Compressible Flow - TME085

Chapter 2

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 2 - Integral Forms of the Conservation Equations for Inviscid Flows

Overview

Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 5 Explain how thermodynamic relations enter into the flow equations
- 7 **Explain** why entropy is important for flow discontinuities

equations, equations and more equations

Motivation

We need to formulate the basic form of the governing equations for compressible flow before we get to the applications

Integral Forms of the Conservation Equations

Conservation principles:

- 1. conservation of mass
- 2. conservation of momentum (Newton's second law)
- 3 conservation of energy (first law of thermodynamics)

Integral Forms of the Conservation Equations

Chapter 2.3 Continuity Equation

Continuity Equation

Conservation of mass:

 $\frac{d}{dt}\iiint \rho d\mathcal{V} + \oiint \rho \mathbf{v} \cdot \mathbf{n} dS = 0$

rate of change of total mass in $\boldsymbol{\Omega}$

net mass flow out from $\boldsymbol{\Omega}$

Note! notation in the text book $\mathbf{n} \cdot d\mathbf{S} = d\mathbf{S}$

Conservation of Mass

Chapter 2.4 Momentum Equation

Momentum Equation

Conservation of momentum:

Note! friction forces due to viscosity are not included here. To account for these forces, the term $-(\tau \cdot \mathbf{n})$ must be added to the surface integral term. The body force, *f*, is force per unit mass.

Newton

18/32

Chapter 2.5 Energy Equation

Conservation of energy:

is the total internal energy

The surface integral term may be rewritten as follows:

$$\oint_{\partial\Omega} \left[\rho \left(e + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) + \rho \mathbf{v} \cdot \mathbf{n} \right] dS$$

 \Leftrightarrow

$$\oint_{\partial\Omega} \left[\rho \left(e + \frac{\rho}{\rho} + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) \right] dS$$

 \Leftrightarrow

 $\oint_{\partial\Omega} \left[\rho \left(h + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) \right] d\mathbf{S}$

Niklas Andersson - Chalmers

Introducing total enthalpy

$$h_o = h + \frac{1}{2}v^2$$

$$\frac{d}{dt} \iiint_{\Omega} \rho e_0 d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_0 \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$
Niklas Andersson - Chalmers

Note 1: to include friction work on $\partial \Omega$, the energy equation is extended as

$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \oiint \rho_o \mathbf{v} \cdot \mathbf{n} - (\boldsymbol{\tau} \cdot \mathbf{n}) \cdot \mathbf{v}] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Note 2: to include heat transfer on $\partial \Omega$, the energy equation is further extended

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} - (\tau \cdot \mathbf{n}) \cdot \mathbf{v} + \mathbf{q} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

where ${\bf q}$ is the heat flux vector

Note 3: the force ${\bf f}$ inside Ω may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference

Note 4: there may be objects inside Ω which we choose to represent as sources of momentum and energy.

For example, there may be a solid object inside Ω which acts on the fluid with a force **F** and performs work \dot{W} on the fluid

Momentum equation:

$$\frac{d}{dt} \iiint \rho \mathbf{v} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint \rho \mathbf{f} d\mathcal{V} + \mathbf{F}$$

Energy equation:
$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_o \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V} + \dot{\mathcal{W}}$$

How can we use control volume formulations of conservation laws?

Let $\Omega \rightarrow 0$: In the limit of vanishing volume the control volume formulations give the **P**artial **D**ifferential **E**quations (**PDE**:s) for mass, momentum and energy conservation (see Chapter 6)

Apply in a "smart" way \Rightarrow Analysis tool for many practical problems involving compressible flow (see Chapter 2, Section 2.8)

Example: Steady-state adiabatic inviscid flow

Conservation of mass:

$$\underbrace{\frac{d}{dt}\iiint \rho d\mathcal{V}}_{=0} + \underbrace{\bigoplus}_{\partial\Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

Conservation of energy:

$$\underbrace{\frac{d}{dt} \iiint \rho e_o d \mathscr{V}}_{= 0} + \underbrace{\bigoplus}_{\partial \Omega} [\rho h_o \mathbf{v} \cdot \mathbf{n}] dS = 0}_{-\rho_1 h_{o_1} v_1 A_1 + \rho_2 h_{o_2} v_2 A_2}$$

Conservation of mass:

 $\rho_1 \mathsf{v}_1 \mathsf{A}_1 = \rho_2 \mathsf{v}_2 \mathsf{A}_2$

Conservation of energy:

 $\rho_1 h_{o_1} v_1 A_1 = \rho_2 h_{o_2} v_2 A_2$

 \Leftrightarrow

 $h_{o_1} = h_{o_2}$

Total enthalpy h_o is conserved along streamlines in steady-state adiabatic inviscid flow

$$\begin{split} E &= K_{0}t + \frac{1}{2}\rho v t^{2} \quad K_{n} = \sum_{i=1}^{\infty} \sum_{m=0}^{\infty} (n-\pi)(i + e^{\pi-\infty}) & \frac{\partial}{\partial t} \nabla \cdot \rho = \frac{\partial}{\partial s} \oiint \rho ds dt \cdot \rho \frac{\partial}{\partial v} \\ \text{ALL KINEMATICS} & \text{ALL NUMBER} & \text{ALL FLUID DYNAMICS} \\ \text{EQUATIONS} & \text{THEORY EQUATIONS} & \text{EQUATIONS} \\ \end{bmatrix} \\ \begin{split} & \{W_{i,g}\} &= A(\Psi) A(|X > \otimes |y) \\ \text{ALL QUANTUM} & \text{ALL CHEMISTRY} \\ \text{ALL QUANTUM} & \text{ALL CHEMISTRY} \\ \text{MECHANICS EQUATIONS} & \text{CH}_{4} + OH + HEAT \longrightarrow H_{2}O + (H_{2} + H_{2}EAT \\ \text{ALL QUANTUM} & \text{ALL CHEMISTRY} \\ \text{EQUATIONS} & \text{EQUATIONS} \\ \end{split} \\ \begin{aligned} & SU(2) U(1) \times SU(U(2)) \\ \text{ALL QUANTUM} \\ \text{GRAVITY EQUATIONS} & ALL GAUGE THEORY \\ \text{EQUATIONS} \\ H(t) + \Omega + G \cdot \Lambda \dots \begin{cases} \dots > 0 \\ \dots < 0 \end{cases} (\text{HUBBLE MODEL}) \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{cases} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{array} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots < 0 \end{array} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ (HOBBLE MODEL) \\ \dots & H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \end{pmatrix} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \dots \\ H(t) + \Omega + G \cdot \Lambda \end{pmatrix} \\ \begin{array}{c} H(t) + \Omega + G \cdot \Lambda \dots$$