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Chapter 3 - One-Dimensional Flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and

real gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

c 1D flow with heat addition*

d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
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Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the

complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart
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Chapter 3.2

One-Dimensional Flow Equations
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One-Dimensional Flow Equations

Problems analyzed using the one-dimensional flow equations can be divided in

to two categories:

1. problems with wave solutions (discontinuous)

acoustic wave

normal shock

2. problems with continuous solutions

flow with heat addition

flow with friction
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One-Dimensional Flow Equations

1

u1

ρ1, p1, T1

2

u2

ρ2, p2, T2

shock

x

Assumptions:

all flow variables only depend on x

velocity aligned with x-axis
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One-Dimensional Flow Equations

shock

x

1 2

∂Ω

Ω s
u
rf
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Control volume approach:

Define a rectangular control volume around shock, with upstream conditions

denoted by 1 and downstream conditions by 2
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One-Dimensional Flow Equations

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸
=0

+
{

∂Ω

ρv · ndS︸ ︷︷ ︸
ρ2u2A−ρ1u1A

= 0 ⇒ ρ1u1 = ρ2u2

Conservation of momentum:

d

dt

y

Ω

ρvdV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρ(v · n)v + pn]dS︸ ︷︷ ︸
(ρ2u22+p2)A−(ρ1u21+p1)A

= 0 ⇒ ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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One-Dimensional Flow Equations

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρhov · n]dS︸ ︷︷ ︸
ρ2ho2u2A−ρ1ho1u1A

= 0 ⇒ ρ1u1ho1 = ρ2u2ho2

Using the continuity equation this reduces to

ho1 = ho2

or, if written out

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Summary:

Note! These equations are valid regardless of whether or not there is a shock

inside the control volume
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Summary:

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ Can be solved analytically
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Roadmap - One-dimensional Flow
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Chapter 3.3

Speed of Sound and Mach Number
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Speed of Sound

Sound wave / acoustic perturbation

a a + da

p

ρ

T

p + dp

ρ + dρ

T + dT

1 2

wave front
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Speed of Sound

Conservation of mass gives

ρa = (ρ+ dρ)(a+ da) = ρa+ ρda+ dρa+ dρda

products of infinitesimal quantities are removed ⇒

ρda+ dρa = 0

solve for da ⇒

da = −adρ
ρ
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Speed of Sound

The momentum equation evaluated over the wave front gives

p+ ρa2 = (p+ dp) + (ρ+ dρ)(a+ da)2

Again, removing products of infinitesimal quantities gives

dp = −2aρda− a2dρ

Solve for da ⇒

da =
dp+ a2dρ

−2aρ
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Speed of Sound

Continuity equation:

da = −adρ
ρ

Momentum equation:

da =
dp+ a2dρ

−2aρ

−adρ
ρ

=
dp+ a2dρ

−2aρ
⇒ a2 =

dp

dρ

Niklas Andersson - Chalmers 20 / 142



Speed of Sound

Sound waves are small perturbations in ρ, v, p, T (with constant entropy s)
propagating through gas with speed a

a2 =

(
∂p

∂ρ

)
s

(valid for all gases)
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Speed of Sound

Compressibility and speed of sound:

from before we have

τs =
1

ρ

(
∂ρ

∂p

)
s

insert in relation for speed of sound

a2 =

(
∂p

∂ρ

)
s

=
1

ρτs
⇒ a =

√
1

ρτs

(valid for all gases)
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Speed of Sound

Calorically perfect gas:

Isentropic process ⇒ p = Cργ (where C is a constant)

a2 =

(
∂p

∂ρ

)
s

= γCργ−1 =
γp

ρ

which implies

a =

√
γp

ρ
⇒ a =

√
γRT
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Speed of Sound

Sound wave / acoustic perturbation:

a weak wave

propagating through gas at speed of sound

small perturbations in velocity and thermodynamic properties

isentropic process
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Mach Number

The mach number, M, is a local variable

M =
v

a

where

v = |v|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted

by subscript ∞

M∞ =
v∞
a∞
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Mach Number

For a fluid element moving along a streamline, the kinetic energy per unit mass and

internal energy per unit mass are V2/2 and e, respectively

V2/2

e
=

V2/2

CvT
=

V2/2

RT/(γ − 1)
=

(γ/2)V2

a2/(γ − 1)
=

γ(γ − 1)

2
M2

i.e. the Mach number is a measure of the ratio of the fluid motion (kinetic energy)

and the random thermal motion of the molecules (internal energy)
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Physical Consequences of Speed of Sound

Sound waves is the way gas molecules convey information about what is

happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

In supersonic flow, sound waves are unable to travel upstream, since v > a

v = 0 v < a v > a
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Physical Consequences of Speed of Sound

M∞ < 1

M∞ > 1

compression shock

compression shock

oblique

shock

oblique

shocknormal

shock
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Roadmap - One-dimensional Flow
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Chapter 3.4

Some Conveniently Defined Flow

Parameters
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Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we

get the so-called total conditions (or stagnation flow properties)

(e.g. total pressure po, total temperature To, total density ρo, and total speed of

sound ao)

Since the process is isentropic, we have (for calorically perfect gas)

po

p
=

(
ρo
ρ

)γ

=

(
To

T

) γ
γ−1

Note! To and ao only requires an adiabatic deceleration process
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Critical Conditions

If the flow is accelerated/decelerated isentropically to the sonic point, where

v = a, we obtain the so-called critical conditions, e.g. p∗, T∗, ρ∗, a∗

where, by definition, v∗ = a∗

As for the total conditions, if the process is also reversible (entropy is preserved) we

obtain the relations (for calorically perfect gas)

p∗

po
=

(
ρ∗

ρo

)γ

=

(
T∗

To

) γ
γ−1

Note! T∗ and a∗ only requires an adiabatic acceleration/deceleration process
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Total and Critical Conditions

For any given steady-state flow and location, we may think of an imaginary

isentropic/adiabatic stagnation process or sonic flow process and thus

We can obtain total and critical conditions at any point in a flow

The total/critical conditions represent conditions realizable under an

isentropic/adiabatic deceleration or acceleration of the flow

In an adiabatic flow, To is conserved along streamlines

Conservation of po along streamlines requires that the flow is isentropic (no

viscous losses or shocks)
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Total and Critical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,

the total and critical conditions are results of an imaginary isentropic/adiabatic

process at one point in the flow.

However, with isentropic flow To, po, ρo, etc are constants

In order for To to be constant it is only required that the flow is adiabatic.
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Total and Critical Conditions

If A and B are two locations in a flow

1. Isentropic flow:

ToA = ToB and poA = poB

2. Adiabatic flow (not isentropic):

ToA = ToB and poA 6= poB

3. The flow is not isentropic nor adiabatic:

ToA 6= ToB and poA 6= poB
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Roadmap - One-dimensional Flow
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Chapter 3.5

Alternative Forms of the Energy

Equation
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Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that conservation of energy

gives that total enthalpy, ho, is constant along streamlines

For a calorically perfect gas we have h = CpT which implies

CpT +
1

2
v2 = CpTo

To

T
= 1 +

v2

2CpT

Inserting Cp =
γR

γ − 1
and a2 = γRT we get

To

T
= 1 +

1

2
(γ − 1)M2
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Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

To

T
= 1 +

1

2
(γ − 1)M2

ρo
ρ

=

(
To

T

) 1
γ−1

po

p
=

(
To

T

) γ
γ−1

(
a∗

ao

)2

=
T∗

To
=

2

γ + 1

ρ∗

ρo
=

(
2

γ + 1

) 1
γ−1

p∗

po
=

(
2

γ + 1

) γ
γ−1

Note! tabulated values for these relations can be found in Appendix A.1
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The Characteristic Mach Number

M∗ ≡ v

a∗

For a calorically perfect gas (1D/2D/3D flows)

M2 =
2[

(γ + 1)/M∗2
]
− (γ − 1)

This relation between M and M∗ gives:

M∗ = 0 ⇔M = 0

M∗ = 1 ⇔M = 1

M∗ < 1 ⇔M < 1

M∗ > 1 ⇔M > 1

M∗ →
√

γ + 1

γ − 1
when M → ∞
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Chapter 3.6

Normal Shock Relations
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22
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Normal Shock Relations

Calorically perfect gas

h = CpT , p = ρRT

with constant Cp

Assuming that state 1 is known and state 2 is unknown

5 unknown variables: ρ2, u2, p2, h2, T2

5 equations

⇒ solution can be found
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Normal Shock Relations

Divide the momentum equation by ρ1u1

1

ρ1u1

(
p1 + ρ1u

2
1

)
=

1

ρ1u1

(
p2 + ρ2u

2
2

)
{ρ1u1 = ρ2u2} ⇒

1

ρ1u1

(
p1 + ρ1u

2
1

)
=

1

ρ2u2

(
p2 + ρ2u

2
2

)
p1

ρ1u1
− p2

ρ2u2
= u2 − u1
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Normal Shock Relations

p1

ρ1u1
− p2

ρ2u2
= u2 − u1

Recall that a =

√
γp

ρ
, which gives

a21
γu1

− a22
γu2

= u2 − u1

Now, we will make use of the fact that the flow is adiabatic and thus a∗ is constant
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Normal Shock Relations

Energy equation:

CpT1 +
1

2
u21 = CpT2 +

1

2
u22{

Cp =
γR

γ − 1

}
⇒

γRT1
(γ − 1)

+
1

2
u21 =

γRT2
(γ − 1)

+
1

2
u22{

a =
√
γRT

}
⇒

a21
(γ − 1)

+
1

2
u21 =

a22
(γ − 1)

+
1

2
u22
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Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,

the local velocity u, and the speed of sound at sonic conditions a∗ by inserting in the
equation on the previous slide. u1 = u, a1 = a, u2 = a2 = a∗ ⇒

a2

(γ − 1)
+

1

2
u2 =

a∗2

(γ − 1)
+

1

2
a∗2

a2 =
γ + 1

2
a∗2 − γ − 1

2
u2

Evaluated in station 1 and 2, this gives

a21 =
γ + 1

2
a∗2 − γ − 1

2
u21

a22 =
γ + 1

2
a∗2 − γ − 1

2
u22
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Normal Shock Relations

Now, inserting

{
a21 =

γ + 1

2
a∗2 − γ − 1

2
u21

}
and

{
a22 =

γ + 1

2
a∗2 − γ − 1

2
u22

}

in

{
a21

(γ − 1)
+

1

2
u21 =

a22
(γ − 1)

+
1

2
u22

}
and solve for a∗ gives

a∗2 = u1u2
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Normal Shock Relations

a∗2 = u1u2

A.K.A. the Prandtl relation. Divide by a∗2 on both sides ⇒

1 =
u1

a∗
u2

a∗
= M∗

1M
∗
2

Together with the relation between M and M∗, this gives

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)
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Normal Shock Relations

Continuity equation and a∗2 = u1u2

ρ2
ρ1

=
u1

u2
=

u21
u1u2

=
u21
a∗2

= M∗
1
2

which gives

ρ2
ρ1

=
u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1
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Normal Shock Relations

Now, once again back to the momentum equation

p2 − p1 = ρ1u
2
1 − ρ2u

2
2 = {ρ1u1 = ρ2u2} = ρ1u1(u1 − u2)

p2

p1
− 1 =

ρ1u
2
1

p1

(
1− u2

u1

)
=

{
a =

√
γp

ρ
, M2 =

u2

a2

}
= γM2

1

(
1− u2

u1

)
with the expression for u2/u1 derived previously, this gives

p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1)
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Normal Shock Relations

Are the normal shock relations valid for M1 < 1.0?

Mathematically - yes!

Physically - ?
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Normal Shock Relations

Let’s have a look at the 2nd law of thermodynamics

s2 − s1 = Cp ln T2

T1
− R ln p2

p1

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

s2 − s1 = Cp ln
[(

1 +
2γ

γ + 1
(M2

1 − 1)

)(
2 + (γ − 1)M2

1

(γ + 1)M2
1

)]
+

− R ln
(
1 +

2γ

γ + 1
(M2

1 − 1)

)
Niklas Andersson - Chalmers 54 / 142



Normal Shock Relations

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−100

0

100

M1

∆s

Entropy generation (γ = 1.4)

M1 = 1 ⇒ ∆s = 0 (Mach wave)

M1 < 1 ⇒ ∆s < 0 (not physical)

M1 > 1 ⇒ ∆s > 0
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Normal Shock Relations

Normal shock ⇒ M1 > 1

M∗
1M

∗
2 = 1

M1 > 1 ⇒ M∗
1 > 1

M∗
2 =

1

M∗
1

⇒ M∗
2 < 1

M∗
2 < 1 ⇒ M2 < 1

After a normal shock the Mach number must be lower than 1.0
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Normal Shock Relations

2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

M1

M2

Downstream Mach Number (γ = 1.4)

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

M1 = 1.0 ⇒ M2 = 1.0

M1 > 1.0 ⇒ M2 < 1.0

M1 → ∞ ⇒ M2 →
√

(γ − 1)/(2γ) = {γ = 1.4} = 0.378

Niklas Andersson - Chalmers 57 / 142



Normal Shock Relations

0 1 2 3 4
−5

0

5

10

15

20

M1

p2

p1

Pressure ratio (γ = 1.4)

p2

p1
= 1 +

2γ

γ + 1

(
M2

1 − 1
)

Note! from before we know that M1 must be greater than 1.0, which means that

p2/p1 must be greater than 1.0
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Normal Shock Relations

M1 > 1.0 gives M2 < 1.0, ρ2 > ρ1, p2 > p1, and T2 > T1

What about To and po?

Energy equation: CpT1 +
u21
2

= CpT2 +
u22
2

⇒ CpTo1 = CpTo2

calorically perfect gas ⇒ To1 = To2

or more general (as long as the shock is stationary): ho1 = ho2
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Normal Shock Relations

2nd law of thermodynamics and isentropic deceleration to zero velocity (∆s

unchanged since isentropic) gives

s2 − s1 = Cp ln To2
To1

− R ln po2
po1

= {To1 = To2} = −R ln po2
po1

po2
po1

= e−(s2−s1)/R

i.e. the total pressure decreases over a normal shock
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Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

To1 = To2

ao1 = ao2

a∗1 = a∗2 = a∗

u1u2 = a∗2 (the Prandtl relation)

M∗
2 =

1

M∗
1

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1)

ρ2
ρ1

=
u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

T2

T1
=

p2

p1

ρ1
ρ2
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Normal Shock Relations

As the flow passes a stationary normal shock, the following

changes will take place discontinuously across the shock:

ρ increases

p increases

u decreases

M decreases (from M > 1 to M < 1)
T increases

po decreases (due to shock loss)

s increases (due to shock loss)

To unaffected
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Normal Shock Relations

1 1.5 2 2.5 3 3.5 4
0

2

4

6

M1

Normal shock relations (γ = 1.4)

ρ2/ρ1
T2/T1
p2/p1
po2/po1
M2

A∗
2/A

∗
1
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Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for M1 ≤ 5
(approximately) for air at standard conditions

Calorically perfect gas ⇒ Shock strength depends on M1 only

Thermally perfect gas ⇒ Shock strength depends on M1 and T1

General real gas (non-perfect) ⇒ Shock strength depends on M1, p1, and T1

Niklas Andersson - Chalmers 64 / 142



Normal Shock Relations

And now to the question that probably bothers most of you but that no one

dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

Answer: We did not (explicitly)
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Normal Shock Relations

The derivation is based on the fact that there should be a change in flow

properties between 1 and 2

We are assuming steady state conditions

We have said that the flow is adiabatic (no added or removed heat)

There is no work done and no friction added

A normal shock is the solution provided by nature (and math) that fulfill these

requirements!
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Normal Shocks
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Chapter 3.7

Hugoniot Equation
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Hugoniot Equation

Starting point: governing equations for normal shocks

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Eliminate u1 and u2 gives:

h2 − h1 =
p2 − p1

2

(
1

ρ1
+

1

ρ2

)
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Hugoniot Equation

Now, insert h = e+ p/ρ gives

e2 − e1 =
p2 + p1

2

(
1

ρ1
− 1

ρ2

)
=

p2 + p1

2
(ν1 − ν2)

which is the Hugoniot relation
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Stationary Normal Shock in One-Dimensional Flow

Normal shock:

e2 − e1 = −p2 + p1

2
(ν2 − ν1)

More effective than isentropic

process

Gives entropy increase

Isentropic process:

de = −pdν

More efficient than normal shock

process

see figure 3.11 p. 100
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Stationary Normal Shock in One-Dimensional Flow

2 4 6 8 10
1

2

3

4

5

p2

p1

ρ2
ρ1

Pressure ratio (γ = 1.4)

isentropic

Hugoniot

The Rankine-Hugoniot relation

ρ2
ρ1

=
1 +

(
γ+1
γ−1

)(
p2
p1

)
(
γ+1
γ−1

)
+
(
p2
p1

)

The isentropic relation

ρ2
ρ1

=

(
p2

p1

)1/γ
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The Normal-shock Process

0.2 0.4 0.6 0.8
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ν

p
/
p
1

isobar

shock

Note!

over the shock, the flow state changes discontinuously from 1 to 2 without passing

any intermediate states
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The Normal-shock Process
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ν
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p
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T = T1
T = T2
T = T∗

shock

Note!

M1 > 1.0 and M2 < 1.0 ⇒ T1 < T∗ < T2
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The Normal-shock Process
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The Normal-shock Process
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T = To
shock

Note!

isotherms are less steep than isentropes ⇒ po2 < po1
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The Normal-shock Process
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The Normal-shock Process

Continuity:

ρ1u1 = ρ2u2 = C > 0

Momentum:

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 ⇒ p1 +

C2

ρ1
= p2 +

C2

ρ2
⇒ p1 + ν1C

2 = p2 + ν2C
2

p1 − p2

ν1 − ν2
= −C2

a line in pν-space with negative slope
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The Normal-shock Process

Energy equation:

h1 +
u21
2

= h2 +
u22
2

with h = CpT =
γR

γ − 1
T and u = νC we get

γR

γ − 1
T1 +

1

2
ν21C

2 =
γR

γ − 1
T2 +

1

2
ν22C

2 ⇒ ... ⇒ p2

p1

(
ν2
ν1

− γ + 1

γ − 1

)
/

(
1− ν2

ν1

γ + 1

γ − 1

)

quadratic function in pν-space (Hugoniot curve)

only thermodynamic variables
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The Normal-shock Process
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The Normal-shock Process
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The Normal-shock Process
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
�

�

�

�

�

�
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Chapter 3.8

One-Dimensional Flow with Heat

Addition
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One-Dimensional Flow with Heat Addition

1 2control volume Ω

q

q

x

1D pipe flow with heat addition:

1. no friction

2. 1D steady-state ⇒ all variables depend on x only

3. q is the amount of heat per unit mass added between 1 and 2

4. analyze by setting up a control volume between station 1 and 2
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One-Dimensional Flow with Heat Addition

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 + q = h2 +

1

2
u22

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ can be solved analytically
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One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = CpT ):

CpT1 +
1

2
u21 + q = CpT2 +

1

2
u22

q =

(
CpT2 +

1

2
u22

)
−
(
CpT1 +

1

2
u21

)
CpTo = CpT +

1

2
u2 ⇒

q = Cp(To2 − To1)

i.e. heat addition increases To downstream
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One-Dimensional Flow with Heat Addition

Momentum equation:

p2 − p1 = ρ1u
2
1 − ρ2u

2
2{

ρu2 = ρa2M2 = ρ
γp

ρ
M2 = γpM2

}
p2 − p1 = γp1M

2
1 − γp2M

2
2 ⇒

p2

p1
=

1 + γM2
1

1 + γM2
2
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Normal Shock Relations

We used the momentum equation to derive the relation for p2/p1. In what way
is this relation different than the one for normal shocks – the momentum

equation is the same?

Answer: There is no difference. If we would insert M2 = f(M1) from the normal

shock relations, we would end up with the normal shock relation for p2/p1.

The relation for M2 = f(M1) for normal shocks was derived assuming adiabatic

flow
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One-Dimensional Flow with Heat Addition

Ideal gas law:

T =
p

ρR
⇒ T2

T1
=

p2

ρ2R

ρ1R

p1
=

p2

p1

ρ1
ρ2

Continuity equation:

ρ1u1 = ρ2u2 ⇒
ρ1
ρ2

=
u2

u1

u2

u1
=

M2a2

M1a1
=

M2

√
γRT2

M1

√
γRT1

⇒ ρ1
ρ2

=
M2

M1

√
T2

T1

T2

T1
=

(
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2

T1
=

[
1 + γM2

1

1 + γM2
2

]2(
M2

M1

)2

ρ2
ρ1

=

[
1 + γM2

2

1 + γM2
1

](
M1

M2

)2

p2

p1
=

1 + γM2
1

1 + γM2
2
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

po2
po1

=

[
1 + γM2

1

1 + γM2
2

](
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1

To2
To1

=

[
1 + γM2

1

1 + γM2
2

](
M2

M1

)2
(
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

) γ
γ−1
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One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas

for some limiting heat addition q∗, the flow will eventually become sonic M = 1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas

for some limiting heat addition q∗, the flow will eventually become sonic M = 1

Note! The (*) condition in this context is not the same as the ”critical” condition

discussed for isentropic flow
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One-Dimensional Flow with Heat Addition

p2

p1
=

1 + γM2
1

1 + γM2
2

Calculate the ratio between the pressure at a specific location in the flow p and

the pressure at sonic conditions p∗

p1 = p, M1 = M, p2 = p∗, and M2 = 1

p∗

p
=

1 + γM2

1 + γ
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One-Dimensional Flow with Heat Addition

T

T∗ =

[
1 + γ

1 + γM2

]2
M2

ρ

ρ∗
=

[
1 + γM2

1 + γ

](
1

M2

)

p

p∗
=

1 + γ

1 + γM2

po

p∗o
=

[
1 + γ

1 + γM2

](
2 + (γ − 1)M2

(γ + 1)

) γ
γ−1

To

T∗
o

=
(γ + 1)M2

(1 + γM2)2
(2 + (γ − 1)M2)
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One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

q∗ = Cp(T
∗
o − To) = CpTo

(
T∗
o

To
− 1

)
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One-Dimensional Flow with Heat Addition

Note! for a given flow, the starred quantities are constant values

M1

p1

T1
ρ1

M2

p2

T2
ρ2

q

M1

p1

T1
ρ1

M
∗

p
∗

T
∗

ρ
∗

q
∗
1

M2

p2

T2
ρ2

M
∗

p
∗

T
∗

ρ
∗

q
∗
2

1 2 ∗

q
∗
2 = q

∗
1 − q

identical values!
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One-Dimensional Flow with Heat Addition

Lord Rayleigh 1842-1919

Nobel prize in physics 1904

Note! it is theoretically possible to

heat an initially subsonic flow to reach

sonic conditions and then continue to

accelerate the flow by cooling

∆S =
∆s

Cp

= ln

[
M2

(
γ + 1

1 + γM2

) γ+1
γ

]

H =
h

h∗
=

CpT

CpT∗ =
T

T∗ =

[
(γ + 1)M

1 + γM2

]2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

∆S

H

Rayleigh curve (γ = 1.4)

M < 1
M > 1
M = 1 (sonic point)

Ad
di
ng
he
at
→

← Re
mo

vin
g h

eat

A
dd
in
g
he
at
→

← Rem
ovin

g he
at
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One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second

law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system

studied, the system entropy would increase both when adding and removing

heat.
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One-Dimensional Flow with Heat Addition
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One-Dimensional Flow with Heat Addition

M < 1: Adding heat will

increase M

decrease p

increase To
decrease po
increase s

increase u

decrease ρ

M > 1: Adding heat will

decrease M

increase p

increase To
decrease po
increase s

decrease u

increase ρ

Note! the flow is not isentropic, there will always be losses
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The Rayleigh-flow Process

Unlike the normal shock, Rayleigh flow has continuous solutions

A small addition of heat δq will change flow properties slightly

δq

u
p

T
ρ

M
s
To

u+ du
p+ dp
T + dT
ρ+ dρ
M + dM
s+ ds
To + dTo
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The Rayleigh-flow Process - Subsonic Heat Addition

Note!

Heat addition moves the H-curve in the direction of increasing pressure and in-

creasing specific volume
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The Rayleigh-flow Process - Choked Subsonic Flow

Note!

When q = q∗, the H-curve is tangent to the Rayleigh line (thermal choking)

Further heat addition will move the H-curve away from the Rayleigh line
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The Rayleigh-flow Process - Choked Subsonic Flow

Note!

If is added such that q > q∗, the inlet static flow properties will change (new mass-

flow) such that the new q∗ is equal to the added heat q

Total flow properties at the inlet remains the same (only work or heat addition can

change the total flow properties)

s

T

1

1′

T1

T1′

To

p1

p1′

po

s

T
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The Rayleigh-flow Process - Supersonic Heat Addition

Note!

A supersonic flow is in general closer to thermal choking than a subsonic flow due

to the high energy level (and thereby high To)
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The Rayleigh-flow Process - Choked Supersonic Flow

Note!

When heat is added to a thermally choked supersonic flow, a shock will be gener-

ated at the exit of the pipe
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The Rayleigh-flow Process - Choked Supersonic Flow

The shock generated at the exit will be infinitely weak (M = 1)

As the shock does not affect To, T
∗, p∗ etc, it does not affect the thermal

choking condition (remember: T∗ and p∗ are not the critical conditions)

The heat process and the normal shock process operates along the same line

in pν-space

The shock will travel upstream through the pipe

If the supersonic flow is generated in a convergent-diveregent nozzle, the shock

will propagate upstream in the nozzle until the resulting pipe inlet condition

allows for the heat to be added with thermal choking at the pipe exit
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The Rayleigh-flow Process - Maxumim Temperature

It can be showed that
dT

ds
=

1− γM2

1−M2

T

Cp

dT

ds
= 0 ⇒ M =

√
1

γ

we will have the maximum temperature

for a subsonic Mach number

M = 1.0 ⇒ dT

ds
= ∞
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Rayleigh Flow Trends
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One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (q) and heat per unit surface area and

unit time (q̇wall )
L

x

b

Pipe with arbitrary cross section (constant in x):

mass flow through pipe ṁ

axial length of pipe L

circumference of pipe b = 2πr

q =
Lbq̇wall

ṁ
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One-Dimensional Flow with Heat Addition - RM12
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
�

�

�

�

�

�

�
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Chapter 3.9

One-Dimensional Flow with Friction
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One-Dimensional Flow with Friction

inviscid flow with friction?!
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One-Dimensional Flow with Friction

1 2control volume Ω

Thermally insulated walls

x

1D pipe flow with friction:

1. adiabatic (q = 0)

2. cross section area A is constant

3. average all variables in each cross-section ⇒ only x-dependence

4. analyze by setting up a control volume between station 1 and 2
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One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

{

∂Ω

τwdS = b

ˆ L

0
τwdx

where L is the tube length and b is the circumference
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One-Dimensional Flow with Friction

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 −

4

D

ˆ L

0
τwdx = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow with Friction

τw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

d(ρu2 + p) = − 4

D
τwdx ⇔ d

dx
(ρu2 + p) = − 4

D
τw
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One-Dimensional Flow with Friction

From the continuity equation we get

ρ1u1 = ρ2u2 = const ⇒ d

dx
(ρu) = 0

Writing out all terms in the momentum equation gives

d

dx
(ρu2 + p) = ρu

du

dx
+ u

d

dx
(ρu)︸ ︷︷ ︸
=0

+
dp

dx
= − 4

D
τw ⇒ ρu

du

dx
+

dp

dx
= − 4

D
τw

Common approximation for τw:

τw = f
1

2
ρu2 ⇒ ρu

du

dx
+

dp

dx
= − 2

D
ρu2f
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One-Dimensional Flow with Friction

Energy conservation:

ho1 = ho2 ⇒ d

dx
ho = 0
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One-Dimensional Flow with Friction

Summary:

d

dx
(ρu) = 0

ρu
du

dx
+

dp

dx
= − 2

D
ρu2f

d

dx
ho = 0

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ Can be solved analytically (for constant f )
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One-Dimensional Flow with Friction

Calorically perfect gas:

ˆ x2

x1

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



M2

M1

Niklas Andersson - Chalmers 122 / 142



One-Dimensional Flow with Friction

Calorically perfect gas and adiabatic flow:

T2

T1
=

T2

To2

To2
To1

To1
T1

= {To = const} =
T2

To

To

T1
=

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

Continuity:

ρ2
ρ1

=
u1

u2
=

a1M1

a2M2
=
{
a =

√
γRT

}
=

√
T1

T2

(
M1

M2

)
Perfect gas:

p2

p1
= {p = ρRT} =

ρ2T2
ρ1T1

Total pressure:

po2
po1

=
po2
p2

p2

p1

p1

po1
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One-Dimensional Flow with Friction

Calorically perfect gas:

T2

T1
=

2 + (γ − 1)M2
1

2 + (γ − 1)M2
2

p2

p1
=

M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]1/2

ρ2
ρ1

=
M1

M2

[
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

]−1/2

po2
po1

=
M1

M2

[
2 + (γ − 1)M2

2

2 + (γ − 1)M2
1

] γ+1
2(γ−1)
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One-Dimensional Flow with Friction

Initially subsonic flow (M1 < 1)

M2 will increase as L increases

for a critical length L∗, the flow at point 2 will reach sonic conditions, i.e. M2 = 1

Initially supersonic flow (M1 > 1)

M2 will decrease as L increases

for a critical length L∗, the flow at point 2 will reach sonic conditions, i.e. M2 = 1

Note! The (*) condition in this context is not the same as the ”critical” condition

discussed for isentropic flow
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One-Dimensional Flow with Friction

T

T∗ =
(γ + 1)

2 + (γ − 1)M2

p

p∗
=

1

M

[
γ + 1

2 + (γ − 1)M2

]1/2

ρ

ρ∗
=

1

M

[
2 + (γ − 1)M2

γ + 1

]1/2

po

p∗o
=

1

M

[
2 + (γ − 1)M2

γ + 1

] γ+1
2(γ−1)

see Table A.4
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One-Dimensional Flow with Friction

and

ˆ L∗

0

4f

D
dx =

− 1

γM2
− γ + 1

2γ
ln

 M2

1 +
γ − 1

2
M2



1

M

where L∗ is the tube length needed to change current state to sonic conditions

Let f̄ be the average friction coefficient over the length L∗ ⇒

4f̄ L∗

D
=

1−M2

γM2
+

γ + 1

2γ
ln
(

(γ + 1)M2

2 + (γ − 1)M2

)
Turbulent pipe flow→ f̄ ∼ 0.005 (Re > 10

5
, roughness∼ 0.001D)
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One-Dimensional Flow with Friction - Choking Length

Note!

Supersonic flow is much more prone to choke than subsonic flow

There is an upper limit for supersonic choking length L∗

4f̄ L∗

D
(M1)

∣∣∣∣
M1→∞

=
1

γ
+

(
γ + 1

2γ

)
ln
(
γ + 1

γ − 1

)

0 2 4 6 8 10

0

1

2

3

4

5

M

4f̄ L∗

D
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One-Dimensional Flow with Friction

H =
h

ho
=

CpT

CpTo
=

T

To
=

[
1 +

γ − 1

2
M2

]−1

∆S =
∆s

Cp

= ln

[(
1

H
− 1

) γ−1
2γ
(

2

γ − 1

) γ−1
2γ
(
γ + 1

2

) γ+1
2γ

(H)
γ+1
2γ

]
−1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

∆S

H

Fanno curve (γ = 1.4)

M < 1
M > 1
M = 1 (sonic point)
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One-Dimensional Flow with Friction

M < 1: Friction will

increase M

decrease p

decrease T

decrease po
increase s

increase u

decrease ρ

M > 1: Friction will

decrease M

increase p

increase T

decrease po
increase s

decrease u

increase ρ

Note! the flow is not isentropic, there will always be losses
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The Fanno-flow Process

Just like the Rayleigh flow, Fanno flow has continuous solutions

A small pipe section with length dx will change flow properties slightly

dx

u
p

T
ρ

M
s

u+ du
p+ dp
T + dT
ρ+ dρ
M + dM
s+ ds
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The Fanno-flow Process - Subsonic Flow

Note!

Pressure and temperature decreases when friction is added to a subsonic flow

s

T

isentrope

T = T∗

p = p1
p = p2
Fanno line
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The Fanno-flow Process - Subsonic Flow

Note!

The Fanno flow process is adiabatic ⇒ To is constant ⇒ po increases

s

T

isentrope

T = T∗

T = To
p = po1
p = po2
Fanno line
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The Fanno-flow Process - Choked Subsonic Flow

Note!

If the pipe length is increased such that L > L∗, the inlet static flow properties will

change (new massflow) such that the new L∗ is equal to the pipe length

Total flow properties at the inlet remains the same (only work or heat addition can

change the total flow properties)

T∗

s

T

1

1′

T1

T1′

To

p1

p1′

po

s

T
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The Fanno-flow Process - Choked Supersonic

Note!

Choked supersonic flow will lead to the formation of a shock inside the pipe (shock

location depends on flow conditions)

T∗

To
po1 poa pob po2

1
a

b

2

s

T

T = To
isentrope

isobar

T = T∗

Fanno line

normal shock

choked Fanno process
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The Fanno-flow Process - Choked Supersonic

Why does the normal shock change the choking condition for Fanno flow but

not for Rayleigh flow?

As for Rayleigh flow, To, T
∗, p∗, etc are not affected by the shock

The momentum equation is not the same as for normal shocks ⇒ the

Fanno-flow process does not operate along the same line as the normal-shock

process in pν-space
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The Fanno-flow Process - Choked Supersonic

Note!

An internal shock will always increase the choking length L∗

L∗1 = f(M1)

L∗2 = f(M2)
M2 = f(M1)

}
⇒ L∗2 = f(M1)

L∗2 − L∗1 = f(M1)

5 10 15 20

M1

4f̄ L∗1/D

4f̄ L∗2/D

4f̄(L∗2 − L∗1)/D
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Friction Choking vs Thermal Choking

Rayleigh flow: a shock does not affect T∗
o or To ⇒ q∗ will not change over the shock

Fanno flow: L∗ changes discontinuously over the shock ⇒
L∗ will always increase over a shock ⇒ possible to extend pipe for supersonic flow

0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1
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upstream of shock

downstream of shock

sonic point

ν/ν∗

p
/p

∗

Fanno flow with shock

T = T∗

Fanno process

shock

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1

1.5

2

inlet
upstream of shock

downstream of shock

sonic point

ν/ν∗

p
/
p
∗

Rayleigh flow with shock

T = T∗

Rayliegh process

shock
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Fanno-flow Trends
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One-Dimensional Flow with Friction - Pipeline
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
�

�

�

�

�

�

�

�
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