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Chapter 4 - Oblique Shocks and Expansion Waves
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

why do we get normal shocks in some cases and oblique shocks in other?
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general

oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper

approach

many practical problems or subsets of problems may be analyzed in

two-dimensions

by going from one to two dimensions we will be able to introduce physical

processes important for compressible flows
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Oblique Shocks and Expansion Waves
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Oblique Shocks and Expansion Waves
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Oblique Shocks and Expansion Waves - Assumptions

1. Supersonic

2. Steady-state

3. Two-dimensional

4. Inviscid flow (no wall friction)

In real flow, viscosity is non-zero ⇒ boundary layers

For high-Reynolds-number flows, boundary layers are thin ⇒ inviscid theory still

relevant!
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Mach Wave

A

at

Sound waves emitted from A (speed of sound a)
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Mach Waves

A Mach wave is an infinitely weak oblique shock

B A

Vt

at

subsonic
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Mach Wave

A Mach wave is an infinitely weak oblique shock

M1 M2

µ

Mach wave

No substantial changes of flow properties over a single Mach wave

M1 > 1.0 and M1 ≈ M2

Isentropic
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Oblique Shocks

compression corner

M > 1

gradual compression

M > 1
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Oblique Shocks and Mach Waves

sphere in high Mach number flow
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Oblique Shocks and Mach Waves

perforated plate

pressure difference generates small jets

oblique shocks

Niklas Andersson - Chalmers 15 / 117



Oblique Shocks and Mach Waves

acoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic wavesacoustic waves
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Oblique Shocks and Mach Waves

M1

Mach wave

µ

µ = 19◦ ⇒ M1 =
1

sinµ
≈ 3.1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.3

Oblique Shock Relations
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Oblique Shocks

Two-dimensional steady-state flow

β > µ

Flow condition

1

Flow condition

2

Stationary shock

M > 1

x

y

Significant changes of flow properties from 1 to 2

M1 > 1.0, β > µ, and M1 6= M2

Not isentropic
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Oblique Shocks

Stationary oblique shock

x

β

β − θ

θ

v1

w1

u1

v2

w2

u2
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Oblique Shock Relations

Two-dimensional steady-state flow

Control volume aligned with flow stream lines

A

A

Ω

x

β

v1

w1

u1

v2

w2

u2

Niklas Andersson - Chalmers 22 / 117



Oblique Shock Relations

Velocity notations:

Mn1 =
u1

a1
= M1 sin(β)

Mn2 =
u2

a2
= M2 sin(β − θ)

M1 =
v1

a1

M2 =
v2

a2

x

β

β − θ

θ

v1

w1

u1

v2

w2

u2
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Oblique Shock Relations

Conservation of mass:

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

Mass conservation for control volume Ω:

0− ρ1u1A+ ρ2u2A = 0 ⇒

ρ1u1 = ρ2u2
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Oblique Shock Relations

Conservation of momentum:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV

Momentum in shock-normal direction:

0− (ρ1u
2
1 + p1)A+ (ρ2u

2
2 + p2)A = 0 ⇒

ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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Oblique Shock Relations

Momentum in shock-tangential direction:

0− ρ1u1w1A+ ρ2u2w2A = 0 ⇒

w1 = w2
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Oblique Shock Relations

Conservation of energy:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV

Energy equation applied to the control volume Ω:

0− ρ1u1[h1 +
1

2
(u21 +w2

1)]A+ ρ2u2[h2 +
1

2
(u22 +w2

2)]A = 0 ⇒

h1 +
1

2
u21 = h2 +

1

2
u22
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Oblique Shock Relations

We can use the same equations as for normal shocks if we replace M1 with Mn1 and

M2 with Mn2

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

Ratios such as ρ2/ρ1, p2/p1, and T2/T1 can be calculated using the relations for

normal shocks with M1 replaced by Mn1
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Oblique Shock Relations

What about ratios involving stagnation flow properties, can we use the ones

previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the

shock ⇒ To2 = To1

What about the total pressure?

s2 − s1 = Cp ln
(
To2
To1

)
− R ln

(
po2
po1

)
= {To2 = To1} = −R ln

(
po2
po1

)

entropy is a thermodynamic flow property and s2 − s1 is dictated by the shock

strength and thus the total pressure ratio is a function of the shock-normal Mach

number
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Oblique Shock Relations
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Oblique Shock Relations

Note! total pressure is always calculated using the flow Mach number, not the

shock-normal Mach number

However, the ratio po2/po1 may be calculated using the shock-normal Mach

number

So, be careful when using relations derived for normal shocks for oblique

shocks when it comes to total flow conditions...
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Oblique Shock Relations

po2/po1 is calculated as:
po2
po1

=
po2
p2

p2

p1

p1

po1

where

1.
po2
p2

= f(M2),
p2

p1
= f(Mn1), and

p1

po1
= f(M1)

or alternatively

2.
po2
p2

= f(Mn2),
p2

p1
= f(Mn1), and

p1

po1
= f(Mn1)

Note! in the second case the total pressures are not the true total pressures of

the flow and therefore it is suggested to use the first approach
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Deflection Angle (for the interested)
�

x

β

β − θ

θ

α2

α1

v1

w1

u1

v2

w2

u2

θ = α2 − α1 = tan−1

(
w

u2

)
− tan−1

(
w

u1

)

∂θ

∂w
=

u2

w2 + u22
− u1

w2 + u21
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Deflection Angle (for the interested)
�

∂θ

∂w
=

u2

w2 + u22
− u1

w2 + u21
= 0 ⇒

u2(w
2 + u21)− u1(w

2 + u22)

(w2 + u22)(w
2 + u21)

= 0 ⇒ (u2 − u1)(w
2 − u1u2)

(w2 + u22)(w
2 + u21)

= 0

Two solutions:

u2 = u1 (no deflection)

w2 = u1u2 (max deflection)

Niklas Andersson - Chalmers 33 / 117



Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

β

θ

V2y

V2x

V2

V1

oblique shock (shock angle β)

flow deflection

Note!

In the shock polar, V2x and V2y are

normalized by a∗

a∗ is a constant in a adiabatic flow

a∗ is not affected by shocks
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

β

θ

V2y

V2x

V2

V1

oblique shock (shock angle β)

flow deflection

No deflection cases:

normal shock

(reduced shock-normal velocity)

Mach wave

(unchanged shock-normal velocity)
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

M∗ =

√
V2
2x
+ V2

2y

a∗

Solutions to the left of the sonic line

are subsonic

Recall

M∗ = 1 ⇔ M = 1

M∗ < 1 ⇔ M < 1

M∗ > 1 ⇔ M > 1
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Shock Polar

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

M
∗

= 1.0

θmax

V2x

a∗

V2y

a∗

Graphical representation of all possible deflection angles for a specific Mach number

It is not possible to deflect the flow

more than θmax
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle θ < θmax,
there are two solutions

1. strong shock solution

2. weak shock solution

Weak shocks give lower losses and

therefore the preferred solution
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to

calculate the shock angle β for a

given deflection angle θ
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Shock Polar
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Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to

calculate the shock angle β for a

given deflection angle θ

Niklas Andersson - Chalmers 40 / 117



Flow Deflection

θ < θmax

M1 > 1

M2

M
2

θ > θmax

weak shock family

strong shock family

weak shock family

strong shock family

sonic line

sonic line

M1 > 1

M < 1

M < 1

M > 1

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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The θ-β-M Relation

It can be shown that

tan θ = 2 cotβ
(

M2
1 sin2 β − 1

M2
1(γ + cos 2β) + 2

)

which is the θ-β-M relation
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The θ-β-Mach Relation

0 10 20 30 40 50
0

10
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40
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80

90

M2 < 1.0

M2 > 1.0

θmax

θ

β

A relation between:

1. flow deflection angle θ
2. shock angle β
3. upstream flow Mach number M1

tan(θ) = 2 cot(β)
(

M2
1 sin2(β)− 1

M2
1(γ + cos(2β)) + 2

)

Note! in general there are two solutions

for a given M1 (or none)

Niklas Andersson - Chalmers 44 / 117



The θ-β-Mach Relation
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θmax

θ

β

There is a small region where we may find

weak shock solutions for which M2 < 1

In most cases weak shock solutions have

M2 > 1

Strong shock solutions always have M2 < 1

In practical situations, weak shock

solutions are most common

Strong shock solution may appear in special

situations due to high back pressure, which

forces M2 < 1
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The θ-β-M Relation

Note! In Chapter 3 we learned that the Mach number always reduces to subsonic

values behind a shock. This is true for normal shocks (shocks that are normal to the

flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.
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The θ-β-M Relation - Wedge Flow

θ

β
M1 > 1

Wedge flow oblique shock analysis:

1. θ-β-M relation ⇒ β for given M1 and θ

2. β gives Mn1 according to: Mn1 = M1 sin(β)

3. normal shock formula with Mn1 instead of M1 ⇒
Mn2 (instead of M2)

4. M2 given by M2 = Mn2/ sin(β − θ)

5. normal shock formula with Mn1 instead of M1 ⇒
ρ2/ρ1, p2/p1, etc

6. upstream conditions + ρ2/ρ1, p2/p1, etc ⇒
downstream conditions
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�

Chapter 4.4

Supersonic Flow over Wedges and

Cones
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Supersonic Flow over Wedges and Cones
�

Similar to wedge flow, we do get a constant-strength shock wave, attached at

the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped

What about cone flows?

M > 1
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Supersonic Flow over Wedges and Cones
�

The flow condition immediately downstream of the shock is uniform

However, downstream of the shock the streamlines are curved and the flow

varies in a more complex manner (3D relieving effect - as R increases there is

more and more space around cone for the flow)

β for cone shock is always smaller than that for wedge shock, if M1 is the same

What about cone flows?

M > 1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion

� �
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Chapter 4.6

Regular Reflection from a Solid

Boundary
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Shock Reflection

Regular reflection of oblique shock at solid wall
(see example 4.10)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y

Assumptions:

steady-state inviscid flow

weak shocks
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Shock Reflection

first shock

upstream condition

M1 > 1

flow in x-direction

downstream condition

weak shock ⇒ M2 > 1

deflection angle θ

shock angle β1

second shock

upstream condition

downstream of first shock

downstream condition

weak shock ⇒ M3 > 1

deflection angle θ

shock angle β2
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Shock Reflection

Solution:

first shock:

1. β1 calculated from θ-β-M relation for specified θ and M1 (weak solution)

2. flow condition 2 according to formulas for normal shocks (Mn1 = M1 sin(β1) and
Mn2 = M2 sin(β1 − θ))

second shock:

1. β2 calculated from θ-β-M relation for specified θ and M2 (weak solution)

2. flow condition 3 according to formulas for normal shocks (Mn2 = M2 sin(β2) and
Mn3 = M3 sin(β2 − θ))

⇒ complete description of flow and shock waves

(angle between upper wall and second shock: Φ = β2 − θ)
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.11

Mach Reflection
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Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see θ-β-M
relation)

β1

θ

β2

θ

θ

M1 > 1 M2 > 1

M3 > 1

x

y
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Mach Reflection

θ

x

y

normal shock

slip line

incident oblique shock

reflected oblique shock

Mach reflection:

appears when regular reflection is not possible

more complex flow than for a regular reflection

no analytic solution - numerical solution necessary
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Oblique Shocks and Mach Waves

M1

β1

M2

θ1 = f(M1, β1), M2 = f(M1, θ1, β1)

M1 > M2

M2 > 1.0
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Oblique Shocks and Mach Waves

M1

β1

M2

β1 = 28◦

M1 = 3.1

}
⇒ θ1 ≈ 11.2◦, M2 ≈ 2.5

Niklas Andersson - Chalmers 61 / 117



Oblique Shocks and Mach Waves

M1

M2

θ1θ2

θ1 = θ2
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Oblique Shocks and Mach Waves

M1

β1

M2

M3

β2 − θ2

M1 > M2 > M3

M3 > 1.0

β2 > β1

β2 = f(M2, θ2), M3 = f(M2, θ2, β2)

Note! Shock wave reflection at solid wall is not specular
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Oblique Shocks and Mach Waves

M1

β1

M2

M3

β2 − θ2

θ2 = 11.2◦

M2 = 2.5

}
⇒ β2 ≈ 33◦, M3 ≈ 2.0
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Oblique Shocks and Mach Waves

1 2 3

p3

p1
=

p2

p1

p3

p2
≈ 4.52

T3

T1
=

T2

T1

T3

T2
≈ 1.57
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.7

Comments on Flow Through Multiple

Shock Systems
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Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

θ1

M1, s1
M2,

s2

θ2

M1, s1
M2,

s2 M3, s3
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Flow Through Multiple Shock Systems

We may find θ1 and θ2 (for same M1) which gives the same final Mach number

In such cases, the flow with multiple shocks has smaller losses

Explanation: entropy generation at a shock is a very non-linear function of shock

strength

Note! the system of multiple shocks might

very well result in a larger total flow deflection

angle than the single-shock case

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

M1

po2
po1
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion
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Chapter 4.8

Pressure Deflection Diagrams

Niklas Andersson - Chalmers 71 / 117



Pressure Deflection Diagrams

θ

β

M1

M2

⇒ relation between p2 and θ

θ

p2

weak shock

solution

strong shock

solution

normal shock

solution

infinitely weak

shock solution
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Pressure Deflection Diagrams - Shock Reflection

θ2
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Pressure Deflection Diagrams - Shock Intersection

1

2

3

5

4

slip line

θ2

θ3

Φ

θ

p

θ2θ3 Φ

1
2

3

4 5&

A slip line is a contact discontinuity:

discontinuity in ρ, T , s, v, and M

continuous in p and flow angle
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Roadmap - Oblique Shocks and Expansion Waves
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Chapter 4.12

Detached Shock Wave in Front of a

Blunt Body
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Detached Shocks

M>1

M>1

M<1M>1

c2

c1

strong shock between c1
and c2, weak shock out-

side
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Detached Shocks

As we move along the detached shock form the centerline, the shock will

change in nature as

1. right in front of the body we will have a normal shock

2. strong oblique shock

3. weak oblique shock

4. far away from the body it will approach a Mach wave, i.e. an infinitely weak

oblique shock
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Detached Shocks
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Roadmap - Oblique Shocks and Expansion Waves
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Chapter 4.10

Intersection of Shocks of the Same

Family
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Mach Waves (Repetition)

Oblique shock, angle β, flow deflection θ:

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

where

Mn1 = M1 sin(β)

and

Mn2 = M2 sin(β − θ)

Now, let Mn1 → 1 and Mn2 → 1 ⇒ infinitely weak shock!

Such very weak shocks are called Mach waves
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Mach Waves (Repetition)

Mn1 = 1 ⇒ M1 sin(β) = 1 ⇒ β = arcsin(1/M1)

M1 M2

µ

Mach wave

M2 ≈ M1

θ ≈ 0

µ = arcsin(1/M1)
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Mach Waves

βµ1

µ2

θ

x

y

A B C

Oblique shock (weak)

Mach wave

Mach wave

M1

M2
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Mach Waves

1. Mach wave at A: sin(µ1) = 1/M1

2. Mach wave at C: sin(µ2) = 1/M2

3. Oblique shock at B: Mn1 = M1 sin(β) ⇒ sin(β) = Mn1/M1

Existence of shock requires Mn1 > 1 ⇒ β > µ1

Mach wave intercepts shock!

4. Also, Mn2 = M2 sin(β − θ) ⇒ sin(β − θ) = Mn2/M2

For finite shock strength Mn2 < 1 ⇒ (β − θ) < µ2

Again, Mach wave intercepts shock
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Shock Intersection - Same Family

shock

reflected shock

(or expansion fan)

slip line

1

2

3

4

5

θ2

θ3
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Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4

(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5

(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. p4 = p5

b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan, depending on

actual conditions

A slip line usually appears, across which there is a discontinuity in all variables

except p and flow angle
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Roadmap - Oblique Shocks and Expansion Waves
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Chapter 4.14

Prandtl-Meyer Expansion Waves
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Expansion Waves

expansion corner

M > 1

gradual expansion

M > 1
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Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called Prandl-Meyer expansion)

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

M2 > M1 (the flow accelerates through the expansion fan)

p2 < p1, ρ2 < ρ1, T2 < T1
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Prandtl-Meyer Expansion Waves

Continuous expansion region

Infinite number of weak Mach waves

Streamlines through the expansion wave are smooth curved lines

ds = 0 for each Mach wave ⇒ the expansion process is isentropic!
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Prandtl-Meyer Expansion Waves

upstream of expansion M1 > 1, sin(µ1) = 1/M1

flow accelerates as it curves through the expansion fan

downstream of expansion M2 > M1, sin(µ2) = 1/M2

flow is isentropic ⇒ s, po, To, ρo, ao, ... are constant along streamlines

flow deflection: θ
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Prandtl-Meyer Expansion Waves

It can be shown that dθ =
√
M2 − 1

dv

v
, where v = |v|

(valid for all gases)

Integration gives

ˆ θ2

θ1

dθ =

ˆ M2

M1

√
M2 − 1

dv

v

the term
dv

v
needs to be expressed in terms of Mach number

v = Ma ⇒ ln v = lnM + ln a ⇒

dv

v
=

dM

M
+

da

a
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Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

To

T
= 1 +

1

2
(γ − 1)M2

{
a =

√
γRT , ao =

√
γRTo

}
⇒ To

T
=

(ao
a

)2

⇒

(ao
a

)2

= 1 +
1

2
(γ − 1)M2 ⇔ a = ao

[
1 +

1

2
(γ − 1)M2

]−1/2
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Prandtl-Meyer Expansion Waves

Differentiation gives:

da = ao

[
1 +

1

2
(γ − 1)M2

]−3/2(
−1

2

)
(γ − 1)MdM

or

da = a

[
1 +

1

2
(γ − 1)M2

]−1(
−1

2

)
(γ − 1)MdM

which gives

dv

v
=

dM

M
+

da

a
=

dM

M
+

−1
2(γ − 1)MdM

1 + 1
2(γ − 1)M2

=
1

1 + 1
2(γ − 1)M2

dM

M
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Prandtl-Meyer Expansion Waves

Thus,

ˆ θ2

θ1

dθ = θ2 − θ1 =

ˆ M2

M1

√
M2 − 1

1 + 1
2(γ − 1)M2

dM

M
= ν(M2)− ν(M1)

where

ν(M) =

ˆ √
M2 − 1

1 + 1
2(γ − 1)M2

dM

M

is the so-called Prandtl-Meyer function
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Prandtl-Meyer Expansion Waves

Performing the integration gives:

ν(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1

We can now calculate the deflection angle ∆θ as:

∆θ = ν(M2)− ν(M1)
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Prandtl-Meyer Expansion Waves
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Prandtl-Meyer function (γ = 1.4)

ν(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1

ν(M)|M→∞ = 130.45◦
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Prandtl-Meyer Expansion Waves

Example:

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

1. θ1 = 0, M1 > 1 is given

2. θ2 is given

3. problem: find M2 such that θ2 = ν(M2)− ν(M1)

4. ν(M) for γ = 1.4 can be found in Table A.5
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Prandtl-Meyer Expansion Waves

Since the flow is isentropic, the usual isentropic relations apply:

(po and To are constant)

Calorically perfect gas:

po

p
=

[
1 +

1

2
(γ − 1)M2

] γ
γ−1

To

T
=

[
1 +

1

2
(γ − 1)M2

]
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Prandtl-Meyer Expansion Waves

since po1 = po2 and To1 = To2

p1

p2
=

po2
po1

p1

p2
=

(
po2
p2

)/(
po1
p1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

] γ
γ−1

T1

T2
=

To2
To1

T1

T2
=

(
To2
T2

)/(
To1
T1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

]
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Prandtl-Meyer Expansion Waves

Alternative solution:

1. determine M2 from θ2 = ν(M2)− ν(M1)

2. compute po1 and To1 from p1, T1, and M1 (or use Table A.1)

3. set po2 = po1 and To2 = To1

4. compute p2 and T2 from po2 , To2 , and M2 (or use Table A.1)
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Roadmap - Oblique Shocks and Expansion Waves

Shock-expansion theory

Oblique shocks

Shock intersection

Detached shocks

Shock systems

Solid boundary reflection

Oblique shock relations

Pressure-deflection diagram

Mach reflection

The θ − β −M relation

Expansion waves

Prandtl-Meyer expansion

� �

� �

� �

�

�

�

�

�

Niklas Andersson - Chalmers 104 / 117



Chapter 4.15

Shock Expansion Theory
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Diamond-Wedge Airfoil

L

ε
ε

ε
εt

1 2 3 4

M1 > 1

oblique shock oblique shock

expansion fan

symmetric airfoil

(both in x- and

y-planes
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Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M1

2-3 Prandtl-Meyer expansion for flow deflection angle 2ε and upstream Mach

number M2

3-4 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M3
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Diamond-Wedge Airfoil

symmetric airfoil

zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field

zero lift force on airfoil
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Diamond-Wedge Airfoil

Drag force:

D = −
{

∂Ω

p(n · ex)dS

∂Ω airfoil surface

p surface pressure

n outward facing unit normal vector

ex unit vector in x-direction
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Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions, we obtain:

D = 2 [p2L sin(ε)− p3L sin(ε)] = 2(p2 − p3)
t

2
= (p2 − p3)t

For supersonic free stream (M1 > 1), with shocks and expansion fans according to

figure we will always find that p2 > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)
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Flat-Plate Airfoil

1

2

3

4

5

expansion fan

oblique shock

expansion fan

oblique shock

slip lineΦ

α

incidence α

M1 > 1
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Flat-Plate Airfoil

It seems that the angle of the flow downstream of the flat plate would be different

than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from

the plate, shock and expansion waves will interact and eventually sort the

missmatch of flow angles out
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Flat-Plate Airfoil

1. Flow states 4 and 5 must satisfy:

p4 = p5

flow direction 4 equals flow direction 5 (Φ)

2. Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust

themselves to comply with the requirements

3. For calculation of lift and drag only states 2 and 3 are needed

4. States 2 and 3 can be obtained using standard oblique shock formulas and

Prandtl-Meyer expansion
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Oblique Shocks and Expansion Waves

compression corner

M > 1

expansion corner

M > 1

M decrease

V decrease

p increase

ρ increase

T increase

M increase

V increase

p decrease

ρ decrease

T decrease
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Oblique Shocks and Expansion Waves
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Roadmap - Oblique Shocks and Expansion Waves
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