
TME085 - Compressible Flow
2019-03-21, 08.30-13.30

Approved aids:

• TME085 Compressible Flow - Formulas, tables and graphs (provided with exam)

• Beta - Mathematics Handbook for Science and Engineering

• Optional calculator/Valfri miniräknare (graph drawing calculators with cleared memory
allowed)

Grading:

number of points on exam 24-35 36-47 48-60
grade 3 4 5

Note that at least 6 points needs to be in the theoretical part (Part I) and at least 10
points in the problem part (Part II)



Part I - Theory Questions (20 p.)

T1. (2 p.)

(a) High temperature effects in compressible flows are found when analyzing for exam-
ple very strong shocks or nozzle flows with extremely high total pressure and total
enthalpy. What is the root cause of these effects and what do we mean by equilib-
rium gas? What kind of thermodynamic relations are needed to compute the flow of
equilibrium gas?

(b) What is the difference between a calorically perfect gas and a thermally perfect gas?

T2. (2 p.)

(a) What simplifications are made when analyzing a convergent-divergent nozzle flow
using a quasi-1D approach?

(b) What are the main limitations of such an analys?

(c) What is meant by an under-expanded or over-expanded nozzle flow?

T3. (2 p.)
Derive the area-velocity relation in quasi-1D flow starting from the mass conservation
relation

d(ρuA) = 0.,

Euler’s equation

dp = −ρudu,

and the definition of the speed of sound

a2 =

(
∂p

∂ρ

)
s

What are the implications of the area-velocity relation for quasi-one-dimensional flow?

T4. (2 p.)

(a) When applying a time-marching flow solution scheme the so-called CFL number is an
important parameter. Define the CFL number and describe its significance. What
is a typical maximum CFL number for an explicit time stepping scheme.

(b) What is meant by the terms “density-based” and “fully coupled” when discussing
CFD codes for compressible flow?

T5. (2 p.)

(a) What is it meant by choking the flow in a nozzle? Describe it.

(b) How does the absolute Mach number change after a weak and a strong stationary
oblique shock, respectively?



T6. (2 p.)

(a) In one-dimensional flow with heat addition, what is q∗?

(b) What happens in the flow when heat is added if the flow is initially supersonic and
subsonic, respectively

(c) Describe how adding and/or removing heat from a one-dimensional flow in theory
could be used to resemble the flow in a convergent-divergent nozzle

T7. (2 p.)
Prove, by using one of the non-conservation forms of the energy equation, that for steady-
state, adiabatic flow with no body forces the total enthalpy is preserved along stream-lines.

T8. (4 p.)

(a) Derive Crocco’s relation starting from the momentum equation and the energy equa-
tion (the first and second law of thermodynamics)

(b) Describe in words the significance of Crocco’s equation

(c) Prove that a steady-state irrotational flow with constant total enthalpy must also be
isentropic

(d) What does Crocco’s relation say about the flow behind a curved shock

T9. (1 p.)
Describe in words how a finite-volume spatial discretization can be achieved.

T10. (1 p.)
How can we use our knowledge of characteristics (and their speed of propagation) to guide
us when determining suitable boundary conditions for compressible flows?



Part II - Problems (40 p.)

Problem 1 - NOZZLE FLOW (10 p.)

In a rocket propulsion system, a convergent divergent nozzle with area ratio 3.0 is used for the
expansion of a compound gas from a combustion chamber. In the plenum chamber upstream
of the nozzle, the gas mixture has a temperature of 2500.0 K and the pressure is 20.0 bar. The
gas mixture can be approximated as a single species gas with a molar mass of 33.5 kg/kmol and
ratio of specific heats γ = 1.2. Although not appropriate, assume that the gas can be considered
to be calorically perfect.

• Why is the calorically perfect gas assumption not appropriate? What would be a better
alternative? (1p)

• Assuming that the expansion process is isentropic all the way through the divergent part
of the nozzle, estimate the momentum thrust ṁVe,where Ve is the exhaust velocity, i.e.
the velocity at the nozzle exit plane. The nozzle throat diameter is 40.0 cm. (9p)

Solution:

Given:

Area ratio = 3.0

Nozzle throat diameter Dth=0.4 m

Gas mixture properties:
molar mass 33.5 kg/kmol ⇒ R = Runiv/33.5 = 248J/(kgK), γ=1.2

Plenum conditions: Temperature 2500.0 K, Pressure 20.0 bar

P1a.

The given temperature (2500.0 K) is way over the range where calorically perfect gas is appli-
cable. The temperature is even over the range where thermally perfect gas can be used. Using
calorically perfect gas means that neither vibrational energy modes nor chemical reactions will
be taken into account and that is probably important for an accurate prediction of temperature
which means that equilibrium gas would be a better model (depending on the rate of chemical
reactions in relations to flow time scales other models could be even better)

P1b.

Assume choked nozzle flow, i.e. supersonic flow in the divergent part, since it is stated that
the flow is isentropic all the way through the divergent section. To be able to calculate the
momentum thrust, we need to calculate the mass flow and the exit velocity.



ṁ =
PoA

∗
√
To

√
γ

R

(
2

γ + 1

)(γ+1)/(γ−1)

(5.21)

which gives ṁ = 206.9 kg/s.

Now, lets try to calculate the exit velocity. Since the flow is isentropic, we can use the Area-
Mach-number relation to get the exit Mach number. The exit Mach number together with the
total temperature and gives us the temperature and thus the speed of sound and with that it
should be possible to get the flow velocity at the exit.

AR(M)2 =

(
A

A∗

)2

=
1

M2

(
2

γ + 1

(
1 +

γ − 1

2
M2

))(γ+1)/(γ−1)

(5.20)

Since the gas is not air we can not use the tabulated values and thus we need to do some number
crunching. We now what the area ratio is at the exit and thus we can solve the equation by
trail end error. I will use Newton-Raphson to solve the problem in order to get a more accurate
result but that is not needed.

f(Mn) = 3.0−AR(Mn)

f ′(Mn) =
f(Mn +∆M)− f(Mn −∆M)

2∆M

where ∆M is a small number ∆M ≪ M

Mn+1 = Mn − f(Mn)

f ′(Mn)

iterate until f(M) converges to zero

iteration Me A/A∗ f(Me) f ′(Me)

1 2.0 1.8837 1.1163 -2.0183
2 2.5531 3.6651 -0.66506 -4.7957
3 2.4144 3.0661 -0.066078 -3.8744
4 2.3974 3.0009 -0.00086289 -3.7736
5 2.3971 3 -1.525e-07 -3.7723

The exit temperature can now be calculated using

To

T
=

(
1 +

γ − 1

2
M2

)
(3.28)

which gives Te=1587.7 K

ae =
√
γRTe

Ve = aeMe = 1648.3 m/s



And finally, the momentum thrust ṁVe=0.34 MN

Problem 2 - ENGINE INTAKE (10 p.)

A supersonic flow enters an engine intake schematically represented in the figure below. Since
the deflection angle of the upper wall is different from that of the lower wall, a slip line will
form at the intersection of the oblique shocks. Calculate the slip line angle δ. The free stream
Mach number, M∞, is 2.0, the deflection angle of the upper wall is θu = 10◦ and the lower wall
deflection angle is θl = 5◦. The flow can be assumed to be two dimensional.

a Why is there a need for the formation of a slip line at the shock intersection point (1p)

b Calculate the slip line angle δ (9p)
Note: you would most likely need to solve this problem iteratively

δM∞

θl

θu

Solution:

Given:

Free stream Mach number M∞=2.0

Lower wall deflection angle θu=5◦

Upper wall deflection angle θu=10◦

P2a.

The fact that the deflection angles of the upper and lower wall are different means that the
angles of the oblique shocks will differ according to the θ-β-Mach relation. This further implies
that the strength of the shocks will differ and thus the entropy generation. Furthermore, the
Mach number behind the shock will be different and thus the strength and angle of the oblique
shock that follows (the shock that turns the flow back again). The deflection angles defining the
second upper and lower shocks will make the flow direction and pressure equal in the upper and
lower flow path and a slip line will form between the two regions. Over a slip line the pressure
and flow direction must be the same all other flow quantities may change discontinuously. To
summarize, the reason for the formation of the slip line is the fact that fluid particles moving
through different shock systems will have different history and it is usually not possible to find



two different shock systems that will generate the exact same downstream flow state. The slip
line reduces the requirement on the the downstream flow significantly and is nature’s elegant
way of solving this problem.

P2b.

Calculate the slip line angle δ

Defining flow regions 1-4 according to the figure below

δM∞

θl = θ1

θu = θ2

1

2

3

4

Start by calculating the conditions downstream of the first two shocks using the θ-β-Mach
relation and the normal shock relations

tan θ = 2 cotβ

(
M2

1 sin
2 β − 1

M2
1 (γ + cos 2β) + 2

)
(4.17)

or in this case

tan θ1 = 2 cotβ1

(
M2

∞ sin2 β1 − 1

M2
∞(γ + cos 2β1) + 2

)

and

tan θ2 = 2 cotβ2

(
M2

∞ sin2 β2 − 1

M2
∞(γ + cos 2β2) + 2

)

These equations are rather difficult to solve so the preferred alternative is to use the graphical
representation provided with the exam, which gives β1 ≃ 34.3◦ and β2 ≃ 39.4◦

Now, we will use the angles β1 and β2 and the oblique shock relations to get the flow properties
in regions 1 and 2, respectively.

Mn1 = M1 sinβ (4.7)



M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1

− 1
(4.10)

M2 =
Mn2

sin(β − θ)
(4.12)

p2
p1

= 1 +
2γ

γ + 1

(
M2

n1
− 1

)
(4.9)

Region 1

Mn11 = M∞ sinβ1

M2
n12

=
M2

n11
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n11

− 1

M1 =
Mn12

sin(β1 − θ1)
= 1.8233

p1
p∞

= 1 +
2γ

γ + 1

(
M2

n11
− 1

)
= 1.3139

Region 2

Mn21 = M∞ sinβ2

M2
n22

=
M2

n21
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n21

− 1

M2 =
Mn22

sin(β2 − θ2)
= 1.6374

p2
p∞

= 1 +
2γ

γ + 1

(
M2

n21
− 1

)
= 1.7097



Iteration algorithm

With regions 1 and 2 defined, we will now go finding the flow state in regions 3 and 4. This
part of the solution needs to be done iteratively since there is no straight forward method for
solving this problem. The requirement is that after the second set of oblique shocks the flow
direction and pressure must be equal in regions 3 and 4.

The algorithm will be as follows:

guess a value of θ3, the flow deflection of the second oblique shock in the lower flow path. The
angle of the slip line (and the direction of the flow) is then given by

δ = θ3 − θ1

The upper flow path must follow the same direction, which implies

θ4 = θ2 − δ

The θ-β-Mach together with the flow deflection angles θ3 and θ4 gives us the oblique shock
angles β3 and β4

tan θ3 = 2 cotβ3

(
M2

1 sin
2 β3 − 1

M2
1 (γ + cos 2β3) + 2

)

and

tan θ4 = 2 cotβ4

(
M2

2 sin
2 β4 − 1

M2
2 (γ + cos 2β4) + 2

)

with values for the shock wave angles β3 and β4, we can use the oblique shock relations to the
the pressure downstream of the two shock systems as

Mn31 = M1 sinβ3

p3
p∞

=
p3
p1

p1
p∞

=
p1
p∞

[
1 +

2γ

γ + 1

(
M2

n31
− 1

)]

Mn41 = M2 sinβ4



p4
p∞

=
p4
p2

p2
p∞

=
p4
p∞

[
1 +

2γ

γ + 1

(
M2

n41
− 1

)]

when

p3
p∞

=
p4
p∞

we have found the solution to the problem!

Iteration 1: as a start guess I use δ=0

θ3 = 5.0◦

δ = θ3 − θ1 = 0.0

θ4 = θ2 − δ = 10.0◦

The oblique shock relations gives:

p3
p∞

= 1.7041

p4
p∞

= 2.8119

The pressure is higher in the upper flow path, which indicates that the flow should be deflected
downwards



Iteration 2: deflect the flow downwards

θ3 = 8.0◦

δ = θ3 − θ1 = 3.0

θ4 = θ2 − δ = 7.0◦

The oblique shock relations gives:

p3
p∞

= 1.9765

p4
p∞

= 2.4138

This is an improvement but the pressure is still higher in the upper flow path, which indicates
that the flow should be deflected downwards even more

Iteration 3: deflect the flow downwards even more

θ3 = 10.0◦

δ = θ3 − θ1 = 5.0

θ4 = θ2 − δ = 5.0◦

The oblique shock relations gives:

p3
p∞

= 2.1853

p4
p∞

= 2.1914



Now we are getting close. The pressure is still slightly higher in the upper flow path, which
indicates that the flow should be deflected downwards a little bit more. Let’s do some fine
tuning ...

Iteration 4: deflect the flow downwards a little bit more

θ3 = 10.0098◦

δ = θ3 − θ1 = 5.0098

θ4 = θ2 − δ = 4.9902◦

The oblique shock relations gives:

p3
p∞

= 2.1944

p4
p∞

= 2.1924

This is getting ridiculous! I will stop here. The angle of the slip line is slightly more than 5.0◦



Problem 3 - WALL FRICTION (10 p.)

A tube is connected to reservoir containing air at 101.35 kPa and 300.0 K via a frictionless
bell-mouth entrance. The tube is 3.0 m long and has a diameter of 5.0 cm. The average friction
coefficient, f̄ , is 0.005. The tube is perfectly insulated.

(a) Calculate the maximum mass flow through the pipe (3p)

(b) What back pressure will result in a mass flow that is 90% of the maximum mass flow (5p)

(c) What is the exit velocity when the mass flow is 90% of the maximum mass flow (2p)

Solution:

Given:

Reservoir conditions: pr=101.35 kPa, Tr 300.0 K

Tube dimensions: L=3.0 m, D= 5.0e−2 m

Tube friction coefficient: f̄=0.005

The connection between the tube and the reservoir is friction free bell mouth ⇒ To = Tr

and po = Pr

P3a.

We will get the maximum mass flow when the flow is choked, which implies L∗ = L.

ṁmax = ρ∗u∗A = ρ∗a∗
πD2

4

We need to get values for ρ∗ and a∗

4f̄L∗

D
= 1.2

interpolating in Table A.4 between 4f̄L∗/D=1.06906 and 4f̄L∗/D=1.24534 gives

M1 0.48514

T1/T
∗ 1.1459

p1/p
∗ 2.2074



With the Mach number at the inlet of the tube, we can get the inlet temperature and pressure

To

T1
=

(
1 +

γ − 1

2
M2

1

)
(3.28)

po
p1

=

(
1 +

γ − 1

2
M2

1

)γ/(γ−1)

(3.30)

We can now calculate p∗ and T ∗ as

T ∗ =
T ∗

T1
T1

p∗ =
p∗

p1
p1

T1 286.513 K

p1 86.2789 kPa

T ∗ 250.0255 K

p∗ 39.0868 kPa

Now, using the ideal gas law and the relation between temperature and speed of sound for
calorically perfect gases gives

ρ∗ =
p∗

RT ∗

a∗ =
√

γRT ∗

The maximum mass flow is now obtained as

ṁmax = ρ∗a∗
πD2

4
= 0.34 kg/s



P3b.

In order calculate the exit pressure that results in a mass flow that is 90% of, the previously
calculated, ṁmax, we first need to obtain the corresponding inlet conditions
using the ideal gas law and the relation between temperature and speed of sound for calorically
perfect gases we get

ṁ = ρ1u1A

ṁ =
p1
RT1

M1a1A

ṁ =
p1
RT1

M1

√
γRT1A

ṁ =
p1√
T1

M1

√
γ

R
A

ṁ =
p1
po

√
To

T1
M1Po

√
γ

RTo
A

Both po/p1 and To/T1 are functions of M1 and this expression above can be solved using a trial
and error approach or, as here, a Newton-Raphson solver

f(Mn) = 0.9 ∗ ṁmax − ṁ(Mn)

f ′(Mn) =
f(Mn +∆M)− f(Mn −∆M)

2∆M

where ∆M is a small number ∆M ≪ M

Mn+1 = Mn − f(Mn)

f ′(Mn)

iterate until f(M) converges to zero



iteration M1 ṁ f(M1) f ′(M1)

1 0.48514 0.33912 -0.034028 -0.51046
2 0.41848 0.30286 0.002235 -0.57676
3 0.42236 0.30509 7.2066e-06 -0.57304
4 0.42237 0.30509 7.3629e-11 -0.57303

Interpolate in Table A.4 between M1=0.42 and M1=0.44 and using the total condition relations

To

T1
=

(
1 +

γ − 1

2
M2

1

)
(3.28)

po
p1

=

(
1 +

γ − 1

2
M2

1

)γ/(γ−1)

(3.30)

and the ideal gas and relation between temperature and speed of sound for calorically perfect
gases gives

L∗ 4.8521 m

T1/T
∗ 1.1587

p1/p
∗ 2.5491

T1 289.6649 K

p1 89.6468 kPa

T ∗ 250.0011 K

p∗ 35.1682 kPa

ρ∗ 0.49015 kg/m3

a∗ 316.9391 m/s

At the end of the tube (L=3.0 m), L∗
2 = L∗ − L=1.8521 m, which gives

4f̄L∗
2

D
= 0.7408

interpolating in Table A.4 between 4f̄L∗/D=0.673571 and 4f̄L∗/D=0.786625 gives

M2 0.5481

T2/T
∗ 1.132

p2/p
∗ 2.5368

The starred quantities are constants which means that the exit conditions can now be obtained

T2 282.9938 K
p2 89.2153 kPa



P3c.

The exit velocity is simply calculated as u2 = M2a2

a2 =
√
γRT2 = 337.2046 m/s

and thus u2=184.8 m/s

Problem 4 - SHOCK TUBE (10 p.)

A shock tube is classic application of compressible flow where two gases are initially separated
by a diaphragm (see figure below). The gas in the chamber to the left of the diaphragm (the
driver section) is higher than the pressure in the chamber to the right (the driven section).
The gases can also differ in terms of molecular weight and temperature. As the diaphragm is
removed a series of events is initiated. A right-running shock wave and a left-running expansion
region is generated. A contact surface separates the part of the fluid in the driven section that
has been passed by the incident shock wave (region 2) and the fluid in the driver section that
has been passed by the expansion wave (region 3).

In the following, let’s assume that both the driver gas and the driven gas is air (i.e. γ4 =
γ1 = γ = 1.4). Initially, before the diaphragm breaks, the pressure and temperature in the
driven section, p1 and T1, are 1.0 bar and 293.0 K, respectively, and the pressure in the driver
section, p4, is 10.0 bar.

(a) The tail of the left-running expansion region (the boundary to region 3) can, although
the expansion region is a left-running wave, travel to the right (as indicated in the figure
below) - explain why (1p)

(b) Under specific circumstances the tail of the expansion wave stands still in the shock tube.
For that specific condition, calculate the Mach number of the incident shock wave, Ms,
and the induced velocity behind it, up (9p)



reflected expansion fan

incident shock wave

reflected shock wave

contact surface
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Solution:

Given:

Initial conditions

driver section: p4=10.0 bar

driven section: p1=1.0 bar, T1=293.0 K

Gas properties: both chambers are filled with air γ1=γ4=γ=1.4

P4a.

The expansion region is a left-running wave and the tail of the region (the ”border” to region
3) propagates to the left with the speed a3 − u3. The flow velocity in region 3 is the same
as the flow velocity in region 2 since there can not be a discontinuity in flow velocity over the
contact discontinuity surface, which means that the flow velocity in region 3 equals the induced
velocity behind the incident shock up. This means that if the induced velocity up exceeds speed
of sound in region 3, the tail of the expansion region will propagate to the right although it is
a left-running wave.

P4b.

If the tail of the expansion region is standing still that implies that the induced velocity up =
u2 = u3 equals the speed of sound in region 3 (a3).
Start by examine one of the relations for the expansion region

T

T4
=

[
1− 1

2
(γ − 1)

u

a4

]2
(7.85)



Evaluated at the tail of the expansion region 7.85 becomes

T3

T4
=

[
1− 1

2
(γ − 1)

u3
a4

]2

but u3 = a3 which gives

T3

T4
=

[
1− 1

2
(γ − 1)

a3
a4

]2

with a3 =
√
γRT3 and a4 =

√
γRT4, we get

T3

T4
=

[
1− 1

2
(γ − 1)

√
T3

T4

]2

√
T3

T4
= 1− 1

2
(γ − 1)

√
T3

T4

(1 +
1

2
(γ − 1))

√
T3

T4
= 1

√
T3

T4
= (1 +

1

2
(γ − 1))−1

T3

T4
= (1 +

1

2
(γ − 1))−2

The expansion process is isentropic which means that we can use the isentropic relations and thus

p3
p4

= (1 +
1

2
(γ − 1))−2γ/(γ−1)

There is no change in pressure over the contact discontinuity which means that p3 = p2 and
thus



p2
p4

= (1 +
1

2
(γ − 1))−2γ/(γ−1)

p2 = p4(1 +
1

2
(γ − 1))−2γ/(γ−1)

In order to be able to calculate the induced Mach number we need the pressure ration over the
moving shock p2/p1. p1 is known and thus we can divide the the expression above to get the
pressure ratio

p2
p1

=
p4
p1

(1 +
1

2
(γ − 1))−2γ/(γ−1)

With the pressure ratio p2/p1 obtained we can now finally calculate the Mach number of the
incident shock wave using the following relation:

Ms =

√
γ + 1

2γ

(
p2
p1

− 1

)
+ 1 (7.13)

which gives Ms = 1.6

The induced velocity is calculated as:

up =
a1
γ

(
p2
p1

− 1

)[
2γ
γ+1

p2
p1

+ γ−1
γ+1

]1/2

(7.16)

with a1 =
√
γRT1 it is possible to calculate the induced velocity.

The Mach number of the induced flow M2 = 0.68

The induced velocity up = 275.7 m/s


