TMEOS85 - Compressible Flow
2018-08-22, 08.30-13.30, M-building

Approved aids:

e TMEO085 Compressible Flow - Formulas, tables and graphs (provided with exam)

e Beta - Mathematics Handbook for Science and Engineering

e Optional calculator/Valfri minirdknare (graph drawing calculators with cleared memory

allowed)

Grading;:

number of points on exam 24-35 36-47 48-60

grade 3 4 5

Note that at least 6 points needs to be in the theoretical part (Part I) and at least 10
points in the problem part (Part II)




Part I - Theory Questions (20 p.)

T1.

T2.

T3.

T4.

Ts.

T6.

T7.

(2p.)
(a) What is the general definition (valid for any gas) of the “total” conditions py, Tp,
p0,--- etc at some location in the flow?

(b) For a steady-state adiabatic compressible flow of calorically perfect gas, which of
the variables py (total pressure) and Ty (total temperature) is/are constant along
streamlines? Why?

(1p.)
Derive the relation

1
47:1+§W—1MF

for calorically perfect gas from the energy equation form
1
ho = h + QVQ.

(1p.)

In shock tubes, unsteady contact discontinuities are sometimes found. Describe in words
what they are and under which circumstances they may be formed. Which of the variables
p, T, p, u, s is/are necessarily continuous across such a contact discontinuity?

(1p.)

A stationary normal shock with upstream Mach number M; (M; > 1) is compared to a
moving normal shock, traveling with Mach number Mg into quiescent (non-moving) air.
If My = Mg, is there any physical difference between the two shock waves apart from the
fact that they have different speeds relative to the observer?

(2p.)
What is the difference between a calorically perfect gas and a thermally perfect gas? For
what conditions are the two gas models applicable?

1p.
(ASSuzne a steady-state 1D flow with a stationary normal shock. The fluid particles crossing
the shock are subjected to
a pressure drop
a density increase
an entropy increase
a temperature drop

(e) a deceleration

Which statements are true and which are false?

(2p)
Assume a steady-state flow in a convergent-divergent nozzle. Describe what characterizes
the following operating conditions:

(a) Sub-critical nozzle flow

(b) Over-expanded nozzle flow

(c¢) Under-expanded nozzle flow



T8.

T9.

T10.

T11.

T12.

T13.

(Ip.)
In steady-state 2D supersonic flow there are two types of shock reflection at solid walls.
Name these two reflection types and describe the difference between them.

(2p.)
Derive the area-velocity relation in quasi-1D flow starting from the mass conservation
relation

d(pud) = 0.,

Euler’s equation

dp = —pudu,

and the definition of the speed of sound
- (3)
op)

What are the implications of the area-velocity relation for quasi-one-dimensional flow?

(2 p.)

(a) When applying a time-marching flow solution scheme the so-called CFL number is an
important parameter. Define the CFL number and describe its significance. What
is a typical maximum CFL number for an explicit time stepping scheme.

(b) What is meant by the terms “density-based” and “fully coupled” when discussing
CFD codes for compressible flow?

(2 p.)
(a) What is it meant by choking the flow in a nozzle? Describe it.

(b) How does the absolute Mach number change after a weak and a strong stationary
oblique shock, repectively?

(2p.)
Prove, by using one of the non-conservation forms of the energy equation, that for steady-
state, adiabatic flow with no body forces the total enthalpy is preserved along stream-lines.

(1p.)
How can we use our knowledge of characteristics (and their speed of propagation) to guide
us when determining suitable boundary conditions for compressible flows?



Part II - Problems (40 p.)

Problem 1 - Ramjet engine (10 p.)

An engineer wants to build and test a very simple ramjet engine for supersonic propulsion. The
engine consists of a cylindrical inlet section; followed by a cylindrical heater section, and finally
an axisymmetric diverging nozzle (see Figure below). The design speed is Mach 2.5 at sea level.
The inlet is designed for ’straight inflow’, i.e. the flow should go straight into the inlet without
any change of direction or velocity. Inside the inlet section a stationary normal shock will be
positioned, in order to decelerate the flow to subsonic conditions at station 2. In the heater
section heat is added (by combustion) in order to achieve sonic conditions at station 3. In the
expansion section the flow is further accelerated (due to the increasing duct area) to supersonic
speeds. The expansion is designed to achieve pressure matching at the nozzle exit (station 4),
i.e. that the exit pressure equals the ambient pressure. The ambient pressure and temperature
are assumed to be 1.0 bar and 288 K respectively. The tube diameter in the inlet and heater
sections is 10 cm.

(a) In order to be able to solve the problem, some simplifications needs to be made. List the
simplifications that you make and justify them.

Calculate:

(b) the inflow velocity u; and the mass flow through the engine

)
(c) the exit velocity ug
(d) the heating power needed for the engine operation
)

(e) the net thrust of the engine - draw some conclusions about the practical application of
the engine

/

® e ® ®

\

Intake section Heater section Expansion section
with stationary with supersonic
normal shock flow



Problem 2 - Convergent-Divergent Nozzle (10 p.)

A converging-diverging nozzle with an exit to throat area ratio, A./A;, of 1.633, is designed
to operate with atmospheric pressure at the exit plane, p. = petm. The converging-diverging
nozzle area, A, varies with position, x, as:

B CRDIC RN

(a) Determine the range(s) of pressure ratios (p,/patm) for which the nozzle will be free from
normal shocks

(b) Will there be a normal shock in the nozzle if nozzle pressure ratio is p,/patm=1.57 If so,
at what position (z/L) will the normal shock occur?
Hint: calculating the exit Mach number in case of existence of an internal normal shock
s a good starting point

Problem 3 - Pipe flow with friction (10 p.)

A pipe with circular cross-section has a constant inner diameter D = 1 cm and a length L=9.45
m. The pipe is insulated to prevent any heat transfer to the air flowing inside. The inflow end
of the pipe is connected to a reservoir of air with total pressure p, and total temperature T,.
The outflow end of the pipe is open to the ambient air, with pressure pym,mp = 1.0 bar. The air
massflow in the pipe is 9.573 kg/s and the flow is subsonic all the way to the exit where the
static flow temperature is 300.0 K.

Compute:

(a) the Mach number at the inflow end of the pipe

(b) the reservoir pressure p,

The air may be treated as a calorically perfect gas with v=1.4 and R=287 J/kg/K. The friction
coefficient of the pipe is found to be f = 0.005.



Problem 4 - Engine Intake Design (10 p.)

An axisymmetric engine intake for supersonic flight is represented in two dimensions in the figure
below. The intake geometry can be modified in flight such that the engine intake performance
is optimized. Let’s say that the aircraft flies at a speed corresponding to Mach number 3.0 and
that the surrounding pressure and temperature are -20°C and 0.47 bar, respectively. The intake
geometry is modified such that the air passes three oblique shocks before entering the engine.

Calculate the coordinates c; - ¢4 if the angles #; and 0y are 4.0° and 12.0°, respectively.

C4

C3

coordinate | z [m] | y [m]
c1 0.00 | 0.00
C2
C3
Cy4 0.4
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