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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases
7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*
b normal shocks*
i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

what does quasi-1D mean? either the flow is 1D or not, or?
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Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can
study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional
we will be able to establish important relations using the quasi-one-dimensional
approach
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Quasi-One-Dimensional Flow

Chapter 3

overall assumption
one-dimensional flow
steady state

constant cross-section area

applications

normal shock

1D flow with heat addition
1D flow with friction

Chapter 4

overall assumption
two-dimensional flow
steady state

uniform freestream

applications

oblique shocks
expansion fans
shock-expansion theory




Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in streamtube area
(steady-state flow assumption still applied)

streamtube area A(x)



Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)



Quasi-One-Dimensional Flow - Nozzle Flow




Quasi-One-Dimensional Flow - Stirling Engine

feed tube

manifold
regenerator

feed tube gas cooler e,

Rt
compression pasSALeit i
presin pasRR SIS

expansion cylinder
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Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q) control volume

S, left boundary (area Aq)
S, right boundary (area As)
I perimeter boundary

0N =S UT"uUSy




Governing Equations - Assumptions

Inviscid flow (no boundary layers)
Steady-state flow (no unsteady effects)

No flow through I' (control volume aligned with streamlines)
-

N\

>

Sl 82



Governing Equations - Conservation of Mass

% JH pd ¥ + @ pv-ndS =0
Q o)

=0 —p1U1A1+p2u2A2

[ P1UIAL = paUaAsg ]




Governing Equations - Conservation of Momentum

% JH pva? + @ [p(v-n)v +pn]dS =0
{ o0

|
=0
(ﬁﬁ p(v-n)vdS = —plu%Al + [)QU%AQ
Ao

@pno’S = —P1A1 +P2A2 — pPdA
1) A1

Ao

(p1U + p1)Ar +/A PAA = (paUii + P2)As
1




Governing Equations - Conservation of Energy

% Hj PeodY + gﬁﬁ [pho(v - 1)]dS = 0
¢ 1)

—_———
=0

which gives

p1U1A 1N, = pali2A2ho,

from continuity we have that p1u1A; = paloAs =



Governing Equations - Summary

P1UIAL = palaAsg

Ao

(U2 +p1)As + /A POA = (patd + p2)As
v 1

h01 = h02




Governing Equations - Differential Form

Continuity equation:
[)1U1A1 = [)QUQAQ or /)UA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form
Momentum equation:
Az

(p1Ui + p1)A1 + PAA = (pau3 + p2)As =

Ay
d [(pu* + p)A] = pdA =
d(puA) + d(pA) = pdA =
ud(puA) +puAdu + Adp + pdA = pdA =
——

=0

pUAAU +Adp = 0 =

[ dp = —pudu ] (Euler’s equation)




Governing Equations - Differential Form

Energy equation:
hol — h02 = dho — 0

1.
ho:h+§u2;s

[ dh +udu =0 ]




Governing Equations - Differential Form

Summary (valid for all gases):

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow

d(puA) =0

dp = —pudu

dh+udu =0

J
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Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = UAdp + pAdu + pudA =0

divide by puA gives

d a dA

S AN

p u A
Euler’s equation:

d
ap = —pudu = d—p = d—’o—p = —uadu
pdpp

Assuming adiabatic, reversible (isentropic) process and the definition of speed of

sound gives

40 _ <8p> 2 =a?? gy 9 e
dp op) s P p u



Area-Velocity Relation

Now, inserting the expression for il in the rewritten continuity equation gives
P

au dA
— 2— _— =
(1 /\/I)U+A 0

or

which is the area-velocity relation



The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
du >0
dp < 0

subsonic diffuser
du <0
dp >0

supersonic diffuser
du <0
dp >0

subsonic nozzle
du >0
dp < 0



The Area-Velocity Relation

What happens when M = 17



The Area-Velocity Relation

What happens when M = 17

M =1whendA =0



The Area-Velocity Relation

What happens when M = 17
M=1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—y—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— e e | e
! supersonic | supersonic
|



The Area-Velocity Relation

A converging-diverging nozzle is the only possibility to obtain supersonic flow!

A supersonic flow entering a convergent-divergent nozzle will slow down and, if
the conditions are right, become sonic at the throat - hard to obtain a
shock-free flow in this case



Area-Velocity Relation

M%O:%:—%
A u
At
A u

1
A [UdA +Adu] =0 =

duA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

Note 1 The area-velocity relation is only valid for isentropic flow
not valid across a compression shock (due to entropy increase)

Note 2 The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

v
X@‘ >

combustion —
chamber M>1
M<1

oy
# -
+\

[s)

— high-velocity gas

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH2/LOx rocket
engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—
e
v >
M <1 ' M>1 EE—
M>1 M=1 M<1
EEE——

accelerating flow constant velocity decelerating flow



Roadmap - Quasi-One-Dimensional Flow

Basicw:epts

.

Govemwua’[ions

!

Area—vew relation

!

Nozzles

!

]<—[ Free boundary reflection ]

Diffusers

1

l

!

Nozzle pressure ratio J

Numerical simulation &

t

)

Nozzle relations




Chapter 5.4
Nozzles



Nozzle Flow with Varying Pressure Ratio

time for rocket science!



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:




Nozzle Flow - Relations
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Nozzle Flow - Relations
For nozzle flow we have

PUA =C
where ¢ is a constant and therefore
P UTA" = pUA
or, since at critical conditions u* = a*

pratA* = puA
which gives

A p*

A" pu popou



Nozzle Flow - Relations




Nozzle Flow - Relations

* 2
A [%(,y + 1)] y—1 M*?
M*Q 2 %(7 + 1)

(&) = e

which is the area-Mach-number relation



The Area-Mach-Number Relation

A 2 1 2+(771)M2 (v+1)/(v=1)
<A*> _/W[ y+1 ]
supersonic
L e
M subsonic
) 3 4 5 6 7 8 910

-1
100123



The Area-Mach-Number Relation

A 2 B L 2+ (,.Y o 1)M2 (v+1)/(v=1)
Ax ) M2 v+1
supersonic
(O

A prur 107
Note! a— subsonic

A* pu M ’

) 3 4 5 6 7 8 910

~1
100123



Area-Mach-Number Relation

Note 1 Ciritical conditions used here are those corresponding to isentropic flow.
Do not confuse these with the conditions in the cases of one-dimensional
flow with heat addition and friction

Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both
total and critical conditions are constant along streamlines unless
shocks are present (then the flow is no longer isentropic)

Note 3 The derived area-Mach-number relation is only valid for calorically
perfect gas and for isentropic flow. It is not valid across a compression
shock



Nozzle Flow

Assumptions:
inviscid
steady-state
quasi-one-dimensional
calorically perfect gas




The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

M < 1 at nozzle throat
Ar > A*
M1 <1
My < 1

1071

supersonic




The Area-Mach-Number Relation

Subcritical nozzle flow (non-choked and subsonic = isentropic):
A* is constant throughout the nozzle (A* < At)

M given by the subsonic solution of

.
Ay 1 2 1 NEE
— 1+ -(y-1
<A*> M2 [7+1( T30 )Ml)]
M given by the subsonic solution of

(ﬁ) AH 4 50 - o]

M is uniquely determined everywhere in the nozzle, with subsonic flow both
upstream and downstream of the throat

2
—



The Area-Mach-Number Relation

Critical (choked) nozzle flow

M =1 at nozzle throat
A = A*
M1 <1
My > 1

1071

supersonic

throat




The Area-Mach-Number Relation

Supercritical nozzle flow (choked flow without shocks = isentropic):
A* is constant throughout the nozzle (A* = At)

M given by the subsonic solution of

() - (3) - [0 30 - vwe)

M given by the supersonic solution of

() - () -yl o

M is uniguely determined everywhere in the nozzle, with subsonic flow upstream
of the throat and supersonic flow downstream of the throat

2
|
-

2
|
-



Nozzle Mass Flow

pUA = p* ALY =

From the area-Mach-number relation

<1
< 1

£
3 <1

if
if
if

AT pu

7=

p*u*

M<1
M=1
M>1

pu
p* u*

0.8

0.6

0.4

0.2

0
1071

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions



Nozzle Mass Flow

For a choked nozzle:




Nozzle Mass Flow

oA 7< 2 )
VT VR \y+1

The maximum mass flow that can be sustained through the nozzle

Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically
perfect gas

Note! The massflow formula is valid even if there are shocks present
downstream of throat!



Nozzle Mass Flow

y+1

VT, VR\y+1

How can we increase mass flow through nozzle”?

increase po
decrease T,
increase A

DL ™~

decrease R

(increase molecular weight, without changing )
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Nozzle Flow with Varying Pressure Ratio

A(x) area function
Ay min{A(x)}
Po inlet total pressure
Pb outlet static pressure
(ambient pressure)

Po/Pp  pressure ratio




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 N
1
L[ ]
__/_\
0 > Pb/Po
0 1
T/To A
TGOS\ - - - - - - -
T /To |
throat
p/Po A
® inlet 1
o throat
® exit p*/po
0 > S /0Smax
0 1




Nozzle Flow with Varying Pressure Ratio

m/mchoked
! M A
1 1
/\
0 > Pb/Po
0 1
T/To A
Lt=g-cls--------
T /To |
throat
p/Po 4
® inlet I A S ——
® throat
® exit 0" /o
0 > JS/0dSmax
0 1




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1
L]
0 > Pb/Po
0 1
T/To A
11- s KW it
T /To
® inlet
® throat
® exit
0 > S /0Smax
0

1

p/Po

p* /Po

MA

|
throat

A




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1
L ]
0 > Pb/Po
0 1
T/To A
11- t 77777777777
T /To
® inlet
® throat
® exit
0 > S /0Smax
0

1

p/Po 4
—————
p* /Po

MA

|
throat




Nozzle Flow with Varying Pressure Ratio

m / mchoked

1

T/TO‘

Sy L0 . N\ N
T /To I

® inlet
® throat
® exit

» s /dSmax
0 1

MA

=

|
throat

\
p/pPo
N I B
\//_
p* /Po




Nozzle Flow with Varying Pressure Ratio

m / mchoked

1
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Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 °
0 > Pb/Po
0 1
T/To A
1+- T* *; ********
T /To
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® inlet
® throat
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Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 °
0 > Pb/Po
0 1
T/To A
IS O\ - f e

T*/To

® inlet
® throat
® exit

» s /dSmax
0

MA
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p*/Po

|
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Nozzle Flow with Varying Pressure Ratio

m/ mchoked

1 °

> Pp/Po
0 1

T/To‘

T*/To

® inlet
® throat
® exit

» s /dSmax
0

M

A

p/pPo

p*/Po

|
throat




Nozzle Flow with Varying Pressure Ratio

m/mchoked

1 ° My

1
-
0 > Pp/Po
0 1
T/To
11- T ——————— N

/T z

|
b ‘ throat
.
L€ p/pPo
.

® inlet 1 J
® throat

® exit 0 /po J—
> dS/dSmax
0




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 °
0 > Pb/Po
0 1
T/To A
s 1E T ———————— F B
* -
T /To »
o
.
%
® inlet
® throat
® exit
0 > dS/dSmax
0

MA

p/pPo

p*/Po

|
throat




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 .
0 > Pb/Po
0 1
T/To A
s 1E T ————————— §-
T /To <
-
-
<
-
® inlet
® throat
® exit
0 > dS/dSmax
0

MA

p/pPo

p* /Po

|
throat




Nozzle Flow with Varying Pressure Ratio

m / mchoked

1 le

> Db /Po
0 1

T/TO‘

T /To T

® inlet
® throat
® exit

» s /dSmax
0 1

MA

p/pPo

p* /Po

|
throat




Nozzle Flow with Internal Shock

Nozzle flow with shock

- T=T*
—— Nozzle process

The nozzle flow process follows an
isentrope up to the location of the
internal normal shock

*
inlet

p/p

Sonic conditions at the nozzle throat

upstream of shock
1 1 1 1

!
1 1.5 2 2.5 3

v/ Vet



Nozzle Flow with Internal Shock

The normal shock moves the process
line to another isentrope

T, and thus T is not affected by the
shock

po decreases over the shock which
means that p* decreases and v*
increases

0.5

Nozzle flow with shock

\ \ T T I T
I *
o L T=T |
B ! —— Nozzle process
! - - - shock
A\ Y exit !
N\ downstream of shock
A ~
[~ "rew sonic point. X PO
|
- |
I
|
|
‘ : ‘ ‘ upstrean‘v of shock ‘
.5 1 1.5 2 2.5 3

v/ Vet



Nozzle Operation - Pull vs. Push

choked nozzle flow

supercritical nozzle flow (pull)

supercritical nozzle flow (push)

1.05

b Vo L P
- - - isentrope v 1 e 1 & I
H—T=" o “ v
= o h h h
Q—7=T" £ L JE !
—T=T Rt 08F T osf 7 T
095 —T7=T1, S E ! ! !
T/To S-P=EP A 0.6 0.6
094 ""P=P ,I',"/ E il . e ! . ' '
s P=p2 Y ' Priae ! ! !
---p =P " : 4 e -7 N
0.85 |- — R | AT e s I X S e .
0.8 AR | | | 0.2 | 4-"—_\— | | i 0.2 i | | | | i
—-04 -03 -02 -0.1 0 0.1 02 -12 -1 —-08 —-06 —04 -02 0 02 -12 -1 —-08 —-06 —04 -02 0

S/Sref

Nozzle Pressure Ratio NPR = po /pp
Pull - increase NPR by reducing the back pressure (pp)

Push - increase NPR by increasing the inlet total pressure (po)

S / Sref

S / Sref

0.2



Nozzle Operation - Pull vs. Push

choked nozzle flow

supercritical nozzle flow (pull)

supercritical nozzle flow (push)

.

0.2

1.05 T T T T T T T T T T, T, T
-- - isentrope Vi 1 PO 1 :4 ‘
IH—T=" & R et
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TmPEP I : P :
---p=p ) Y - id H

0.85 — Vo 4 04rE + 04 N
0.8 AN | S 0.2 | 4-"—_\— | | i 0.2 i | | | | i
—-04 -03 -0.2 -0.1 0 0.1 0.2 1.2 -1 -08 =06 —04 =02 0 02 —-12 -1 —-08 —0.6 —04 —0.2 0

S/Sref S/Sref S/Sref

*k *
P push > ppu//

* _T*
Tpush - 7-pu//

* *
Ppush = Ppull

* Ak
apush - apu//

m = p*a"A* (Apush = Apur)

mpush > mpul/ = Mchoked



Nozzle Flow with Varying Pressure Ratio - Downstream Flow

K/—>

normal shock

w

oblique shock

K/—>
pressure matched

_/\—>

expansion fan

-

Po/Pb = (Po/Pp)ne
normal shock at nozzle exit

(Po/Pp)ne < Po/Pp < (Po/Pb)sc
overexpanded nozzle flow

Po /P = (Po/Pp)sc
pressure matched nozzle flow

Po/Pp > (Po/Pb)sc
underexpanded nozzle flow



Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pb) < (Po/Pb)cr
subsonic, isentropic flow throughout the nozzle

the mass flow changes with py, i.e. the flow is not choked

(po/pb) = (po/pb)cr
sonic flow (M = 1.0) at the throat

the flow will flip to the supersonic solution downstream of the throat, for an
infinitesimal increase of (0, /Pp)

(Po/Pb)er < (Po/Pb) < (Po/Pb)ne
the flow is choked (fixed mass flow)

a normal shock will appear downstream of the throat, with strength and position
depending on (pPo/pPb)



Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pb) = (Po/Pb)ne
normal shock at the nozzle exit
supersonic, isentropic flow from throat to exit
(Po/Pb)ne < (Po/Pb) < (Po/Pb)sc
overexpanded flow (supersonic, isentropic flow from throat to exit)
oblique shocks formed downstream of the nozzle exit
(Po/Pb) = (Po/Pb)sc
supercritical flow (pressure matched)
supersonic, isentropic flow from the throat and downstream of the nozzle exit
(Po/Pb)sc < (Po/Pb)
underexpanded flow (supersonic, isentropic flow from throat to exit)

expansion fans formed downstream of the nozzle exit



Nozzle Flow with Varying Pressure Ratio - Q1D Limitations

Quasi-one-dimensional theory

When the interior normal shock is "pushed out” through the exit (by increasing
(Po/Pp), i.e. lowering the back pressure), it disappears completely.

The flow through the nozzle is then shock free (and thus also isentropic since
we neglect viscosity).

Three-dimensional nozzle flow

When the interior normal shock is "pushed out” through the exit (by increasing
(po/Pp)), an oblique shock is formed outside of the nozzle exit.

For the exact supercritical value of (p,/pp) this oblique shock disappears.

For (po/pp) above the supercritical value an expansion fan is formed at the
nozzle exit.



3D Simulations of Nozzle Flow

)

P s
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Chapter 5.6
Wave Reflection From a Free
Boundary



Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc



Free-Boundary Reflection - Shock Reflection

reflected expansion

incident shock

No discontinuity in pressure at the free boundary possible
Incident shock reflects as expansion waves at the free boundary
Reflection results in net turning of the flow



Free-Boundary Reflection - Expansion Wave Reflection

free boundary (oo )

incident expansion wave reflected shock

No discontinuity in pressure at the free boundary possible

Incident expansion waves reflects as compression waves at the free
boundary

Finite compression waves coalesces into a shock
Reflection results in net turning of the flow



Free-Boundary Reflection - System of Reflections

overexpanded nozzle flow




Free-Boundary Reflection - System of Reflections

shock reflection at jet centerline




Free-Boundary Reflection - System of Reflections

shock reflection at free boundary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at jet centerline

— \f”‘ee;bouﬂdary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at free boundary




Free-Boundary Reflection - System of Reflections

repeated shock/expansion system




Free-Boundary Reflection - System of Reflections

shock diamonds




Free-Boundary Reflection - System of Reflections

overexpanded jet




Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves

Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves

Expansion waves reflects as compression waves
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Chapter 5.5
Diffusers



Supersonic Wind Tunnel

wind tunnel with supersonic test section

open test section

M>1
\/ =
— Po/Pb = (Po/Pb)sc
Po —% Pb = Pamp
M = 3.0 in test section = po /pp = 36.7 Il

—>
—>
—/\—»

test section
(open)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

normal shock

wsif

\/—:E— M< 1 Po/Pamb = (Po/Pb)(Pb/Pamb) < (Po/Pp)sc

P, P,
o —_< b o M = 3.0 in test section =
amb

— n -~
M Do /Pamp = 36.7/10.33 = 3.55

test section

(closed)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

add subsonic diffuser after normal shock

normal shock

w1/

\/—>—
—>
=

Po —> Pp

— p2 (p02 = pamb)
—

T~ = |

test section
(closed)

M <1

Po/Pamb = (Po/Pp)(Pp/P2)(P2/Pog)

M = 3.0 in test section =~
Po/Pamp = 36.7/10.33/1.17 = 3.04

Note! this corresponds exactly to total pressure
loss across normal shock




Supersonic Wind Tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock

oblique shocks
normal shock

well-designed supersonic + subsonic diffuser =

M>1 /

Po 1. decreased total pressure loss

(DOQ = Damb)
2. decreased po and power to drive wind tunnel
test section

(closed)




Supersonic Wind Tunnel
Main problems:

1. Complex 3D flow in the diffuser section
viscous effects
complex systems of oblique shocks
flow separation
shock/boundary-layer interaction

2. Starting requirements
second throat must be significantly larger than first throat

variable geometry diffuser
second throat larger during startup procedure

decreased second throat to optimum value after supersonic flow is established



Roadmap - Quasi-One-Dimensional Flow

Basiwepts
!

Govemwua’[ions

Area—vew relation
[ Ms ]<—[ Free bouM reflection ]
1

[ Dl ] [ Nozzle fure ratio J

Numerical simulation 1€ ] [ Nozzwtions ]
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Quasi-One-Dimensional Euler
Equations

CFLOW



Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

Assumptions: inviscid, Q = Q(x, t)

CFLOW



Quasi-One-Dimensional Euler Equations I—8

9 /
AR o7 Q+07[ (X)E] = A"(x)H

where A(x) is the cross section area and

p pu 0
Q=|pu|,EQ=|p>+p|,HQ=|p
PEo phot 0

CFLOW



Numerical Approach I—8

Discretization:
Finite-Volume Method (FVM) - Quasi-1D formulation

Numerical scheme:
third-order characteristic upwind scheme

Time stepping technique:
three-stage second-order Runge-Kutta explicit time marching

Boundary conditions:

left-end boundary:

subsonic inflow

specify: inlet total temperature (T,) and total pressure (0o)
right-end boundary:

subsonic outflow

specify: outlet static pressure (p) CFLOW



Finite-Volume Spatial Discretization I—8

Integration over cellj gives:

I# CFLOW



Finite-Volume Spatial Discretization I—8



Nozzle Simulation - Back Pressure Sweep

Nozzle geometry

0.2

0.4 n




Nozzle Simulation - Back Pressure Sweep

p
Po 1.20 [bar]
Pp 1.18 [bar]
po/Pp  1.02
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 1.14 [bar]
Po/py  1.08
m 131.45 [kg/s]
Mmax 0.69
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 1.13 [bar]
Po/py  1.06
m 144.88 [kg/s]
Mmax 0.93
A J
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 1.10 [bar]
po/pp  1.09
m 145.62 [kg/s]
Mpmax 1.31
A J
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 1.00 [bar]
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 0.90 [bar]
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 0.80 [bar]
Po/py 150
m 145.6 [kg/s]
Mmax 1.94
A J
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 0.70 [bar]
Po/py 171
m 145.6 [kg/s]
Mmax 210
A J
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Nozzle Simulation - Back Pressure Sweep

( 1\
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
Pp 0.50 [bar]
po/py 118
m 145.6 [kg/s]
Mimax 2.26
A J
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Nozzle Simulation - Back Pressure Sweep

Po
Pb

Po/Pp

Mmax

1.20 [pbar]
1.10 [pbar]
1.09

145.62 [kg/s|

1.31

1.18
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Nozzle Simulation - Back Pressure Sweep

Po
Pb

Po/Pp

Mmax

1.20 [pbar]
1.10 [bar]
1.09

145.62 [kg/s|

1.31

ho

-10°




Roadmap - Quasi-One-Dimensional Flow

Basiwepts
!

Govemwua’[ions
!
Area—vew relation
[ Ms ]<—[ Free bouM reflection ]

t
[ DWS ] [ Nozzle VUre ratio J

f
[ Numericha‘[ioms ] [ Nozzwtions ]




ROCKET PACKS ARE EASY.

O

THE HARD PART 15 INVENTING
THE CALF SHELDS.
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