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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

the governing equations for compressible flows on differential form - finally ...



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

—>[ PDE:s on non-conservation form

The entropy equation

'

[ Crocco’s theorem ]




Motivation

The differential form of the conservation equations is needed when analyzing
unsteady problems

The differential form of the conservation equations forms the basis for
multi-dimensional analysis and CFD



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4
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Chapter 6.2
Differential Equations in Conservation
Form



Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:
Start with control volume formulation
Convert to volume integral via Gauss Theorem
Arbitrary control volume implies that integrand equals to zero everywhere



Continuity Equation - Conservation of Mass

Control volume formulation

%ffjpd“//—&—ﬁpv-nd\s:()
Q Big)

where Q is a fixed control volume and thus — fff pdV = jff 8'Oo’“//

Applying Gauss’ Theorem on the surface integral gives

@pv -ndS = fff V- (pv)d¥
09 Q



Continuity Equation

Therefore

JiJ L )| o =0

Q) is an arbitrary control volume, can be made infinitesimal and thus

ap B
at+v-(pv)—0}

which is the continuity equation on differential form



Momentum Equation - Conservation of Momentum

Control volume formulation

% {[f pvet7 + {f lo(v-m)v + pn}as = [[{ pfct7
Q 0 o

where Q is a fixed control volume and thus % fgf pvd¥ = jgf gt(pv)o’“//

Applying Gauss’ Theorem on the surface integrals gives

@p(v -n)vdS = fff V- (pvv)d¥ ; @,OHO’S = fff Vpdy
of) Q o0 Q



Momentum Equation

Therefore

IJ BAPV) +V - (pvv) + Vp - pf] av =0
Q

Q) is an arbitrary control volume, can be made infinitesimal and thus

{ gt(pVHV-(pVVHVD:pf}

which is the momentum equation on differential form



Momentum Equation

In cartesian form (v = uey + ve, + we):
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Momentum Equation

or expanded:
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Energy Equation - Conservation of Energy

Control volume formulation

& JIJ o+ ff ot -mas = f[[ ot 0
L ig) o

. d 0
where 2 is a fixed control volume and thus o fgj peod¥ = L{j &(peo)d”l

Applying Gauss’ Theorem on the surface integral gives

@S pho(v -n)dS = fff V - (phov)d¥
o0 Q



Energy Equation

Therefore

IJ:[ [aat(ﬂeo) + V- (phov) — p(f- v)] dv — o0
Q

Q) is an arbitrary control volume, can be made infinitesimal and thus

{ gt(peo) + V- (phov) = p(f-v) }

which is the energy equation on differential form



Partial Differential Equations in Conservation Form

ap B
E + V- (,OV) =0
0
5 (PV) + V- (pvv) + Vp = pf
d
&(PeO) + V- (phov) = p(f- v)

(. J

These equations are referred to as PDE:s on conservation form since they stem
directly from the integral conservation equations applied to a fixed control volume
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The Substantial Derivative

Introducing the substantial derivative operator

D 0
E:&+vv

”... the time rate of change of any quantity associated with a particular moving
fluid element is given by the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point
in a flow because the flowfield itself may be fluctuating with time (the local
derivative) and because the fluid element is simply on its way to another point
in the flowfield where the properties are different (the convective derivative)

”
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Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4
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Chapter 6.4
Differential Equations in
Non-Conservation Form



Non-Conservation Form of the Continuity Equation

Applying the substantial derivative operator to density gives

Dp  0dp
ot o VYV
Continuity equation:

op _Op B
E—i—v-(pv)—§+V-Vp+p(v-v)—0:>




Non-Conservation Form of the Continuity Equation

Dp B
Dt+,0(VV)—O]

”... the mass of a fluid element made up of a fixed set of particles (molecules
or atoms) is constant as the fluid element moves through space ...”



Non-Conservation Form of the Momentum Equation

0
—(pv) + V- (pvv +pI) = pf =
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Non-Conservation Form of the Energy Equation
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Non-Conservation Form of the Energy Equation

De .
pop TV (Ptv)=pf-vpg

1
eo:e+§v-v:>

De Dv .
Por TPV o TV (PY) =pf vt pg

D 1
Using the momentum equation, (D‘t, + -Vp = f), gives
P

e .
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De p .
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Non-Conservation Form of the Energy Equation

De p
Dr ;(V V) =g
From the continuity equation we get
Dp B ~ 1Dp
Eer(V V) 0=V .v= th
De pDp De 1
ot 2ot 97 bt TPhr <p>
De ., Dv
Dt Dt

where v = 1/p



Non-Conservation Form of the Energy Equation

Compare with first law of thermodynamics: de = §g — 6W




Non-Conservation Form of the Energy Equation

If we instead express the energy equation in terms of enthalpy:

De . D (1y_ De D/(1)\_,
pt 9 thp Dt prp_q

h = = EE——— -
et = ot ~ ot T oot TPor

p p
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Non-Conservation Form of the Energy Equation

and total enthalpy ...

1 Dh Dh D
ho=h+=v.-v=—2 = v

VT o T TV o

From the momentum equation we get



Non-Conservation Form of the Energy Equation

Dh, . 1[Dp
zn—q+p[

Dt—v-Vp] +f-v

Now, expanding the substantial derivative % = %lz? + v - Vp gives

Let’'s examine the above relation ...



Non-Conservation Form of the Energy Equation

Dh, 10p .
o _ 290 £
bt ot TATEY

The total enthalpy of a moving fluid element in an inviscid flow can change due to
unsteady flow: dp /ot # 0
heat transfer: g # 0
body forces: f-v # 0



Non-Conservation Form of the Energy Equation

Adiabatic flow without body forces =

Dho _ 10p
Dt pot

Steady-state adiabatic flow without body forces =

Dh,

ot

he is constant along streamlines!



Additional Form of the Energy Equation

Start from
De . D1
ot~ 9P\,

Calorically perfect gas:

R
e:CVT;Cvzﬁ;p:pRT;’y,R:COHSZ‘

De DL/ R Dfipy__1 Dfpy_ 1 D(py_
Dt "Dt  ~—1Dt\pR) ~—1Dt\p v—1Dt\p)



Additional Form of the Energy Equation



Additional Form of the Energy Equation

Continuity:



Additional Form of the Energy Equation

D .
Eﬁ; +0(V-v) = (v —1)pq

Adiabatic flow (no added heat):

[%;er(v'v}—o}

Non-conservation form (calorically perfect gas)



Conservation Form

0oQ OE OF 0G

T ax Ty e =

where Q(x,y,z,t), E(x,y,z,t), ... may be scalar or vector fields

Example: the continuity equation

op 0 ) o
E—F@ix( )4‘@( )+§(PW)—0

If an equation cannot be written in this form, it is said to be in non-conservation
form



Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat)

-
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Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat), calorically perfect gas

s
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Conservation and Non-Conservation Form

The governing equations on non-conservation form are not, although the name might
give that impression, less physically accurate than the equations on conservation
form. The nomenclature comes from CFD where the equations on conservation form
are preferred.

Using the conservation form as a basis for a Finite-Volume Method (FVM) solver
ensures conservation of mass, momentum and energy.



Conservation and Non-Conservation Form

Conservative equations are equations that directly stems from conservation of
flow quantities over a control volume

The equations on non-conservation form are derived from the corresponding
equations on conservation form using the chain rule for derivatives

Thus the equations on non-conservation form do not stem directly from a
conservation law - but aren’t the two formulations still equivalent?

Only for continuous solutions! The chain rule can only be used for
continuous fields



Conservation and Non-Conservation Form

Conservation forms are useful for:

Numerical methods for compressible flow
Theoretical understanding of non-linear waves (shocks etc)
Provide link between integral forms (control volume formulations) and PDE:s

Non-conservation forms are useful for:
Theoretical understanding of behavior of numerical methods
Theoretical understanding of boundary conditions
Analysis of linear waves (aero-acoustics)



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4
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Chapter 6.5
The Entropy Equation



The Entropy Equation

From the first and second law of thermodynamics we have

De . Ds D1
ot~ 't o\

which is called the entropy equation



The Entropy Equation

Compare the entropy equation
e Ds_ D (1
ot~ ot Poi\p
with the energy equation (inviscid flow):
e . D1
bt~ 9P p

we see that



The Entropy Equation

If § = 0 (adiabatic flow) then

Ds_

Efo

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds_@s

E_EJr(V-V)S:(V-V)S:O

i.e., entropy is constant along streamlines
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Chapter 6.6
Crocco’s Theorem



Crocco’s Theorem

”

.. a relation between gradients of total enthalpy, gradients of entropy, and
flow rotation ...”



Crocco’s Theorem

Momentum equation (no body forces)

Dv
Por = —Vp
Writing out the substantial derivative gives
+ v-Vv=-YV :>a—+v Vv = _,v
Pot TP P= o =P

First and second law of thermodynamics (energy equation)
1
dh =Tds+ —dp
P
Replace differentials with a gradient operator

1 1
Vh=TVs+ ;Vp = TVs=Vh-— ;Vp



Crocco’s Theorem

With pressure derivative from the momentum equation inserted in the energy
equation we get

TVS:Vh—l-%—I-V'VV

h:ho—%v‘v:Vh:Vho—V(%v-v)

V(%v-v):vx(va)—l—v~Vv

V(A-B)=(A-V)B+ (B-V)A+A X (VxB)+Bx (VxA)

A=B=v=V(v-v)=2[v-Vv+4+vx(Vxv)]




Crocco’s Theorem

TVS:VhO—vx(va)—v-Vv—l—%—l—v-Vv

at—vx(va)

Note! V x v is the vorticity of the fluid

1
the rotational motion of the fluid is described by the angular velocity w = 5 (V xv)



Crocco’s Theorem

TVSVhO—i—gj—vx(va)

i

. When a steady flow field has gradients of total enthalpy and/or entropy
Crocco’s theorem dramatically shows that it is rotational ...”



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

1. s is constant upstream of shock
2. jumpin s across shock depends on local shock angle

3. s will vary from streamline to streamline downstream of shock
4. Vs # 0 downstream of shock



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

Total enthalpy upstream of shock

ho is constant along streamlines
ho is uniform

Total enthalpy downstream of shock
ho is uniform

Vhozo



Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

TVs =Vhy —v x (V xv)

v x (V x v) # 0 downstream of a curved shock
the rotation V x v # 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic means!
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