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Part I - Theory Questions (20 p.)

T1. (3.0 p.) Shocks:

(a) (0.5 p.) The oblique shock generated by a two-dimensional wedge in a supersonic
steady-state flow can be either of the weak type or the strong type. What is the
main difference between these two shock types and which type is usually seen in
reality?

(b) (0.5 p.) Are the normal-shock relations mathematically and physically valid for
upstream Mach numbers lower than one? Justify your answer.

(c) (0.5 p.) Describe what happens when a moving normal shock hits a solid wall.

(d) (0.5 p.) In steady-state 2D supersonic flow there are two types of shock reflection
at solid walls. Name these two reflection types and describe the difference between
them.

(e) (1.0 p.) What are the constraints that leads to the generation of the separating line
between regions 4 and 5 (represented by a green line in the figure below)? What is
the reason for the need for this separating line?
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T2. (1.0 p.) What are the implications of the area-velocity relation for quasi-one-dimensional
flow?

T3. (2.0 p.) Governing equations:

(a) (1.0 p.) What is the physical interpretation of each of the terms in the momentum
equation on integral form

(b) (1.0 p.) How can the substantial derivative operator be interpreted physically?

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn] dS =
y

Ω

ρfdV

T4. (3.0 p.) Gas models

(a) (0.5 p.) What do we mean by thermally perfect gas and calorically perfect gas
respectively?

(b) (0.5 p.) In what temperature range (approximately) can a gas be assumed to be
calorically perfect?

(c) (1.0 p.) Explain what the Boltzmann distribution describes and what sparsely
populated implies.

(d) (1.0 p.) Using equilibrium gas assumption in the analysis of chemically reacting
nozzle flow will lead to higher exhaust temperatures than if calorically perfect gas
assumption is used for the same analysis. Explain why.



T5. (2.0 p.) Unsteady waves:

(a) (1.0 p.) What types of waves or discontinuities are generated in a shock tube with
two initially stagnant regions at different pressure (separated by a thin membrane
which is removed very quickly)?

(b) (1.0 p.) How are the two characteristic curves C+ and C− defined?

T6. (2.0 p.) Compressible CFD:

(a) (0.5 p.) What is meant by the term density-base when discussing CFD codes for
compressible flow?

(b) (0.5 p.) When the governing equations are discretized using a finite-volume ap-
proach, cell face values of flow properties appears in the equations. How are these
values approximated?

(c) (1.0 p.) What do we mean when we say that a CFD code for compressible flow is
conservative?

T7. (1.0 p.) Heat addition:

(a) (0.5 p.) What is the Rayleigh curve and what does it tell us?

(b) (0.5 p.) What happens in the flow when heat is added if the flow is initially supersonic
and subsonic, respectively

T8. (2.0 p.) For a steady-state isentropic flow of a calorically perfect gas, derive the
formula for T0/T , making use of the fact that the total enthalpy h0 is constant along the
streamlines.
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T9. (2.0 p.) Derive the isentropic relations for calorically perfect gases starting from the
entropy equation.



T10. (2.0 p.) For each of the cases a-c below, make a schematic representation showing how the
pressure varies from station 1 to 4 (following the flow over the upper side of each ”wing”).
Any sudden changes in pressure has to be motivated.

M1

(a)

symmetric diamond-wedge airfoil (zero angle of attack)
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(b)

double circular arc airfoil (zero angle of attack)
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(c)

flat plate at an angle of attack

1 2 4



Part II - Problems (40 p.)

Problem 1 - PIPE FLOW WITH FRICTION (10 p.)

Air flows through a 20-cm-diameter pipe with an average Darcy friction factor of 0.005. At the
pipe entrance the Mach number is 2.0, the static pressure is 101325 Pa, and the temperature is
288 K.

(a) What is the maximum possible pipe length without generation of shocks in the pipe?
Calculate the pressure and temperature at the exit for this pipe length.

(b) What is the maximum possible pipe length without changing the mass flow through the
pipe? Calculate the pressure and temperature at the exit for this pipe length.

(c) What is the difference in total pressure at the pipe exit for the two cases above?

Problem 2 - NOZZLE FLOW (10 p.)

Air flows through a convergent-divergent nozzle with exit-to-throat area ratio of 4.0. The total
pressure upstream of the nozzle is 3.0 bar and the total temperature is 300 K.

Calculate:

(a) The exit Mach numbers corresponding to:

1. choked flow (subsonic flow in divergent part of the nozzle)

2. supercritical nozzle flow (perfectly matched supersonic flow)

(b) The nozzle pressure ratios (NPR) ranges corresponding to

1. subsonic nozzle flow

2. nozzle flow with internal shock in the divergent section

3. overexpanded nozzle flow

4. underexpanded nozzle flow

(c) The flow deflection angle downstream of the oblique shock generated at the nozzle exit
for a nozzle pressure ratio (NPR) of 15.0

Problem 3 - MOVING SHOCK WAVE (10 p.)

An explosion generates a moving shock wave behind which the induced flow reaches a velocity
of 180.0 m/s. The shock wave moves into stagnant air at 101325 Pa and 288 K.

Calculate:

(a) The velocity with which the shock wave moves into the stagnant gas

(b) The Mach number of the induced flow behind the shock wave

(c) The total temperature behind the shock wave



Problem 4 - ISENTROPIC FLOW COMPRESSION PROCESSES (10 p.)
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A gradual compression (top right figure above) may be analyzed using theory based on isen-
tropic flow processes (in the same way as flow expansion is analyzed). Close to the wall where
compression is built up from a large number of isolated Mach waves this approach is correct.
In contrast to an expansion where the Mach waves becomes more and more separated with
increasing wall distance (see figure above), the distance of the isolated Mach waves in a grad-
ual compression will be shorter and shorter with increasing wall distance and eventually they
will coalesce into a single oblique shock (top right figure). In the outer region of the gradual
compression region, the interaction between Mach waves is significant and it becomes less and
less accurate to use theory based on isentropic processes.

(a) Calculate the Mach number, temperature, and pressure downstream of a gradual compres-
sion that gives a total change in flow direction of 20◦ assuming that the compression can
be considered to be isentropic. The Mach number upstream of the compression is 3.0 and
the pressure and temperature in the upstream flow are 1.0 bar and 300 K, respectively.

(b) For oblique shocks (top left figure above) associated with very small flow deflection an-
gles, one almost gets the correct results if analyzing the shock using isentropic theory
instead of the oblique shock relations since such shocks are rather weak and consequently
the deviation from constant total pressure is close to insignificant. In literature on gas
dynamics, one may find that oblique shocks with a relative total pressure loss of less than
0.5% may be approximated to be isentropic. Surprisingly, the criteria of maximum 0.5%
relative total pressure loss is fulfilled for flow deflection angles up to almost 5.0 degrees for
the upstream flow conditions used in the previous task. Verify by calculating the relative
total pressure loss for a 5.0-degree flow deflection as follows:

po1 − po2
po1

where indices 1 and 2 denotes flow stations upstream of the shock and downstream of the
shock, respectively.




















