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cid Flows
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

the governing equations for compressible flows on differential form - finally ...
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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Motivation

The differential form of the conservation equations is needed when analyzing

unsteady problems

The differential form of the conservation equations forms the basis for

multi-dimensional analysis and CFD
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem
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Chapter 6.2

Differential Equations in Conservation

Form
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Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

1. Start with control volume formulation

2. Convert to volume integral via Gauss Theorem

3. Arbitrary control volume implies that integrand equals to zero everywhere
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Continuity Equation - Conservation of Mass

Control volume formulation

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

where Ω is a fixed control volume and thus
d

dt

y

Ω

ρdV =
y

Ω

∂ρ

∂t
dV

Applying Gauss’ Theorem on the surface integral gives

{

∂Ω

ρv · ndS =
y

Ω

∇ · (ρv)dV
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Continuity Equation

Therefore

y

Ω

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimal and thus

∂ρ

∂t
+∇ · (ρv) = 0

which is the continuity equation on differential form
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Momentum Equation - Conservation of Momentum

Control volume formulation

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

where Ω is a fixed control volume and thus
d

dt

y

Ω

ρvdV =
y

Ω

∂

∂t
(ρv)dV

Applying Gauss’ Theorem on the surface integrals gives

{

∂Ω

ρ(v · n)vdS =
y

Ω

∇ · (ρvv)dV ;
{

∂Ω

pndS =
y

Ω

∇pdV
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Momentum Equation

Therefore

y

Ω

[
∂

∂t
(ρv) +∇ · (ρvv) +∇p− ρf

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimal and thus

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

which is the momentum equation on differential form
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Momentum Equation

In cartesian form (v = uex + vey +wez ):

∂

∂t
(ρu) +∇ · (ρuv) + ∂p

∂x
= ρfx

∂

∂t
(ρv) +∇ · (ρvv) + ∂p

∂y
= ρfy

∂

∂t
(ρw) +∇ · (ρwv) + ∂p

∂z
= ρfz
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Momentum Equation

or expanded:

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) +

∂p

∂x
= ρfx

∂

∂t
(ρv) +

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂

∂z
(ρvw) +

∂p

∂y
= ρfy

∂

∂t
(ρw) +

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww) +

∂p

∂z
= ρfz
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Energy Equation - Conservation of Energy

Control volume formulation

d

dt

y

Ω

ρeodV +
{

∂Ω

ρho(v · n)dS =
y

Ω

ρf · vdV

where Ω is a fixed control volume and thus
d

dt

y

Ω

ρeodV =
y

Ω

∂

∂t
(ρeo)dV

Applying Gauss’ Theorem on the surface integral gives

{

∂Ω

ρho(v · n)dS =
y

Ω

∇ · (ρhov)dV
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Energy Equation

Therefore

y

Ω

[
∂

∂t
(ρeo) +∇ · (ρhov)− ρ(f · v)

]
dV = 0

Ω is an arbitrary control volume, can be made infinitesimal and thus

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v)

which is the energy equation on differential form
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Partial Differential Equations in Conservation Form

∂ρ

∂t
+∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) +∇p = ρf

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v)

These equations are referred to as PDE:s on conservation form since they stem

directly from the integral conservation equations applied to a fixed control volume
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem

�
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The Substantial Derivative

Introducing the substantial derivative operator

D

Dt
=

∂

∂t
+ v · ∇

”... the time rate of change of any quantity associatedwith a particular moving

fluid element is given by the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point

in a flow because the flowfield itself may be fluctuating with time (the local

derivative) and because the fluid element is simply on its way to another point

in the flowfield where the properties are different (the convective derivative)

...”
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem

�

�
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Chapter 6.4

Differential Equations in

Non-Conservation Form
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Non-Conservation Form of the Continuity Equation

Applying the substantial derivative operator to density gives

Dρ

Dt
=

∂ρ

∂t
+ v · ∇ρ

Continuity equation:

∂ρ

∂t
+∇ · (ρv) = ∂ρ

∂t
+ v · ∇ρ+ ρ(∇ · v) = 0 ⇒

Dρ

Dt
+ ρ(∇ · v) = 0
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Non-Conservation Form of the Continuity Equation

Dρ

Dt
+ ρ(∇ · v) = 0

”... the mass of a fluid element made up of a fixed set of particles (molecules

or atoms) is constant as the fluid element moves through space ...”
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Non-Conservation Form of the Momentum Equation

∂

∂t
(ρv) +∇ · (ρvv + pI) = ρf ⇒

ρ
∂v
∂t

+ v∂ρ
∂t

+ ρv · ∇v + v(∇ · ρv) +∇p = ρf ⇒

ρ

[
∂v
∂t

+ v · ∇v
]

︸ ︷︷ ︸
=Dv

Dt

+v
[
∂ρ

∂t
+∇ · ρv

]
︸ ︷︷ ︸

=0

+∇p = ρf

Dv
Dt

+
1

ρ
∇p = f
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Non-Conservation Form of the Energy Equation

∂

∂t
(ρeo) +∇ · (ρhov) = ρ(f · v) + ρq̇

ho = eo +
p

ρ
⇒

∂

∂t
(ρeo) +∇ · (ρeov) +∇ · (pv) = ρ(f · v) + ρq̇ ⇒

ρ
∂eo
∂t

+ eo
∂ρ

∂t
+ ρv · ∇eo + eo∇ · (ρv) +∇ · (pv) = ρ(f · v) + ρq̇ ⇒

ρ

[
∂eo
∂t

+ v · ∇eo

]
︸ ︷︷ ︸

=Deo
Dt

+eo

[
∂ρ

∂t
+∇ · (ρv)

]
︸ ︷︷ ︸

=0

+∇ · (pv) = ρ(f · v) + ρq̇
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Non-Conservation Form of the Energy Equation

ρ
Deo

Dt
+∇ · (p+ v) = ρf · v + ρq̇

eo = e+
1

2
v · v ⇒

ρ
De

Dt
+ ρv · Dv

Dt
+∇ · (pv) = ρf · v + ρq̇

Using the momentum equation,

(
Dv
Dt

+
1

ρ
∇p = f

)
, gives

ρ
De

Dt
− v · ∇p+ ρf · v + v · ∇p+ p(∇ · v) = ρf · v + ρq̇ ⇒

De

Dt
+

p

ρ
(∇ · v) = q̇
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Non-Conservation Form of the Energy Equation

De

Dt
+

p

ρ
(∇ · v) = q̇

From the continuity equation we get

Dρ

Dt
+ ρ(∇ · v) = 0 ⇒ ∇ · v = −1

ρ

Dρ

Dt
⇒

De

Dt
− p

ρ2
Dρ

Dt
= q̇ ⇒ De

Dt
+ p

D

Dt

(
1

ρ

)
= q̇

De

Dt
= q̇− p

Dν

Dt

where ν = 1/ρ
Niklas Andersson - Chalmers 28 / 61



Non-Conservation Form of the Energy Equation

Compare with first law of thermodynamics: de = δq− δW

De

Dt
= q̇− p

Dν

Dt
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Non-Conservation Form of the Energy Equation
�

If we instead express the energy equation in terms of enthalpy:

De

Dt
= q̇− p

D

Dt

(
1

ρ

)
⇒ De

Dt
+ p

D

Dt

(
1

ρ

)
= q̇

h = e+
p

ρ
⇒ Dh

Dt
=

De

Dt
+

1

ρ

Dp

Dt
+ p

D

Dt

(
1

ρ

)
⇒

Dh

Dt
= q̇+

1

ρ

Dp

Dt
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Non-Conservation Form of the Energy Equation
�

and total enthalpy ...

ho = h+
1

2
v · v ⇒ Dho

Dt
=

Dh

Dt
+ v · Dv

Dt

From the momentum equation we get

ρ
Dv
Dt

+∇p = ρf ⇒ Dv
Dt

= −1

ρ
∇p+ f ⇒

Dho

Dt
=

Dh

Dt︸︷︷︸
q̇+ 1

ρ
Dp

Dt

−1

ρ
v · ∇p+ f · v = q̇+

1

ρ

[
Dp

Dt
− v · ∇p

]
+ f · v
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Non-Conservation Form of the Energy Equation

Dho

Dt
= q̇+

1

ρ

[
Dp

Dt
− v · ∇p

]
+ f · v

Now, expanding the substantial derivative
Dp

Dt
=

∂p

∂t
+ v · ∇p gives

Dho

Dt
=

1

ρ

∂p

∂t
+ q̇+ f · v

Let’s examine the above relation ...
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Non-Conservation Form of the Energy Equation

Dho

Dt
=

1

ρ

∂p

∂t
+ q̇+ f · v

The total enthalpy of a moving fluid element in an inviscid flow can change due to

1. unsteady flow: ∂p/∂t 6= 0

2. heat transfer: q̇ 6= 0

3. body forces: f · v 6= 0
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Non-Conservation Form of the Energy Equation

Adiabatic flow without body forces ⇒

Dho

Dt
=

1

ρ

∂p

∂t

Steady-state adiabatic flow without body forces ⇒

Dho

Dt
= 0

ho is constant along streamlines!
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Additional Form of the Energy Equation
�

Start from

De

Dt
= q̇− p

D

Dt

(
1

ρ

)

Calorically perfect gas:

e = CvT ; Cv =
R

γ − 1
; p = ρRT ; γ,R = const

De

Dt
= Cv

DT

Dt
=

R

γ − 1

D

Dt

(
p

ρR

)
=

1

γ − 1

D

Dt

(
p

ρ

)
⇒ 1

γ − 1

D

Dt

(
p

ρ

)
= q̇− p

D

Dt

(
1

ρ

)
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Additional Form of the Energy Equation
�

1

γ − 1

D

Dt

(
p

ρ

)
= q̇− p

D

Dt

(
1

ρ

)
⇒

1

γ − 1

[
p
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt

]
= q̇− p

D

Dt

(
1

ρ

)

p
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇− (γ − 1)p

D

Dt

(
1

ρ

)

γp
D

Dt

(
1

ρ

)
+

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇
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Additional Form of the Energy Equation
�

Continuity:

Dρ

Dt
= −ρ(∇ · v) ⇒ D

Dt

(
1

ρ

)
= − 1

ρ2
Dρ

Dt
=

1

ρ
(∇ · v) ⇒

γp

ρ
(∇ · v) +

(
1

ρ

)
Dp

Dt
= (γ − 1)q̇
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Additional Form of the Energy Equation
�

Dp

Dt
+ γp(∇ · v) = (γ − 1)ρq̇

Adiabatic flow (no added heat):

Dp

Dt
+ γp(∇ · v) = 0

Non-conservation form (calorically perfect gas)
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Conservation Form

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0

where Q(x, y, z, t), E(x, y, z, t), ... may be scalar or vector fields

Example: the continuity equation

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

If an equation cannot be written in this form, it is said to be in non-conservation

form
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Euler Equations - Conservation Form
Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v,w (no body forces, no added heat)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0

∂

∂t
(ρu) +

∂

∂x
(ρuu+ p) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = 0

∂

∂t
(ρv) +

∂

∂x
(ρvu) +

∂

∂y
(ρvv + p) +

∂

∂z
(ρvw) = 0

∂

∂t
(ρw) +

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww + p) = 0

∂

∂t
(ρeo) +

∂

∂x
(ρhou) +

∂

∂y
(ρhov) +

∂

∂z
(ρhow) = 0
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Euler Equations - Non-Conservation Form
Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v,w (no body forces, no added heat), calorically perfect gas

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂z
+ ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
+

1

ρ

∂p

∂x
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
+

1

ρ

∂p

∂y
= 0

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
+

1

ρ

∂p

∂z
= 0

∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+w

∂p

∂z
+ γp

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
= 0
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Conservation and Non-Conservation Form

The governing equations on non-conservation form are not, although the name might

give that impression, less physically accurate than the equations on conservation

form. The nomenclature comes from CFD where the equations on conservation form

are preferred.

Using the conservation form as a basis for a Finite-Volume Method (FVM) solver

ensures conservation of mass, momentum and energy.
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Conservation and Non-Conservation Form

Conservative equations are equations that directly stems from conservation of

flow quantities over a control volume

The equations on non-conservation form are derived from the corresponding

equations on conservation form using the chain rule for derivatives

Thus the equations on non-conservation form do not stem directly from a

conservation law - but aren’t the two formulations still equivalent?

Only for continuous solutions! The chain rule can only be used for

continuous fields
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Conservation and Non-Conservation Form

Conservation forms are useful for:

1. Numerical methods for compressible flow

2. Theoretical understanding of non-linear waves (shocks etc)

3. Provide link between integral forms (control volume formulations) and PDE:s

Non-conservation forms are useful for:

1. Theoretical understanding of behavior of numerical methods

2. Theoretical understanding of boundary conditions

3. Analysis of linear waves (aero-acoustics)
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem

�

� �
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Chapter 6.5

The Entropy Equation
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The Entropy Equation

From the first and second law of thermodynamics we have

De

Dt
= T

Ds

Dt
− p

D

Dt

(
1

ρ

)

which is called the entropy equation
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The Entropy Equation

Compare the entropy equation

De

Dt
= T

Ds

Dt
− p

D

Dt

(
1

ρ

)

with the energy equation (inviscid flow):

De

Dt
= q̇− p

D

Dt

(
1

ρ

)

we see that

T
Ds

Dt
= q̇
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The Entropy Equation

If q̇ = 0 (adiabatic flow) then

Ds

Dt
= 0

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds

Dt
=

∂s

∂t
+ (v · ∇)s = (v · ∇)s = 0

i.e., entropy is constant along streamlines
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem

�

� �

�
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Chapter 6.6

Crocco’s Theorem

Niklas Andersson - Chalmers 51 / 61



Crocco’s Theorem

”... a relation between gradients of total enthalpy, gradients of entropy, and

flow rotation ...”
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Crocco’s Theorem

Momentum equation (no body forces)

ρ
Dv
Dt

= −∇p

Writing out the substantial derivative gives

ρ
∂v
∂t

+ ρv · ∇v = −∇p ⇒ ∂v
∂t

+ v · ∇v = −1

ρ
∇p

First and second law of thermodynamics (energy equation)

dh = Tds+
1

ρ
dp

Replace differentials with a gradient operator

∇h = T∇s+
1

ρ
∇p ⇒ T∇s = ∇h− 1

ρ
∇p
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Crocco’s Theorem

With pressure derivative from the momentum equation inserted in the energy

equation we get

T∇s = ∇h+
∂v
∂t

+ v · ∇v

h = ho −
1

2
v · v ⇒ ∇h = ∇ho −∇(

1

2
v · v)

∇(
1

2
v · v) = v × (∇× v) + v · ∇v

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A)

A = B = v ⇒ ∇(v · v) = 2[v · ∇v + v × (∇ × v)]
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Crocco’s Theorem

T∇s = ∇ho − v × (∇× v)− v · ∇v +
∂v
∂t

+ v · ∇v

T∇s = ∇ho +
∂v
∂t

− v × (∇× v)

Note! ∇× v is the vorticity of the fluid

the rotational motion of the fluid is described by the angular velocity ω =
1

2
(∇ × v)
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Crocco’s Theorem

T∇s = ∇ho +
∂v
∂t

− v × (∇× v)

”... when a steady flow field has gradients of total enthalpy and/or entropy

Crocco’s theorem dramatically shows that it is rotational ...”
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Crocco’s Theorem - Example

shock
M∞ constant

ho constant

s constant

Curved stationary shock (steady-state flow)

1. s is constant upstream of shock

2. jump in s across shock depends on local shock angle

3. s will vary from streamline to streamline downstream of shock

4. ∇s 6= 0 downstream of shock
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Crocco’s Theorem - Example

shock
M∞ constant

ho constant

s constant

Curved stationary shock (steady-state flow)

Total enthalpy upstream of shock

ho is constant along streamlines

ho is uniform

Total enthalpy downstream of shock

ho is uniform

∇ho = 0
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Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

T∇s = ∇ho − v × (∇× v)

v × (∇× v) 6= 0 downstream of a curved shock

the rotation ∇× v 6= 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic means!
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Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass

conservation of momentum

conservation of energy

The substantial derivative:

D

Dt
=

∂

∂t
+ v · ∇

PDE:s on conservation form

PDE:s on non-conservation form

The entropy equation

Crocco’s theorem

�

� �

�

�
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