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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the
complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart
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Chapter 3.2
One-Dimensional Flow Equations



One-Dimensional Flow Equations

Problems analyzed using the one-dimensional flow equations can be divided in
to two categories:

problems with wave solutions (discontinuous)

acoustic wave
normal shock

problems with continuous solutions

flow with heat addition
flow with friction



One-Dimensional Flow Equations

shock

—_— —_—
uq uz
p1, P1, T1 P2, P2, T2

Assumptions:
all flow variables only depend on x
velocity aligned with x-axis

Y



One-Dimensional Flow Equations
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Control volume approach:

Define a rectangular control volume around shock, with upstream conditions
denoted by 1 and downstream conditions by 2



One-Dimensional Flow Equations

Conservation of mass:

%jfjﬁd“f/—&—ﬁpvmﬁszoémul = palls
Q o0

=0 ngzAfplulA

Conservation of momentum:

d
o jf pvd“//+@ [p(v-n)v +pn]dS = 0 = piu? +p1 = pas + Po
Q o9

=0 (p2u3+p2)A—(p1ui+p1)A



One-Dimensional Flow Equations

Conservation of energy:

% jfj peod¥ + (ﬁﬁ [phov - n]dS = 0 = piurho,
Q o2

=0 thOQUQAfplholulA

Using the continuity equation this reduces to

h01 = h02
or, if written out

1 1
hy + §U% =hy + iug

= pauz2ho,



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Note! These equations are valid regardless of whether or not there is a shock
inside the control volume



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Valid for all gases!
General gas = Numerical solution necessary
Calorically perfect gas = Can be solved analytically
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Chapter 3.3
Speed of Sound and Mach Number



Speed of Sound

Sound wave / acoustic perturbation

wave front

a a-+da
 —_— —_—
p p+dp
P p+dp
T T+dT




Speed of Sound

Conservation of mass gives

pa = (p+dp)(a+da) = pa+ pda+ dpa+ dpda

products of infinitesimal quantities are removed =

pda+dpa =0

solve for da =



Speed of Sound

The momentum equation evaluated over the wave front gives

p+pa’ = (p+dp) + (p+dp)(a+da)?

Again, removing products of infinitesimal quantities gives

dp = —2apda — a’dp

Solve for da =

_ dp+a*dp

da
—2ap



Speed of Sound

Continuity equation:

d
da=-a-L
P
Momentum equation:
2
da — ap +a*dp
—2ap

dp _ dp + a%dp 22 dp

P —2ap dp



Speed of Sound

Sound waves are small perturbations in p, v, p, T (with constant entropy s)
propagating through gas with speed a

8,0)
a’= (-
(30 s

(valid for all gases)



Speed of Sound

Compressibility and speed of sound:

()
L L(op
T p\dp/,

insert in relation for speed of sound

/1
ap s PTs PTs

from before we have

(valid for all gases)



Speed of Sound

Calorically perfect gas:

Isentropic process = p = Cp? (where C is a constant)

which implies



Speed of Sound

Sound wave / acoustic perturbation:

a weak wave
propagating through gas at speed of sound
small perturbations in velocity and thermodynamic properties

isentropic process



Mach Number

The mach number, M, is a local variable
Vv
M= —
a
where

v =lv|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted
by subscript oo



Mach Number

For a fluid element moving along a streamline, the kinetic energy per unit mass and
internal energy per unit mass are V2/2 and e, respectively

vie _vEe o VA2 (/Y A=) e
e CT RT/(v-1) a%/(y-1) 2

i.e. the Mach number is a measure of the ratio of the fluid motion (kinetic energy)
and the random thermal motion of the molecules (internal energy)



Physical Consequences of Speed of Sound

Sound waves is the way gas molecules convey information about what is
happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

In supersonic flow, sound waves are unable to travel upstream, since v > a




Physical Consequences of Speed of Sound

compression shock

e compression shock

oblique
normal oblique shock
shock shock
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Chapter 3.4
Some Conveniently Defined Flow
Parameters



Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we
get the so-called total conditions (or stagnation flow properties)

(e.g. total pressure p,, total temperature Ty, total density po, and total speed of
sound ap)

Since the process is isentropic, we have (for calorically perfect gas)
v-(5)-(7)
p p T

Note! 7, and a, only requires an adiabatic deceleration process



Critical Conditions

If the flow is accelerated/decelerated isentropically to the sonic point, where
v = a, we obtain the so-called critical conditions, e.g. p*, T, p*, a*

where, by definition, v* = a*

As for the total conditions, if the process is also reversible (entropy is preserved) we
obtain the relations (for calorically perfect gas)

:O* —<p*)’7_ (T*>’Y71
Po Po -\ T

Note! 7" and a* only requires an adiabatic acceleration/deceleration process



Total and Critical Conditions

For any given steady-state flow and location, we may think of an imaginary
isentropic/adiabatic stagnation process or sonic flow process and thus

We can obtain total and critical conditions at any point in a flow

The total/critical conditions represent conditions realizable under an
isentropic/adiabatic deceleration or acceleration of the flow

In an adiabatic flow, T, is conserved along streamlines

Conservation of p, along streamlines requires that the flow is isentropic (no
viscous losses or shocks)



Total and Critical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,
the total and critical conditions are results of an imaginary isentropic/adiabatic
process at one point in the flow.

However, with isentropic flow Ty, po, po, €tC are constants

In order for T, to be constant it is only required that the flow is adiabatic.



Total and Critical Conditions
If A and B are two locations in a flow

Isentropic flow:
TOA - TOB and :OOA - /OOB

Adiabatic flow (not isentropic):

TOA - TOB and IOOA # IOOB

The flow is not isentropic nor adiabatic:

To, # Tog @nd po, # Pog
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Chapter 3.5
Alternative Forms of the Energy
Equation



Alternative Forms of the Energy Equation
For steady-state adiabatic flow, we have already shown that conservation of energy
gives that total enthalpy, h,, is constant along streamlines

For a calorically perfect gas we have h = C, T which implies
1 2

To V2
o0y 7
T TaeT

R
Inserting Cp, = A ; and a? = yRT we get
/y J—

{TTO:1+;(7—1)M2}




Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

TO 1 2
O L Z(y—1M
T +2(7 )

Note! tabulated values for these relations can be found in Appendix A.1




The Characteristic Mach Number

%4
*
M:ai*

For a calorically perfect gas (1D/2D/3D flows)

, 2
(v +1)/M**] — (y = 1)

This relation between M and M* gives:
M =0&M=0

M =1eM=1 M*—M/’y—ﬂwhenl\ﬂ%oo
M <1eM<1 7-1

ME>1eM>1
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Chapter 3.6
Normal Shock Relations



One-Dimensional Flow Equations

piUy = paUs

mU? +pP1 = P2U% + P2

1 1
hy + §U? =hy + iug




Normal Shock Relations

Calorically perfect gas

h=C,T, p=pRT

with constant C,

Assuming that state 1 is known and state 2 is unknown
5 unknown variables: ps, Ua, P2, ha, To
5 equations

= solution can be found



Normal Shock Relations

Divide the momentum equation by piu;

1
— (,01 + ﬂ1U%) = (,02 + PQU%)

p1us p1Uy

{p1U1 = P2U2} =

b oy L 2
P (,01 + /)1U1) = ool (,02 + qug)



Normal Shock Relations

PP
piur - palz
Recall thata = 4/ @, which gives
P
2 2
a a
il S B
w1 U2

Now, we will make use of the fact that the flow is adiabatic and thus a* is constant



Normal Shock Relations
Energy equation:

1 1

_ IR
{Cp_v—l}j

(-1 21T o1y Tt

{a:\/ﬁ}:

2 2
a a
1 2 2 2

1 1
—ut = —u
DR CE




Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,
the local velocity u, and the speed of sound at sonic conditions a* by inserting in the
equation on the previous slide. uy = u,a; =a, Uy =as =a* =

32 N 1u2 B 8*2 N 1a*2
(v=1) 2 (v=1) 2
oY+l o0 y—1,
a’=-"—a"*-'—u
2 2

Evaluated in station 1 and 2, this gives

1 —1
%:’Y—i— 8*2 Y 2

a Uy

2 2

o Y+l o -1,
aQZTa - 2 U2




Normal Shock Relations

. . 1 -1 1 —1
Now, inserting {a% _ Ot e ] uf} and {a% _ Yt e ug}
2 2 2

: a? 1, a3 1, .
iN<——+ —uy = —u5 » and solve for a* gives
{(7 T oo Tt J

[ a*? = uyUs ]




Normal Shock Relations

a*? = UjUs

A.K.A. the Prandtl relation. Divide by a*? on both sides =

ui u
1= 222 = MM
a* a*

Together with the relation between M and M*, this gives

1
1+ 5(7 — 1)M?

1
YM; — 5(7 - 1)

M3 =




Normal Shock Relations

Continuity equation and a*2 = ujus

2 2
p2_ Ui _ U Uy

*2
=l T ax2 Ml
P1 Uz urUs a

which gives

p2 _ U _ (Y DME
pr Uz 24 (y—1)M7




Normal Shock Relations

Now, once again back to the momentum equation

P2 —pP1 = PlU% - P2U% = {p1u1 = pauz} = p1u1 (U1 — U2)

2 2
pz_l_mul(l_w)_{a_ V'O7M2—U}—yl\/lf<1—u?>
P1 P1 ui P a? Ui

with the expression for us /uy derived previously, this gives

[’321+27(M§1)}

P1 v+1




Normal Shock Relations

Are the normal shock relations valid for My < 1.07?

Mathematically - yes!

Physically - ?



Normal Shock Relations

Let’s have a look at the 277 law of thermodynamics

T2 P2
-5 =Cpln—=—-RIn—=
Sy —81 =Cp 1r17_1 n X

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

S3—51=Cpln [(1 - ’ﬁjl(/\ﬂ% - 1)> (H(’Y—l)/\ﬁ)} +

(v + 1)M?
2y 2
Rln (1 M 1)>



Normal Shock Relations

Entropy generation (y = 1.4)

100

My =1 = As = 0 (Mach wave) !

M; < 1 = As < 0 (not physical) As
M >1=As>0 —100

~9200 1 ! ! ! !
04 06 08 1 12 14 16 18 2

My




Normal Shock Relations
Normal shock = M; > 1
MiM5 =1
My >1=M;>1
* 1 *
MQ = Mif = M2 < 1
M; <1l=M;<1

After a normal shock the Mach number must be lower than 1.0



Normal Shock Relations

Lo 2
Ve 1+2(7 )M

2 1
W2 - Ly - 1)

M1 = 10:>M2 =1.0

My >1.0= My <1.0

Downstream Mach Number (v = 1.4)

1.2 T T T T

9 | | | |
0 2 4 6 8 10

Mi —oco=My—+/(y—1)/(2y) ={y=14} =0.378



Normal Shock Relations

Pressure ratio (y = 1.4)
20 T T T

P24 2 -
o o MY P2

P1

Note! from before we know that M; must be greater than 1.0, which means that
p2/p1 must be greater than 1.0



Normal Shock Relations

My > 1.0 gives My < 1.0, po > p1, P2 > p1,and To > T

What about T, and py?

2 2
Energy equation: CpT1 + % =Cpla+ UQ—2 = Cplo, =CpTo,

calorically perfect gas = T, = To,

or more general (as long as the shock is stationary): ho, = ho,



Normal Shock Relations

279 law of thermodynamics and isentropic deceleration to zero velocity (As
unchanged since isentropic) gives

To Po Po
So—S1=Coln—=—-RIn—=2={T,, =Ty,} = —RIn—=
’ ! P Tol pOl { o 02} pOl

Pos _ o=(s2-s1)/R
pO1

i.e. the total pressure decreases over a normal shock



Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

p— 1
Tor = T, Lt oy — DM
M= —2—
8oy = o, WM =50 =1)
aj=a,=a" 2
1= L R Sy
P1 v+1

2
uils = a* (the Prandtl relation)
p2 Ui (y+ DM}

pr Uz 24 (y— DM
2M; To _P2p1
Ti  p1p2



Normal Shock Relations

As the flow passes a stationary normal shock, the following
changes will take place discontinuously across the shock:

p increases
p increases
U decreases
M decreases (from M > 1to M < 1)
T increases

po decreases (due to shock loss)
S increases (due to shock loss)
To unaffected




Normal Shock Relations

Normal shock relations (y = 1.4)

—p2/;m
—Ts/Th
p2/pP1
_DO‘Z/DO1
— M,
—AY/AL




Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for M; <5
(approximately) for air at standard conditions

Calorically perfect gas = Shock strength depends on My only

Thermally perfect gas = Shock strength depends on M; and T;

General real gas (non-perfect) = Shock strength depends on My, p1, and T;



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?7



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 27?

Answer: We did not (explicitly)



Normal Shock Relations

The derivation is based on the fact that there should be a change in flow
properties between 1 and 2

We are assuming steady state conditions
We have said that the flow is adiabatic (no added or removed heat)
There is no work done and no friction added

A normal shock is the solution provided by nature (and math) that fulfill these
requirements!



Normal Shocks

-




Chapter 3.7
Hugoniot Equation



Hugoniot Equation

Starting point: governing equations for normal shocks

p1ur = paUsz

p1UT +P1 = paU3 + P2

1 1

Eliminate u; and us gives:

— 1 1
/’)2—/’)1:'02 P1 <+>
2 p1 - P2



Hugoniot Equation

Now, insert h = e +p/p gives

+ 1 1 +
6261:/132/31():;32 pl(VlfVQ)
P P2

which is the Hugoniot relation



Stationary Normal Shock in One-Dimensional Flow

Normal shock:

6y — 0, = P2 J2r,01 (va — 1)
More effective than isentropic
process

Gives entropy increase

Isentropic process:
de = —pdv

More efficient than normal shock
process

see figure 3.11 p. 100



The Rankine-Hugoniot relation

v+1 P2
pp 1H (H) (p)

v+l p2
e (25) + ()

The isentropic relation

P2 _ <D2>” !
P1 P1

P1

ot

o~

Stationary Normal Shock in One-Dimensional Flow

Pressure ratio (y = 1.4)

| | — isentropic A
— Hugoniot
| | | |
2 4 6 8
P2
P1

10



The Normal-shock Process
to 2 without passing

isobar
1 |---shock

Note!
over the shock, the flow state changes discontinuously from 1
I

any intermediate states

P2 ‘\




The Normal-shock Process

Note!
Mi>1.0and My <1.0 =T <T" < Ty

isobar
— T =T
—T =T
---T=T"
--- shock




The Normal-shock Process

isobar
8 - Poi A\ 01 —_S = Sl
--- shock
6 [
g
~
Q 4
2 [
O |
0.2 0.4 0.6 0.8



The Normal-shock Process

Note!
isotherms are less steep than isentropes = po, < Po,

- -~ isobar
—3S =9
—S =99
_T: TO
--- shock




The Normal-shock Process

Isotherm
||---T=T*
--- Isentrope
—P =P
| |7== P =Po
—P =pP2
---P = Po,

0.8

: | | | |
0 02 04 0.6 0.8
(s—51)/s2



The Normal-shock Process

Continuity:

pur = paus =C >0
Momentum:
2 2

. C
P1+P1Uf:D2+02U§$D1+;:D2+E:>F)1+V1CQZD2+VQCQ
1

P1 — P2 2

vy — 12

a line in pr-space with negative slope



The Normal-shock Process

Energy equation:

u? u
/71-1—?1:/72—1-*

2

2

withh = CpT = T and u = vC we get
7R 1 YR _, P2
T QCQ T QCQ M
1 + = 9 141 N — 2 + pl

quadratic function in pr-space (Hugoniot curve)

only thermodynamic variables



The Normal-shock Process

12 ¢
i - - - Isobar
10 [ - - - Isentrope
E -----isotherm
8 === T=T"
—dp/dv = -C?
Y 6 — Hugoniot curve
Q
4
2
O unphysical .7
L

0.2 0.4 0.6 0.8 1 1.2



The Normal-shock Process

12
--- |sobar
10 - - - Isentrope
-----isotherm
8 ---T=T"
—adp/dv = —C?
Y 6 — Hugoniot curve
Q
4
2
O unphysical .7
[ NG

0.2 0.4 0.6 0.8 1 1.2



The Normal-shock Process

12
--- |sobar
10 - - - Isentrope
-----isotherm
8 ---T=T"
: —dp/dv = —C?
q 6 —— Hugoniot curve
Q
4
2




Roadmap - One-dimensional Flow

nservation tion ) ) S ee%ound
Conservation equations [ Govern ﬁuahons ’ o]

on integral form
T :

- Auxinawations
! 1

Normal shoggrelations | ( )

(statior M shocks) Alternative rms.of
the ene™ equation

l L )

1D flow with heat addition | [ Total and & 'ﬁconditions ]

(Rayleigh line flow)

.

1D flow with friction
(Fanno line flow)




Chapter 3.8
One-Dimensional Flow with Heat
Addition



One-Dimensional Flow with Heat Addition

+Q
T === ==============3 e
— 1 1 —
— ! control volume €2 ! —
- O '@ =
— e 1 —
oA

1D pipe flow with heat addition:
no friction
1D steady-state = all variables depend on x only
q is the amount of heat per unit mass added between 1 and 2
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Heat Addition

p1rur = paUs

p1U; + P1 = paU3 + P2

1 1
h1+§U%+C/:h2+§U§

A

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = can be solved analytically



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = C,T):

1 1

1 1
q= (CpTg + 2u§> - (CpTl + 2u%>

[ q=Cp(To, — To,) ]

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:

P2 —pP1 = /J1U% - 02U§
{pu2 = pa’M? = prZ = “/PMZ}

p2 — p1 = YP1M; — ypaM3 =

P2 1—&-7/\4%
pi  1+~M3




Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same”?



Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same?

Answer: There is no difference. If we would insert My = f(M;) from the normal
shock relations, we would end up with the normal shock relation for py/p;.

The relation for My = f(M;) for normal shocks was derived assuming adiabatic
flow



One-Dimensional Flow with Heat Addition

ldeal gas law:

T R
s P _To_p2pR_pap

pR " Ti  pRpP1  Ppipe
Continuity equation:

P1 Uz
p1UL = pals = — = —
P2 Uy

Up _Maay MovyRTz o M T2
uq /\//181 Mls/’)/RTl P2 M1 T1

T (1+M3\° (Mo’
i \1+M3) \M




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2
Ty

P2
P1

p2
P1

1M
B 1+ M3

(1 +yM?]
|1+ M3

1+ M3 ]
|1+ AMF |




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

Po> _
pOl

7= [l ()
To, L+yM2 ] \ M,

0
[1+7Mq 1+ 3(y—1Mm3\ !
L+AME |\ 1+ (v — 1)M?

1+ 3(y—MZ\ 7"
L+ iy —1)Mm2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas

for some limiting heat addition g*, the flow will eventually become sonic M =1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas

for some limiting heat addition g*, the flow will eventually become sonic M =1

Note! The () condition in this context is not the same as the "critical” condition
discussed for isentropic flow



One-Dimensional Flow with Heat Addition

p2 1+ M

p1 1+ M3

Calculate the ratio between the pressure at a specific location in the flow p and
the pressure at sonic conditions p*

p1=p, My =M, py=p*, and My =1

p* _1+7M2

p 147




One-Dimensional Flow with Heat Addition

T _[ 149 'QMQ Po [ 147 ](2+(—DM*\71
[ R U ps |1+ yM? (v+1)

p o [14+M*] ( 1 ) To  (v+1)M? )

= — o0 I (94 (y— 1M

pr | 14y | \M? TS (1+7M2)2( O =1V




One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*
o



One-Dimensional Flow with Heat Addition

©, ©) ®
My, ————— M
P1 P2
— q —>
1 T2
Pl e P2
My M*
p1 g* P
T B T
p1 p" \
identical values!
M v
P2 o i p*
s 2 T
P2 p
95 =4y — ¢

Note! for a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Note! it is theoretically possible to Rayleigh curve ('Y - 14)
heat an initially subsonic flow to reach 1.2
sonic conditions and then continue to : ! !
accelerate the flow by cooling —M<1

1H—M>1

e /M = 1 (sonic point)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904

H 0.6
o 0.4
As vy+1 \
AS="—"=In |M?* [ L —
S G, n (1+7M2) 0.2
U - 05 0
H_Q_C/oT_l_ (v + )M]? . AS
Th TGl T |1+ AMP



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...
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And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system
studied, the system entropy would increase both when adding and removing
heat.



One-Dimensional Flow with Heat Addition

M < 1: Adding heat will M > 1: Adding heat will
increase M decrease M
decrease p increase p
increase T, increase T,
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



The Rayleigh-flow Process

Unlike the normal shock, Rayleigh flow has continuous solutions

A small addition of heat §g will change flow properties slightly

u-+au

p +dp

T+dT

p+dp —
M + dM

S+ ds

To +dT,

;{wib\ibt

0q



The Rayleigh-flow Process - Subsonic Heat Addition

Note!
Heat addition moves the H-curve in the direction of increasing pressure and in-
creasing specific volume

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
1.2 T . T 1.2 T T T T T
--- isentrope - - - isentrope ;
1L —H-curve (1) || 1 H|— Rayleigh line d‘> 71
— H-curve (q2)
0.8 F — Rayleigh line 0.8 ! il
5 3 |
S 06 = 0.6 L
2 S :
0.4F 0.4 ! .
0.2 0.2 | =
0 0 :




The Rayleigh-flow Process - Choked Subsonic Flow

Note!
When g = g*, the H-curve is tangent to the Rayleigh line (thermal choking)
Further heat addition will move the H-curve away from the Rayleigh line

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
1.2 T T . : 1.2 T I T T [0)
. |--- isentrope - - - isentrope ;
1+ ', |—H-curve (q1) H 1 H — Rayleigh line ‘
| — H-curve (g2)
0.8 — Rayleigh line
Q061
Q
0.4
0.2
0 2 4 6 8 10




The Rayleigh-flow Process - Choked Subsonic Flow

Note!

If is added such that g > g%, the inlet static flow properties will change (new mass-
flow) such that the new g* is equal to the added heat g

Total flow properties at the inlet remains the same (only work or heat addition can
change the total flow properties)




The Rayleigh-flow Process - Supersonic Heat Addition

Note!
A supersonic flow is in general closer to thermal choking than a subsonic flow due
to the high energy level (and thereby high T,)

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)

1.2 T T . : 1.2 T T T T T
- - - isentrope - - - isentrope o)
1 — H-curve (1) | 1 - — Rayleigh line (lr) : 71
— H-curve (q2) ‘
0.8 — Rayleigh line || -
&@ |
S 06
0.4 -
0.2 -

2 1 6 8 10 12 14




The Rayleigh-flow Process - Choked Supersonic Flow

Note!
When heat is added to a thermally choked supersonic flow, a shock will be gener-
ated at the exit of the pipe

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
12 T T .‘ T 12 T T T T | @
--- isentrope - - - isentrope Lo
1 — H-curve (1) |] 1 |-|— Rayleigh line & AT
— H-curve (q2) |
0.8 — Rayleigh line || 0.8 b
5 3
S S
Q ~ 0.6 7
E 0 6 [~ :

0.4

0.2




The Rayleigh-flow Process - Choked Supersonic Flow
The shock generated at the exit will be infinitely weak (M = 1)

As the shock does not affect 7,, T*, p* etc, it does not affect the thermal
choking condition (remember: T* and p* are not the critical conditions)

The heat process and the normal shock process operates along the same line
in pr-space

The shock will travel upstream through the pipe

If the supersonic flow is generated in a convergent-diveregent nozzle, the shock
will propagate upstream in the nozzle until the resulting pipe inlet condition
allows for the heat to be added with thermal choking at the pipe exit



The Rayleigh-flow Process - Maxumim Temperature

dT 1 —yM?> T
[t can be showed that s 1 CTQ

Rayleigh line (Ts-diagram)

ar 1 : ‘
ds()ﬁM\/;

we will have the maximum temperature
for a subsonic Mach number

T/ Tmax

le.O@ﬂzoo .
as ‘

S/Smax

1 1
0.8 0.85 0.9 0.95 1



Rayleigh Flow Trends

1 1
0 0.2 0.4 0.6 0.8 1

—p/P1

= p/p
—u/uy

—a/a;

| —Po/Po;

—To/To,

—

o

N

S / Smax

—T/T,
—p/p1
p/p1

|—u/uy

—a/a;

| — Po/Po;

—To/To,

/

0.2

1 1
0.4 0.6 0.8

S/Smax

—_



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (g) and heat per unit surface area and

_—
X

Pipe with arbitrary cross section (constant in x):

mass flow through pipe m
axial length of pipe L
circumference of pipe b = 2xr

g LbC?Wa//



One-Dimensional Flow with Heat Addition - RM12
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Chapter 3.9
One-Dimensional Flow with Friction



One-Dimensional Flow with Friction

inviscid flow with friction?!



One-Dimensional Flow with Friction

Thermally insulated walls

1D pipe flow with friction:
adiabatic (g = 0)
cross section area A is constant
average all variables in each cross-section = only x-dependence
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
@ 7wdS = b / e s
0

o0

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

p1rur = paUs

4 L
p1UT +p1 — D/ TwOX = palis + P2
0

1 1




One-Dimensional Flow with Friction

Tw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

4 d 4
d(pu® +p) = —pTwax & &(pUZ +P) =~ 5w



One-Dimensional Flow with Friction

From the continuity equation we get

d
Uy = paly = const = —(pu) =0
p1ruy = paUz O,X(/))

Writing out all terms in the momentum equation gives

d dp 4 du dp

g( U2 +p) = ud—u+u—( U)+— = —=Tw = pu— + —
ax P TR = U P T o T T T Y T ax
~—

=0

Common approximation for 7 :

Ol =

Tw



One-Dimensional Flow with Friction

Energy conservation:

hO] :h02 = CKho — 0



One-Dimensional Flow with Friction

Summary: p .
OT(PU) =
du dp 2 5
Uax Tax — ™7
d
o’ixho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = Can be solved analytically (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

Ma

/‘X? 4f 1 y+1 M?
X

—1
1+ 1= me
2 M



One-Dimensional Flow with Friction

Calorically perfect gas and adiabatic flow:

To  TaTo,To T2To _ 2+ (y— 1M}
—=——"—={lp=const} = —— =
Tl T02 Tol Tl { ¢ } 7-o Tl 2+ (7 - 1>M%
Continuity:
P2 uq a1M1 Tl Ml
2 _ 71 N Ay = ol G B i
P1 Us agMQ {a v } T2 <M2
Perfect gas:
P2 p2l2
P2 _p— pRT = 22
P1 tp=pRT} p1lh

Total pressure:
Poy _ Po, P2 P1

IO01 p2 pl 1001



One-Dimensional Flow with Friction

Calorically perfect gas:

Ty 24 (y—1M; p2
T1 24+ (’Y — 1)M% P1

p1 My

py My {2+(v—1)/w%]1/2 Poy




One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M, will increase as L increases

for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Initially supersonic flow (M7 > 1)

My will decrease as L increases

for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Note! The () condition in this context is not the same as the "critical” condition
discussed for isentropic flow



One-Dimensional Flow with Friction

T (a+D p 12+ (¢ —1m)?
T 24 (y—1)M? p* M v+1

p* M

p 1 v+1 1/2 Po 1 [24 (v— 1M CEsy
2+ M2 o5 M

(v—1 v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

A (R S e Y

/L* Af 1 y+1 M?
o D YM? 2y 1+771M2
2

M
where L* is the tube length needed to change current state to sonic conditions

Let f be the average friction coefficient over the length L* =

4fL* 1M +7+11n (v + 1)M?
D M2 27y 2+ (y—1)M?

Turbulent pipe flow — f ~ 0.005 (Re > 1()5, roughness ~ 0.001D)



One-Dimensional Flow with Friction - Choking Length

Note!
Supersonic flow is much more prone to choke than subsonic flow
There is an upper limit for supersonic choking length L*




One-Dimensional Flow with Friction

0.8 |-

0.6
H
0.4
0.2
h C,T T y—1 17"
Ho B Gl T [ 2Ly
ho ~ CoTo  To { Ty ] o
A 1 2\ 5
2 2~
AS= 25y < ) 7 (= g

Fanno curve (y = 1.4)

—M< 1
—M>1
e M = 1 (sonic point)




One-Dimensional Flow with Friction

M < 1: Friction will M > 1: Friction will
increase M decrease M
decrease p increase p
decrease T increase T
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



The Fanno-flow Process

Just like the Rayleigh flow, Fanno flow has continuous solutions

A small pipe section with length dx will change flow properties slightly

u-+au
p +dp
T+dT
p+dp —
M + dM
S+ds

wT™HTC

ax



The Fanno-flow Process - Subsonic Flow

Note!
Pressure and temperature decreases when friction is added to a subsonic flow

-- - isentrope
—--T=T"
—pP =pP1
—PpP = P2
—Fanno line




The Fanno-flow Process - Subsonic Flow

Note!
The Fanno flow process is adiabatic = T, is constant = p, increases

W --- isentrope
o ---T =T"
—T =T,
_p :pol
_______________________________________________ —P = Po,
—Fanno line
T

S



The Fanno-flow Process - Choked Subsonic Flow

Note!

If the pipe length is increased such that L > L*, the inlet static flow properties will
change (new massflow) such that the new L* is equal to the pipe length

Total flow properties at the inlet remains the same (only work or heat addition can
change the total flow properties)

: Po
| T,
-~
w P
T \ﬂ> Tl’
— [ T
1
D1
P1 !
s s



The Fanno-flow Process - Choked Supersonic

Note!
Choked supersonic flow will lead to the formation of a shock inside the pipe (shock
location depends on flow conditions)

— T - TO
T, | Po Pos - - - isentrope
- — 1 -1 = — isobar

| e T =T
E —Fanno line

' - - - normal shock
2 —— choked Fanno process

. TSI R

I
1
1
I
I
|
I
I
I
___________ L
I
I
1
1
I
I
I
I
I
1

I RN T —




The Fanno-flow Process - Choked Supersonic

Why does the normal shock change the choking condition for Fanno flow but
not for Rayleigh flow?

As for Rayleigh flow, To, T*, p*, etc are not affected by the shock

The momentum equation is not the same as for normal shocks = the
Fanno-flow process does not operate along the same line as the normal-shock
process in pr-space



The Fanno-flow Process - Choked Supersonic

Note!
An internal shock will always increase the choking length L*

—4fL3/D
LT =f(M) —4fL3/D

— (L5~ 15)/D
Ly =f(Ms)

My = F(Mh) } =L =)

Ly =L = f(M1)




Rayleigh flow with shock
2 T T T

' T =T

--- shock

— Rayliegh process

sonic point

0.5

upstream of shock
1

inlet

1
1.2

7%

1 1 ;
04 06 08 1 1.4

1
1.6

1.8

Friction Choking vs Thermal Choking

Fanno flow with shock

1.5~

‘ I

! —=-T=T*

—— Fanno process
--- shock

1.4 1.8

v/v*

Rayleigh flow: a shock does not affect 7] or T, = g will not change over the shock

Fanno flow: L* changes discontinuously over the shock =
L* will always increase over a shock = possible to extend pipe for supersonic flow



Fanno-flow Trends

T T
25H— T/ . 25H—T/Th 4
—p/p1 —p/p1
ol p/p1 | 9l p/p1 a
—u/uy —u/uy
—a/a —a/a
L5 A —po/po, ] L5 H——po/Po, A
— To/To, —To/To,
el \ 0.5 3
| | | | | | | |
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One-Dimensional Flow with Friction - Pipeline
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What if you somehow managed to make a stereo travel at twice the speed of sound, would it sound backwards to someone

who was just casually sitting somewhere as it flies by?

—Tim Currie

Yes.
Technically, anyway. It would be pretty hard to hear.

The basic idea is pretty straightforward. The stereo is going faster than its own sound, so it will reach you first, followed by the sound it emitted one second ago,
followed by the sound it emitted two seconds ago, and so forth.

&
2 k
557

‘The problem is that the stereo is moving at Mach 2, which means that two seconds ago, it was over a kilometer away. It’s hard to hear music from that distance,
particularly when your ears were just hit by (a) a sonic boom, and (b) pieces of a rapidly disintegrating stereo.

Wind speeds of Mach 2 would messily disassemble most consumer electronics. The force of the wind on the body of the stereo is roughly comparable to that of a
dozen people standing on it:
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