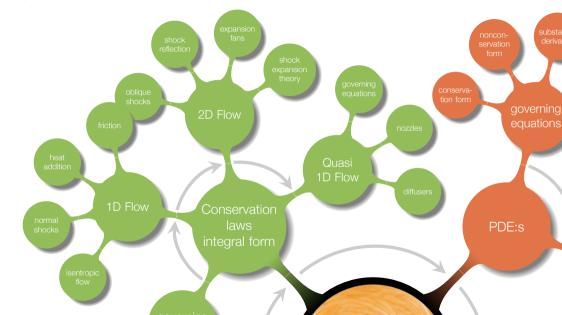


Chapter 5 - Quasi-One-Dimensional Flow

Overview

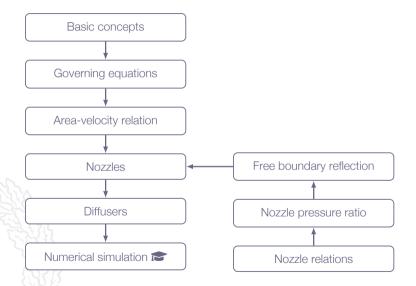


Learning Outcomes

- 4 Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation principles they are based on
- 6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases
- 7 **Explain** why entropy is important for flow discontinuities
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - i detached blunt body shocks, nozzle flows
- Solve engineering problems involving the above-mentioned phenomena (8a-8k)

what does quasi-1D mean? either the flow is 1D or not, or?

Roadmap - Quasi-One-Dimensional Flow

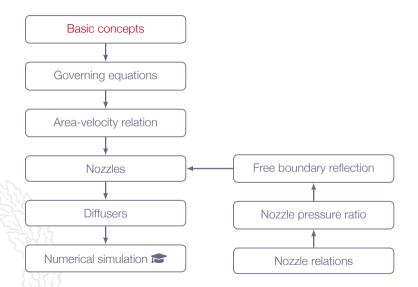


Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional we will be able to establish important relations using the quasi-one-dimensional approach

Roadmap - Quasi-One-Dimensional Flow



Quasi-One-Dimensional Flow

Chapter 3

overall assumption

one-dimensional flow steady state constant cross-section area

applications

normal shock
1D flow with heat addition
1D flow with friction

Chapter 4

overall assumption

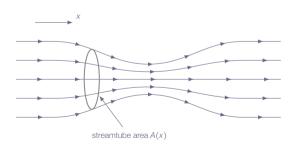
two-dimensional flow steady state uniform freestream

applications

oblique shocks expansion fans shock-expansion theory

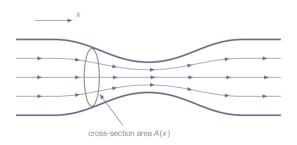
Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow **variations in streamtube area** (steady-state flow assumption still applied)



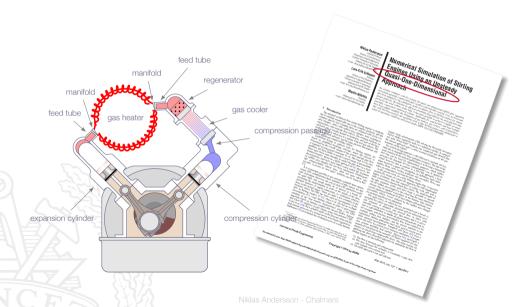
Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

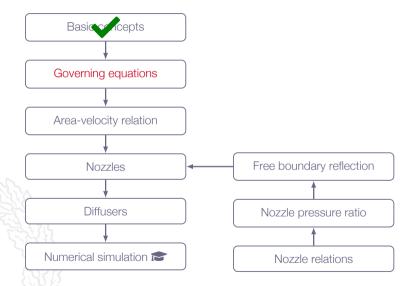


Quasi-One-Dimensional Flow - Nozzle Flow

Quasi-One-Dimensional Flow - Stirling Engine



Roadmap - Quasi-One-Dimensional Flow

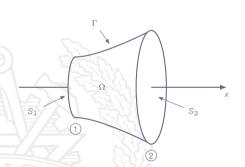


Chapter 5.2 Governing Equations

Governing Equations

Introduce **cross-section-averaged flow quantities** \Rightarrow all quantities depend on x only

$$A = A(x), \ \rho = \rho(x), \ u = u(x), \ \rho = \rho(x), \dots$$



 Ω control volume

 S_1 left boundary (area A_1)

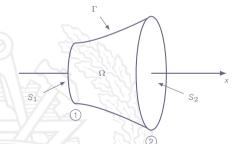
 S_2 right boundary (area A_2)

Γ perimeter boundary

$$\partial\Omega=S_1\cup\Gamma\cup S_2$$

Governing Equations - Assumptions

- 1. Inviscid flow (no boundary layers)
- 2. Steady-state flow (no unsteady effects)
- 3. No flow through Γ (control volume aligned with streamlines)



Governing Equations - Conservation of Mass

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho d\mathcal{V} + \iint_{\partial \Omega} \rho \mathbf{v} \cdot \mathbf{n} dS}_{=0} = 0$$

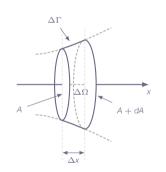
$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$

Governing Equations - Conservation of Momentum

$$\underbrace{\frac{d}{dt} \iiint\limits_{\Omega} \rho \mathbf{v} d\mathcal{V} + \iint\limits_{\partial \Omega} \left[\rho (\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS}_{=0} = 0$$

$$\iint \rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} dS = -\rho_1 u_1^2 A_1 + \rho_2 u_2^2 A_2$$

$$\iint_{\partial\Omega} \rho \mathbf{n} dS = -\rho_1 A_1 + \rho_2 A_2 - \int_{A_1}^{A_2} \rho dA$$



$$(\rho_1 u_1^2 + \rho_1)A_1 + \int_{A_1}^{A_2} \rho dA = (\rho_2 u_2^2 + \rho_2)A_2$$

Governing Equations - Conservation of Energy

$$\underbrace{\frac{d}{dt} \iiint\limits_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint\limits_{\partial \Omega} \left[\rho h_{o}(\mathbf{v} \cdot \mathbf{n}) \right] dS = 0}_{=0}$$

which gives

$$\rho_1 u_1 A_1 h_{o_1} = \rho_2 u_2 A_2 h_{o_2}$$

from continuity we have that $\rho_1 u_1 A_1 = \rho_2 u_2 A_2 \Rightarrow$

$$h_{O_1} = h_{O_2}$$

Governing Equations - Summary

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$

$$(\rho_1 u_1^2 + \rho_1) A_1 + \int_{A_1}^{A_2} \rho dA = (\rho_2 u_2^2 + \rho_2) A_2$$

$$h_{O_1} = h_{O_2}$$

Continuity equation:

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$
 or $\rho u A = C$

where c is a constant \Rightarrow

$$d(\rho uA) = 0$$

Momentum equation:

$$(\rho_1 u_1^2 + \rho_1)A_1 + \int_{A_1}^{A_2} p dA = (\rho_2 u_2^2 + \rho_2)A_2 \Rightarrow$$

$$d \left[(\rho u^2 + \rho)A \right] = p dA \Rightarrow$$

$$d(\rho u^2 A) + d(\rho A) = p dA \Rightarrow$$

$$u \underbrace{d(\rho u A)}_{=0} + \rho u A du + A d\rho + p dA = p dA \Rightarrow$$

$$\rho u A du + A d\rho = 0 \Rightarrow$$

$$0 = 0 \Rightarrow$$

$$dp = -\rho u du$$

(Euler's equation)

Energy equation:

$$h_{O_1} = h_{O_2} \Rightarrow dh_O = 0$$

$$h_0 = h + \frac{1}{2}u^2 \Rightarrow$$

$$dh + udu = 0$$

Summary (valid for all gases):

$$d(\rho uA) = 0$$

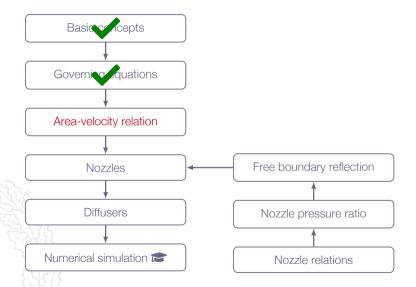
$$dp = -\rho u du$$

$$dh + udu = 0$$

Assumptions:

- 1. quasi-one-dimensional flow
- 2. inviscid flow
- 3. steady-state flow

Roadmap - Quasi-One-Dimensional Flow



Chapter 5.3 Area-Velocity Relation

$$d(\rho uA) = 0 \Rightarrow uAd\rho + \rho Adu + \rho udA = 0$$

divide by ρuA gives

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

Euler's equation:

$$dp = -\rho u du \Rightarrow \frac{dp}{\rho} = \frac{dp}{d\rho} \frac{d\rho}{\rho} = -u du$$

Assuming adiabatic, reversible (isentropic) process and the definition of speed of sound gives

$$\frac{d\rho}{d\rho} = \left(\frac{\partial \rho}{\partial \rho}\right)_{s} = \mathbf{a}^{2} \Rightarrow \mathbf{a}^{2} \frac{d\rho}{\rho} = -udu \Rightarrow \frac{d\rho}{\rho} = -M^{2} \frac{du}{u}$$

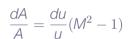
Now, inserting the expression for $\frac{d\rho}{\rho}$ in the rewritten continuity equation gives

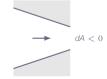
$$(1 - M^2)\frac{du}{u} + \frac{dA}{A} = 0$$

or

$$\frac{dA}{A} = (M^2 - 1)\frac{du}{u}$$

which is the area-velocity relation





Subsonic M < 1 Supersonic M > 1

subsonic diffuser	supersonic nozzle
du < 0	du > 0
dp > 0	dp < 0

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

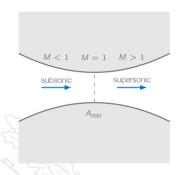
$$M=1$$
 when $dA=0$

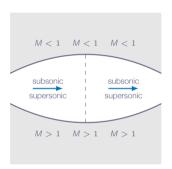
$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$M = 1$$
 when $dA = 0$

maximum or minimum area





A converging-diverging nozzle is the **only possibility** to obtain supersonic flow!

A supersonic flow entering a convergent-divergent nozzle will slow down and, if the conditions are right, become sonic at the throat - hard to obtain a shock-free flow in this case.

$$M \to 0 \Rightarrow \frac{dA}{A} = -\frac{du}{u}$$
$$\frac{dA}{A} + \frac{du}{u} = 0 \Rightarrow$$
$$\frac{1}{Au} [udA + Adu] = 0 \Rightarrow$$

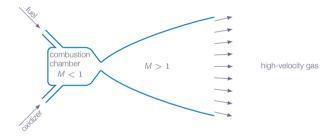
$$d(uA) = 0 \Rightarrow Au = c$$

where c is a constant

Note 1 The area-velocity relation is only valid for isentropic flow not valid across a compression shock (due to entropy increase)

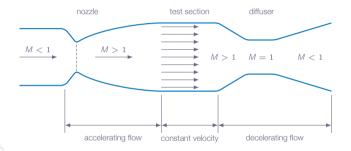
Note 2 The area-velocity relation is valid for all gases

Area-Velocity Relation Examples - Rocket Engine

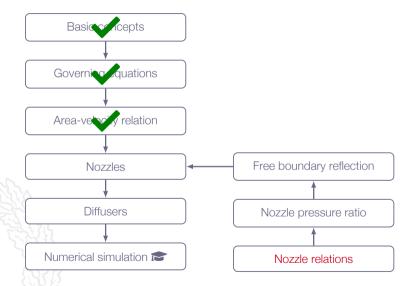


High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH 2 /LOx rocket engine: $p_0 \sim 120$ [bar], $T_0 \sim 3600$ [K], exit velocity ~ 4000 [m/s]

Area-Velocity Relation Examples - Wind Tunnel



Roadmap - Quasi-One-Dimensional Flow



Chapter 5.4 Nozzles

time for rocket science!

Calorically perfect gas assumed:

From Chapter 3:

$$\frac{T_o}{T} = \left(\frac{a_o}{a}\right)^2 = 1 + \frac{1}{2}(\gamma - 1)M^2$$

$$\frac{p_o}{p} = \left(\frac{T_o}{T}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_{\rm O}}{\rho} = \left(\frac{T_{\rm O}}{T}\right)^{\frac{1}{\gamma - 1}}$$

Critical conditions:

$$\frac{T_o}{T^*} = \left(\frac{a_o}{a^*}\right)^2 = \frac{1}{2}(\gamma + 1)$$

$$\frac{p_o}{p^*} = \left(\frac{T_o}{T^*}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_{\rm O}}{\rho^*} = \left(\frac{T_{\rm O}}{T^*}\right)^{\frac{1}{\gamma - 1}}$$

$$M^{*^2} = \frac{u^2}{a^{*^2}} = \frac{u^2}{a^2} \frac{a^2}{a^{*^2}} = \frac{u^2}{a^2} \frac{a^2}{a_0^2} \frac{a_0^2}{a^{*^2}} \Rightarrow$$

$$\frac{\frac{u^2}{a^2}}{\frac{a^2}{a_0^2}} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1}$$

$$\frac{a_0^2}{a_0^2} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1}$$

$$\frac{a_0^2}{a^{*2}} = \frac{1}{2}(\gamma + 1)$$

For nozzle flow we have

$$\rho UA = C$$

where c is a constant and therefore

$$\rho^* u^* A^* = \rho u A$$

or, since at critical conditions $u^* = a^*$

$$\rho^* a^* A^* = \rho u A$$

which gives

$$\frac{A}{A^*} = \frac{\rho^*}{\rho} \frac{a^*}{u} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} \frac{a^*}{u}$$

$$\frac{A}{A^*} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} \frac{a^*}{u}$$

$$\frac{\rho^*}{\rho_o} = \left(\frac{T_o}{T^*}\right)^{\frac{-1}{\gamma-1}}$$

$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{1}{\gamma-1}}$$

$$\Rightarrow \frac{A}{A^*} = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{1}{\gamma-1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{1}{\gamma-1}}M^*}$$

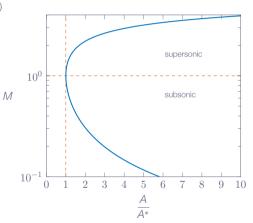
$$\frac{a^*}{u} = \frac{1}{M^*}$$

$$\begin{pmatrix} A \\ A^* \end{pmatrix}^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{2}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{2}{\gamma - 1}}M^{*2}} \\
M^{*2} = M^2 \frac{\frac{1}{2}(\gamma + 1)}{1 + \frac{1}{2}(\gamma - 1)M^2} \end{pmatrix} \Rightarrow$$

$$\left(\frac{A}{A^*}\right)^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{\gamma + 1}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{\gamma + 1}{\gamma - 1}}M^2}$$

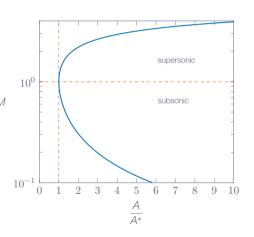
which is the area-Mach-number relation

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1} \right]^{(\gamma + 1)/(\gamma - 1)}$$



$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1} \right]^{(\gamma + 1)/(\gamma - 1)}$$

Note!
$$\frac{A}{A^*} = \frac{\rho^* u^*}{\rho u}$$

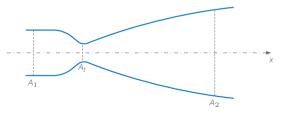


- Note 1 Critical conditions used here are those corresponding to **isentropic flow**. Do not confuse these with the conditions in the cases of one-dimensional flow with heat addition and friction
- Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both total and critical conditions are constant along streamlines unless shocks are present (then the flow is no longer isentropic)
- Note 3 The derived area-Mach-number relation is **only valid for calorically perfect gas and for isentropic flow**. It is not valid across a compression shock

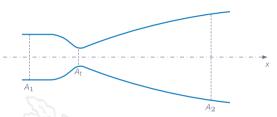
Nozzle Flow

Assumptions:

- 1. inviscid
- 2. steady-state
- 3. quasi-one-dimensional
- 4. calorically perfect gas



Sub-critical (non-choked) nozzle flow

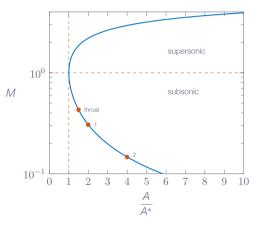


M < 1 at nozzle throat

 $A_t > A^*$

 $M_1 < 1$

 $M_2 <$



Subcritical nozzle flow (non-choked and subsonic \Rightarrow isentropic):

 A^* is constant throughout the nozzle $(A^* < A_t)$

 M_1 given by the subsonic solution of

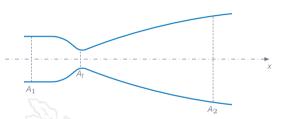
$$\left(\frac{A_1}{A^*}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma + 1} \left(1 + \frac{1}{2} (\gamma - 1) M_1^2\right) \right]^{\frac{\gamma + 1}{\gamma - 1}}$$

 M_2 given by the subsonic solution of

$$\left(\frac{A_2}{A^*}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma + 1} (1 + \frac{1}{2}(\gamma - 1)M_2^2) \right]^{\frac{\gamma + 1}{\gamma - 1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow both upstream and downstream of the throat

Critical (choked) nozzle flow

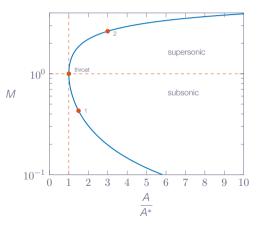


M=1 at nozzle throat

 $A_t = A^*$

 $M_1 < 1$

 $M_2 >$



Supercritical nozzle flow (choked flow without shocks \Rightarrow isentropic):

 A^* is constant throughout the nozzle $(A^* = A_t)$

 M_1 given by the subsonic solution of

$$\left(\frac{A_1}{A^*}\right)^2 = \left(\frac{A_1}{A_t}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma + 1} (1 + \frac{1}{2}(\gamma - 1)M_1^2) \right]^{\frac{\gamma + 1}{\gamma - 1}}$$

 M_2 given by the supersonic solution of

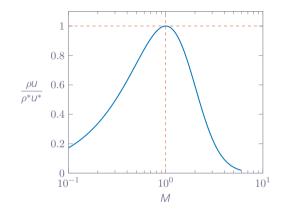
$$\left(\frac{A_2}{A^*}\right)^2 = \left(\frac{A_2}{A_t}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma+1} (1 + \frac{1}{2}(\gamma-1)M_2^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of the throat and supersonic flow downstream of the throat

$$\rho uA = \rho^*A^*u^* \Rightarrow \frac{A^*}{A} = \frac{\rho u}{\rho^*u^*}$$

From the area-Mach-number relation

$$\frac{A^*}{A} = \begin{cases} < 1 & \text{if} & M < 1\\ 1 & \text{if} & M = 1\\ < 1 & \text{if} & M > 1 \end{cases}$$



The maximum possible massflow through a duct is achieved when its throat reaches sonic conditions

For a choked nozzle:

$$\dot{m} = \rho_1 u_1 A_1 = \rho^* u^* A^* = \rho_2 u_2 A_2$$

$$\rho^* = \frac{\rho^*}{\rho_0} \rho_0 = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} \frac{\rho_0}{RT_0}$$

$$a^* = \frac{a^*}{a_0} a_0 = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{2}} \sqrt{\gamma RT_0}$$

$$\dot{m} = \frac{\rho_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

$$\dot{m} = \frac{p_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

The **maximum mass flow** that can be sustained through the nozzle Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically perfect gas

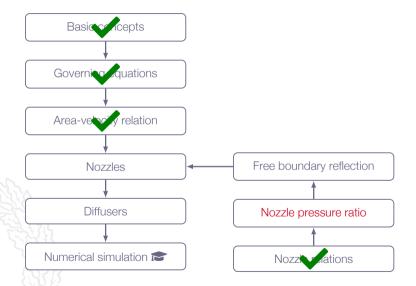
Note! The massflow formula is valid even if there are shocks present downstream of throat!

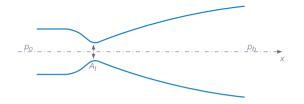
$$\dot{m} = \frac{\rho_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

How can we increase mass flow through nozzle?

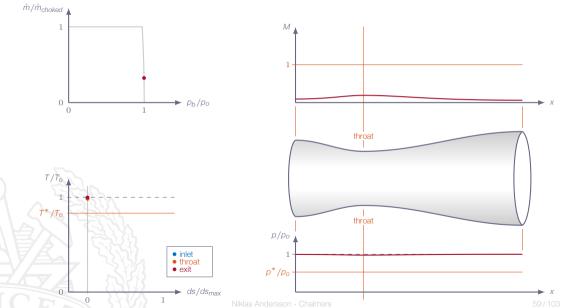
- 1. increase p_0
- 2. decrease T_o
- 3. increase A_t
- 4. decrease R (increase molecular weight, without changing γ)

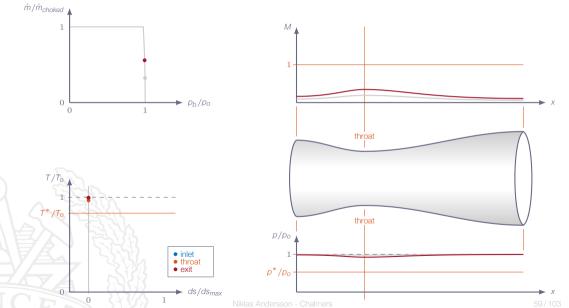
Roadmap - Quasi-One-Dimensional Flow

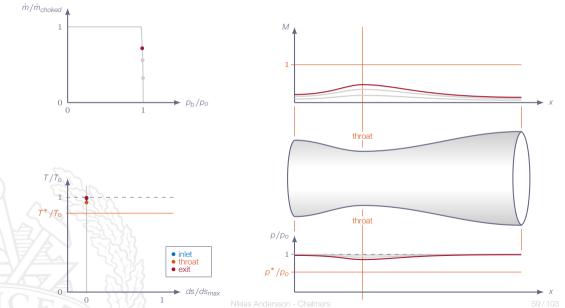


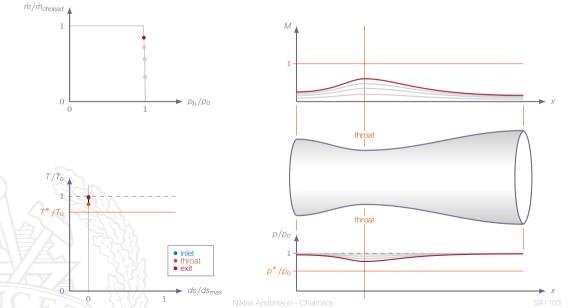


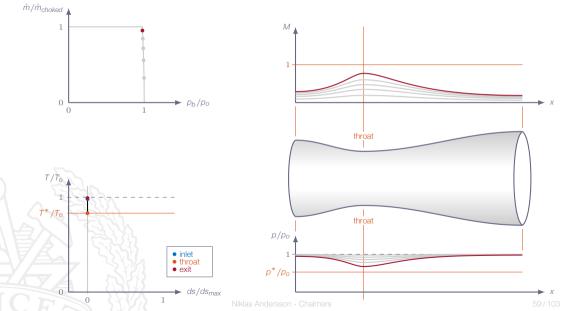
A(x) area function $A_t \quad \min\{A(x)\}$ $p_o \quad \text{inlet total pressure}$ $p_b \quad \text{outlet static pressure}$ (ambient pressure) $p_o/p_b \quad \text{pressure ratio}$

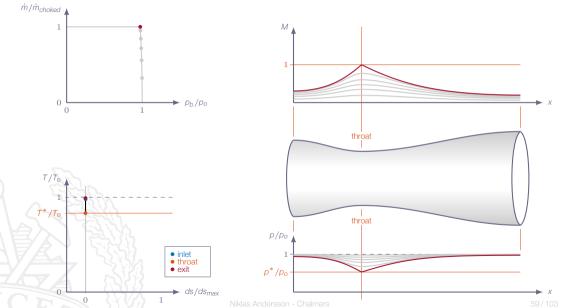


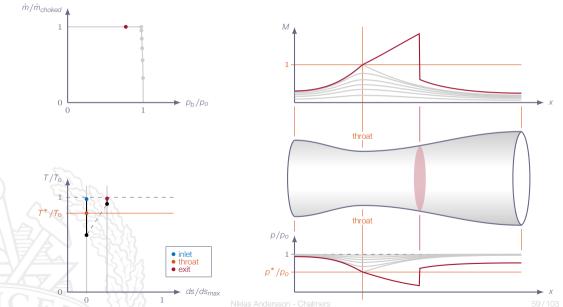


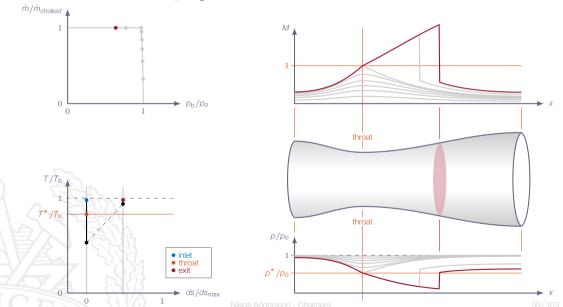


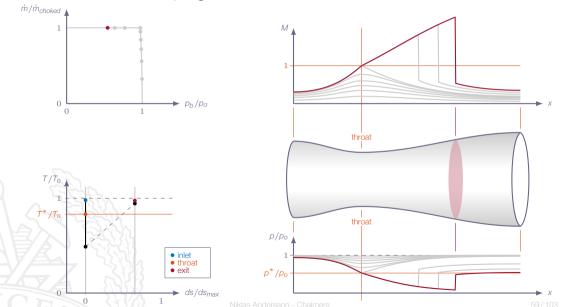


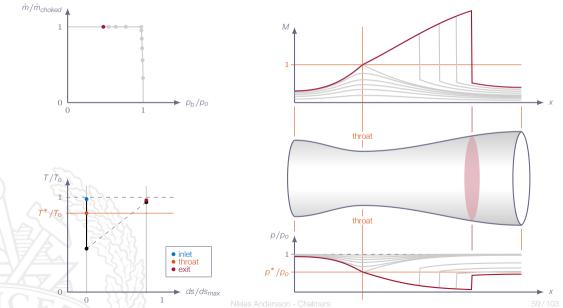


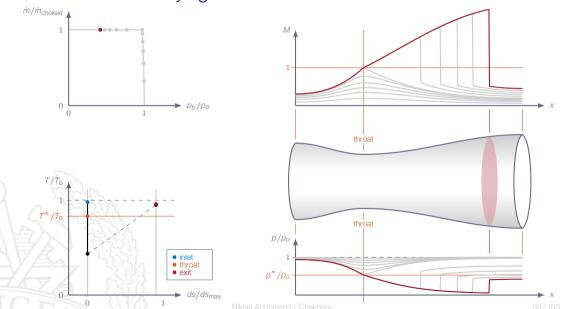




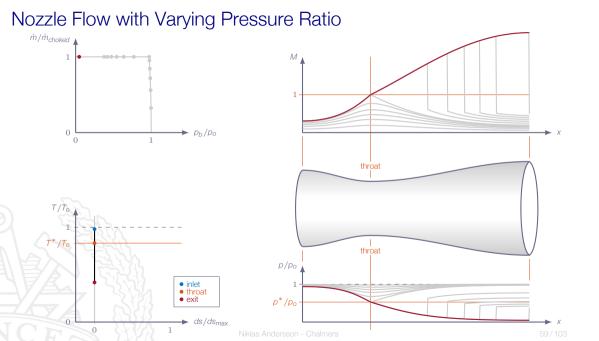








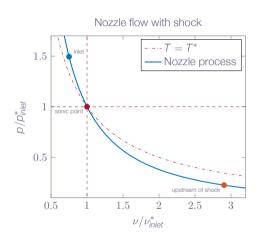
Nozzle Flow with Varying Pressure Ratio \dot{m}/\dot{m}_{choked} $\rightarrow p_b/p_o$ throat throat p/p_0 inlet throat exit p^*/p_o → ds/ds_{max}



Nozzle Flow with Internal Shock

The nozzle flow process follows an isentrope up to the location of the internal normal shock

Sonic conditions at the nozzle throat

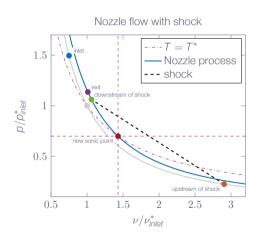


Nozzle Flow with Internal Shock

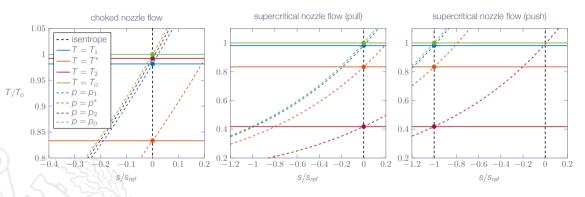
The normal shock moves the process line to another isentrope

 T_o and thus T^* is not affected by the shock

 p_o decreases over the shock which means that p^* decreases and ν^* increases

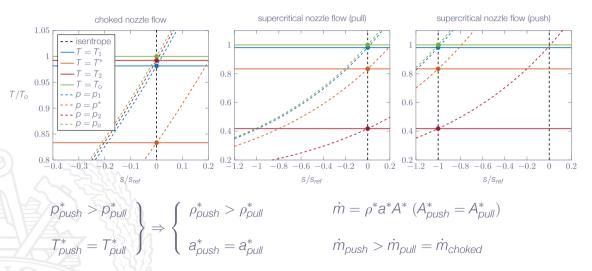


Nozzle Operation - Pull vs. Push



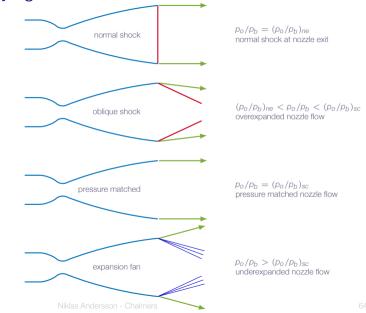
Nozzle Pressure Ratio $NPR = p_o/p_b$ Pull - increase NPR by reducing the back pressure (p_b) Push - increase NPR by increasing the inlet total pressure (p_o)

Nozzle Operation - Pull vs. Push



Niklas Andersson - Chalmers

Nozzle Flow with Varying Pressure Ratio - Downstream Flow



Nozzle Flow with Varying Pressure Ratio (Summary)

$$(p_o/p_b) < (p_o/p_b)_{cr}$$

subsonic, isentropic flow throughout the nozzle

the mass flow changes with p_b , i.e. the flow is not choked

$$(p_o/p_b) = (p_o/p_b)_{cr}$$

sonic flow (M = 1.0) at the throat

the flow will flip to the supersonic solution downstream of the throat, for an infinitesimal increase of (p_o/p_b)

$$(p_o/p_b)_{cr} < (p_o/p_b) < (p_o/p_b)_{ne}$$

the flow is **choked** (fixed mass flow)

a **normal shock** will appear downstream of the throat, with strength and position depending on (p_o/p_b)

Nozzle Flow with Varying Pressure Ratio (Summary)

$$(p_o/p_b) = (p_o/p_b)_{ne}$$

normal shock at the nozzle exit

supersonic, isentropic flow from throat to exit

$$(p_o/p_b)_{ne} < (p_o/p_b) < (p_o/p_b)_{sc}$$
overexpanded flow (supersonic, isentropic flow from throat to exit)

oblique shocks formed downstream of the nozzle exit

$$(p_o/p_b) = (p_o/p_b)_{sc}$$

supercritical flow (pressure matched)

supersonic, isentropic flow from the throat and downstream of the nozzle exit

$$(p_o/p_b)_{sc} < (p_o/p_b)$$

underexpanded flow (supersonic, isentropic flow from throat to exit)
expansion fans formed downstream of the nozzle exit

Nozzle Flow with Varying Pressure Ratio - Q1D Limitations

Quasi-one-dimensional theory

When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_b) , *i.e.* lowering the back pressure), it disappears completely.

The flow through the nozzle is then **shock free** (and thus also **isentropic** since we neglect viscosity).

Three-dimensional nozzle flow

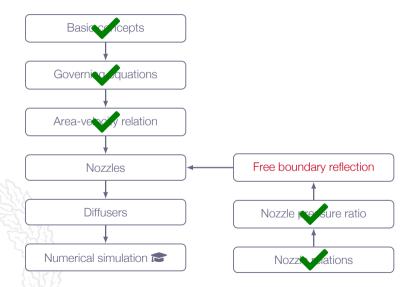
When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_b)), an **oblique shock** is formed outside of the nozzle exit.

For the exact **supercritical** value of (p_o/p_b) this oblique shock disappears.

For (p_o/p_b) above the supercritical value an **expansion fan** is formed at the nozzle exit.

3D Simulations of Nozzle Flow

Roadmap - Quasi-One-Dimensional Flow

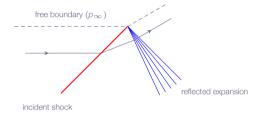


Chapter 5.6 Wave Reflection From a Free Boundary

Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc

Free-Boundary Reflection - Shock Reflection



No discontinuity in pressure at the free boundary possible Incident **shock reflects as expansion** waves at the free boundary Reflection results in **net turning** of the flow

Free-Boundary Reflection - Expansion Wave Reflection



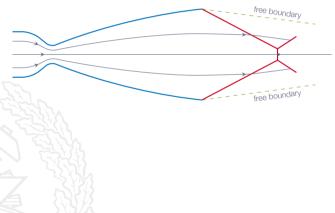
No discontinuity in pressure at the free boundary possible

Incident **expansion** waves **reflects as compression** waves at the free boundary

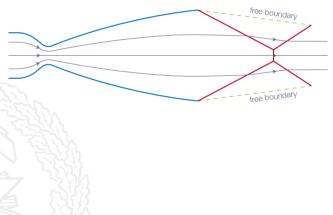
Finite compression waves coalesces into a shock

Reflection results in **net turning** of the flow

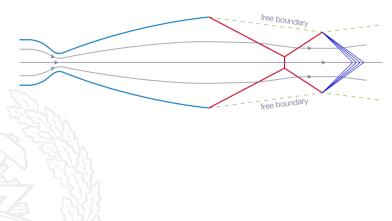
overexpanded nozzle flow



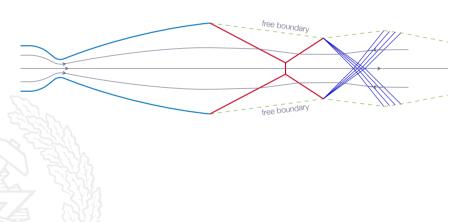
shock reflection at jet centerline



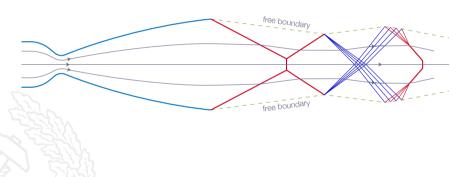
shock reflection at free boundary



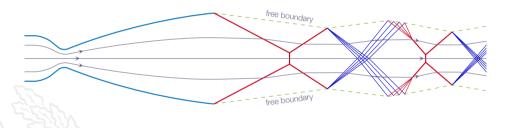
expansion wave reflection at jet centerline



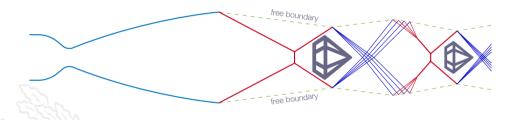
expansion wave reflection at free boundary



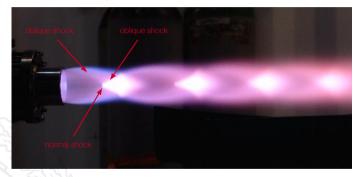
repeated shock/expansion system



shock diamonds



overexpanded jet



Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves

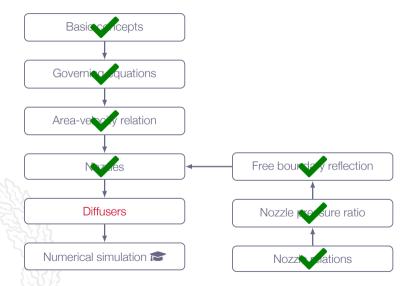
Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves

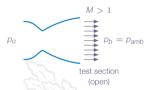
Expansion waves reflects as compression waves

Roadmap - Quasi-One-Dimensional Flow



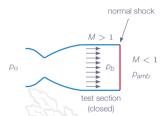
Chapter 5.5 Diffusers

wind tunnel with supersonic test section open test section



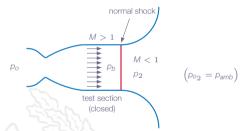
$$p_o/p_b = (p_o/p_b)_{sc}$$
 $M = 3.0$ in test section $\Rightarrow p_o/p_b = 36.7$!!!

wind tunnel with supersonic test section enclosed test section, normal shock at exit



$$\begin{split} &\rho_{\rm O}/\rho_{\rm amb} = (\rho_{\rm O}/\rho_{\rm b})(\rho_{\rm b}/\rho_{\rm amb}) < (\rho_{\rm O}/\rho_{\rm b})_{\rm SC} \\ &M = 3.0 \text{ in test section} \Rightarrow \\ &\rho_{\rm O}/\rho_{\rm amb} = 36.7/10.33 = 3.55 \end{split}$$

wind tunnel with supersonic test section add subsonic diffuser after normal shock

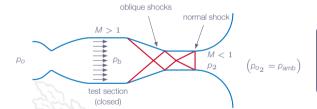


$$p_0/p_{amb} = (p_0/p_b)(p_b/p_2)(p_2/p_{02})$$

M = 3.0 in test section \Rightarrow $p_0/p_{amb} = 36.7/10.33/1.17 = 3.04$

Note! this corresponds exactly to total pressure loss across normal shock

wind tunnel with supersonic test section add supersonic diffuser before normal shock



well-designed supersonic + subsonic diffuser \Rightarrow

- 1. decreased total pressure loss
- 2. decreased p_o and power to drive wind tunnel

Main problems:

1. Complex 3D flow in the diffuser section

viscous effects

complex systems of oblique shocks

flow separation

shock/boundary-layer interaction

2. Starting requirements

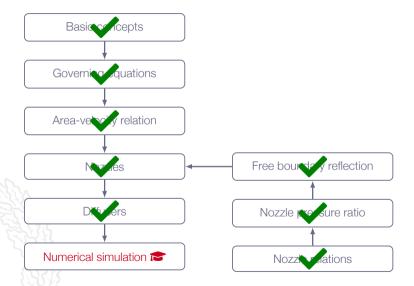
second throat must be significantly larger than first throat

variable geometry diffuser

second throat larger during startup procedure

decreased second throat to optimum value after supersonic flow is established

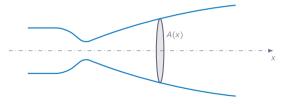
Roadmap - Quasi-One-Dimensional Flow



Quasi-One-Dimensional Euler Equations

Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle



Assumptions: inviscid, Q = Q(x, t)

Quasi-One-Dimensional Euler Equations

$$A(x)\frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left[A(x)E\right] = A'(x)H$$

where A(x) is the cross section area and

$$Q = \begin{bmatrix} \rho \\ \rho u \\ \rho e_0 \end{bmatrix}, \ E(Q) = \begin{bmatrix} \rho u \\ \rho u^2 + \rho \\ \rho h_0 u \end{bmatrix}, \ H(Q) = \begin{bmatrix} 0 \\ \rho \\ 0 \end{bmatrix}$$

Numerical Approach

Discretization:

Finite-Volume Method (FVM) - Quasi-1D formulation

Numerical scheme:

third-order characteristic upwind scheme

Time stepping technique:

three-stage second-order Runge-Kutta explicit time marching

Boundary conditions:

left-end boundary:

subsonic inflow

specify: inlet total temperature (T_o) and total pressure (p_o)

right-end boundary:

subsonic outflow

specify: outlet static pressure (p)

Finite-Volume Spatial Discretization

$$\left(\Delta x_{j} = x_{j+\frac{1}{2}} - x_{j-\frac{1}{2}}\right)$$

$$cell j \qquad x$$

$$x_{j-\frac{3}{2}} \qquad x_{j-\frac{1}{2}} \qquad x_{j+\frac{1}{2}} \qquad x_{j+\frac{3}{2}}$$

Integration over cell *j* gives:

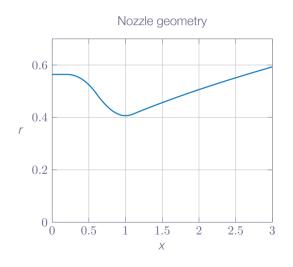
$$\begin{split} &\frac{1}{2} \left[A(x_{j-\frac{1}{2}}) + A(x_{j+\frac{1}{2}}) \right] \Delta x_j \frac{d}{dt} \bar{Q}_j + \\ &\left[A(x_{j+\frac{1}{2}}) \hat{E}_{j+\frac{1}{2}} - A(x_{j-\frac{1}{2}}) \hat{E}_{j-\frac{1}{2}} \right] = \\ &\left[A(x_{j+\frac{1}{2}}) - A(x_{j-\frac{1}{2}}) \right] \hat{H}_j \end{split}$$

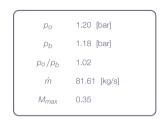
Finite-Volume Spatial Discretization

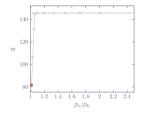
$$\bar{Q}_{j} = \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} QA(x) dx \right) / \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} A(x) dx \right)$$

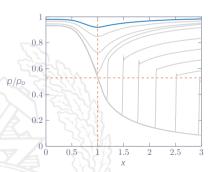
$$\hat{E}_{j+\frac{1}{2}} \approx E\left(Q\left(X_{j+\frac{1}{2}}\right)\right)$$

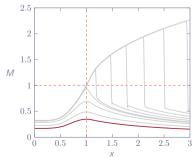
$$\hat{H}_{j} pprox \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} HA'(x) dx \right) / \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} A'(x) dx \right)$$

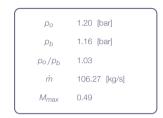


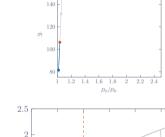


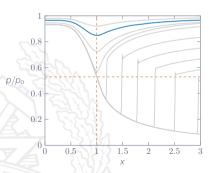


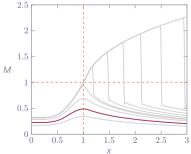


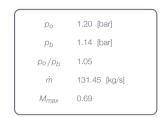


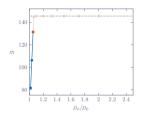


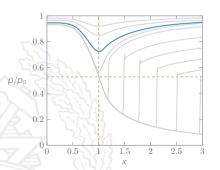


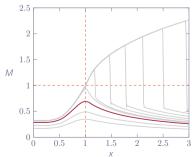


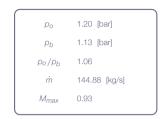


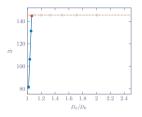


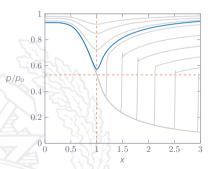


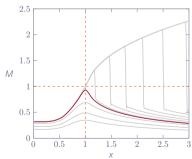


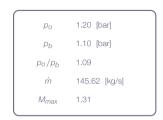


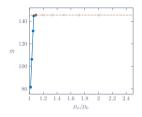


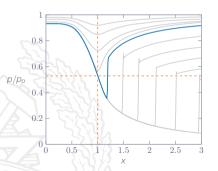


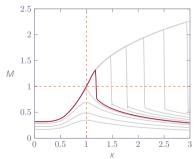


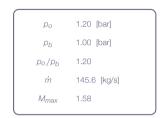


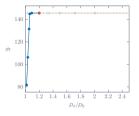


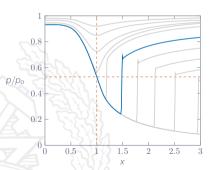


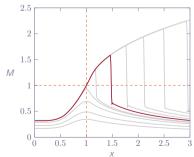


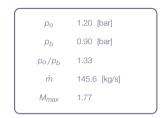


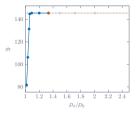


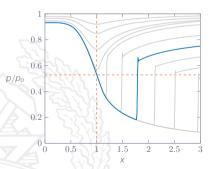


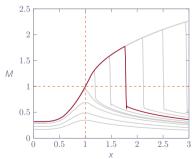


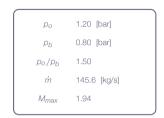


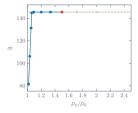


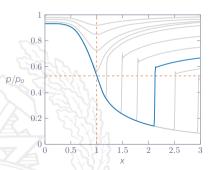


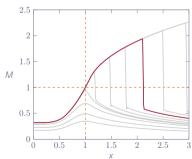


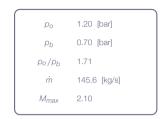


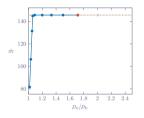


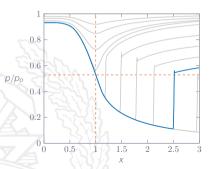


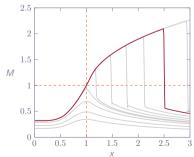


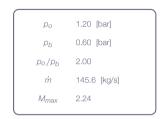


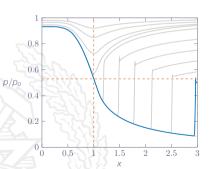


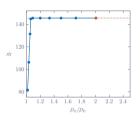


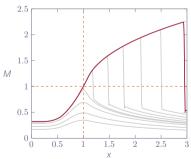


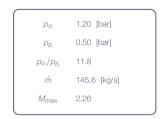


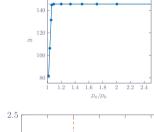


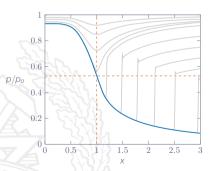


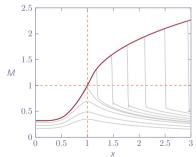


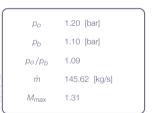


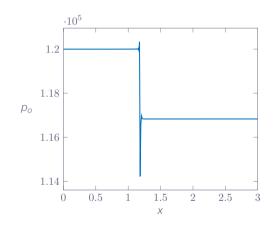


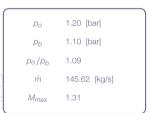


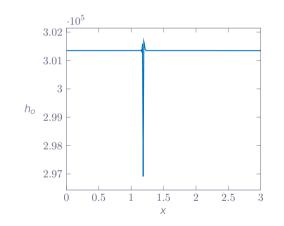




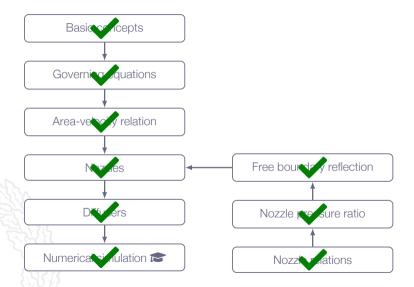


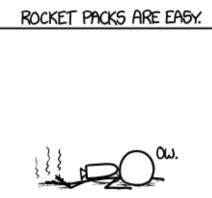






Roadmap - Quasi-One-Dimensional Flow





THE HARD PART IS INVENTING THE CALF SHIELDS.