will almost always give you a solution

2. Accuracy of solution depends a lot on grid quality

3. Shocks are generally smeared more than in specialized codes

4. Solver is generally very efficient for steady-state problems

5. Solver is less efficient for truly unsteady problems, where both flow and

acoustics must be resolved accurately
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