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Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally perfect gas and real

gas and explain the implication of each of these special cases

A deep dive into the theory behind the definitions of calorically perfect gas,

thermally perfect gas, and other models
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Motivation

Explosions and combustion are two examples of cases where high-temperature

effects must be taken into account

The temperature does not have to be extremely high in order for temperature

effects to appear, 600 K is enough

In this section you will learn what happens in a gas on a molecular level when

the temperature increases and what implications that has on applicability of

physical models
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Chapter 16.2

Microscopic Description of Gases
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Microscopic Description of Gases

Hard to make measurements

Accurate, reliable theoretical models needed

Available models do work quite well
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Molecular Energy

Vx

Vy

Vz

Translation

Translational kinetic energy

thermal degrees of freedom: 3

x

y

z

Rotation

Rotational kinetic energy

thermal degrees of freedom:

0 for monoatomic gases

2 for diatomic gases

2 for linear polyatomic gases

3 for non-linear polyatomic gases

Vibration

Vibrational energy

(kinetic energy + potential energy)

thermal degrees of freedom: 2

Electronic energy

Electronic energy of electrons in orbit

(kinetic energy + potential energy)

O C O

CO2
linear polyatomic molecule

H

O

H

H2O

non-linear polyatomic molecule
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Molecular Energy

The energy for one molecule can be described by

ε′ = ε′trans + ε′rot + ε′vib + ε′el

Results of quantum mechanics have shown that energy is quantized i.e.

energy can exist only at specific discrete values

Energy is not continuous! Might seem unintuitive
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Molecular Energy

The lowest quantum numbers defines the zero-point energy for each mode

ε′orot = 0

ε′otrans > 0 (very small but finite)

At absolute zero, molecules still moves but not much. The rotational energy is,

however, exactly zero.

εjtrans = ε′jtrans − ε′otrans

εkrot = ε′krot

εlvib = ε′lvib − ε′ovib

εmel
= ε′mel

− ε′oel

Niklas Andersson - Chalmers 12 / 48



Energy States - Example

three cases with the same rotational energy

different direction of angular momentum

quantum mechanics ⇒ different distinguishable states

a finite number of possible states for each energy level
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Macrostates and Microstates

Macrostate:

molecules collide and exchange energy ⇒ the Nj distribution (the macrostate) will

change over time

some macrostates are more probable than other

most probable macrostates (distribution) ⇒ thermodynamic equilibrium

Microstate:

same number of molecules in each energy level but different states

the most probable macrostate is the one with the most possible microstates ⇒
possible to find the most probable macrostate by counting microstates
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Macrostates and Microstates
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Macrostates and Microstates

ε
′
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Macrostates and Microstates

N =
∑
j

Nj

N is the total number of molecules and Nj is the number of molecules at energy level j

E =
∑
j

ε′jNj

E is the total energy and ε′j is the energy per molecule at energy level j
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Chapter 16.5

The Limiting Case: Boltzmann

Distribution
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

where Q = f(T ,V) is the state sum defined as

Q ≡
∑
j

gje−εj/kT

gj is the number of degenerate states, εj is the energy above zero-level

(εj = ε′j − εo), and k is the Boltzmann constant
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Boltzmann Distribution

The Boltzmann distribution:

N∗
j = N

gje−εj/kT

Q

For molecules or atoms of a given species, quantum mechanics says that a

set of well-defined energy levels εj exists, over which the molecules or atoms

can be distributed at any given instant, and that each energy level has a

certain number of energy states, gj.

For a system of N molecules or atoms at a given T and V, N∗
j are the number

of molecules or atoms in each energy level εj when the system is in thermo-

dynamic equilibrium.
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Boltzmann Distribution

P

E

Boltzmann distribution for a specific temperature

At temperatures above ∼ 5K, molecules are distributed over many energy

levels, and therefore the states are generally sparsely populated (Nj � gj )

Higher energy levels become more populated as temperature increases
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Chapter 16.6 - 16.8

Evaluation of Gas Thermodynamic

Properties
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Internal Energy

The internal energy is calculated as

E = NkT2

(
∂ lnQ

∂T

)
V

The internal energy per unit mass is obtained as

e =
E

M
=

NkT2

Nm

(
∂ lnQ

∂T

)
V

=

{
k

m
= R

}
= RT2

(
∂ lnQ

∂T

)
V
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Internal Energy - Translation

Vx

Vy

Vzε′trans =
h2

8m

(
n21
a21

+
n22
a22

+
n23
a23

)

n1 − n3 quantum numbers (1,2,3,...)

a1 − a3 linear dimensions that describes the size of the system

h Planck’s constant

m mass of the individual molecule

⇒ · · · ⇒

Qtrans =

(
2πmkT

h2

)3/2

V
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Internal Energy - Translation

Vx

Vy

VzQtrans =

(
2πmkT

h2

)3/2

V

lnQtrans =
3

2
lnT +

3

2
ln 2πmk

h2
+ lnV ⇒

(
∂ lnQtrans

∂T

)
V

=
3

2

1

T
⇒

etrans = RT2

(
∂ lnQtrans

∂T

)
V

= RT2 3

2T
=

3

2
RT
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Internal Energy - Rotation

x

y

z

ε′rot =
h2

8π2I
J(J + 1)

J rotational quantum number (0,1,2,...)

I moment of inertia (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qrot =
8π2IkT

h2
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Internal Energy - Rotation

x

y

zQrot =
8π2IkT

h2

lnQrot = lnT + ln 8π2Ik

h2
⇒

(
∂ lnQrot

∂T

)
V

=
1

T
⇒

erot = RT2

(
∂ lnQrot

∂T

)
V

= RT2 1

T
= RT
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Internal Energy - Vibration

ε′vib = hν

(
n+

1

2

)

n vibrational quantum number (0,1,2,...)

ν fundamental vibrational frequency (tabulated for common molecules)

h Planck’s constant

⇒ · · · ⇒

Qvib =
1

1− e−hν/kT

Niklas Andersson - Chalmers 29 / 48



Internal Energy - Vibration

Qvib =
1

1− e−hν/kT

lnQvib = − ln(1− e−hν/kT ) ⇒

(
∂ lnQvib

∂T

)
V

=
hν/kT2

ehν/kT − 1
⇒

evib = RT2

(
∂ lnQvib

∂T

)
V

= RT2 hν/kT2

ehν/kT − 1
=

hν/kT

ehν/kT − 1
RT

lim
T→∞

hν/kT

ehν/kT − 1
= 1 ⇒ evib ≤ RT
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Specific Heat

+ + +=e
Vx

Vy

Vz

etrans

x

y

z

erot evib eel

e =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

From before, we know that the specific heat is defined as follows:

Cv ≡
(
∂e

∂T

)
V
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Specific Heat

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

For molecules with only translational and rotational energy

e =
3

2
RT + RT =

5

2
RT ⇒ Cv ≡

(
∂e

∂T

)
V

=
5

2
R

Cp = Cv + R =
7

2
R

γ =
Cp

Cv

=
7

5
= 1.4
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Specific Heat

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

For mono-atomic gases with only translational and (rotational) energy

e =
3

2
RT + 0 ⇒ Cv ≡

(
∂e

∂T

)
V

=
3

2
R

Cp = Cv + R =
5

2
R

γ =
Cp

Cv

=
5

3
= 1

2

3
' 1.67
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Calorically Perfect Gas

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

In general, only translational and rotational modes of molecular excitation

Translational and rotational energy levels are sparsely populated, according to

Boltzmann distribution (the Boltzmann limit)

Vibrational energy levels are practically unpopulated (except for the zero level)
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Calorically Perfect Gas

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

Characteristic values of γ for each type of molecule, e.g. mono-atomic gas,

di-atomic gas, tri-atomic gas, etc

He, Ar, Ne, ... - mono-atomic gases (γ = 5/3)

H2, O2, N2, ... - di-atomic gases (γ = 7/5)

H2O (gaseous), CO2, ... - tri-atomic gases (γ < 7/5)
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Calorically Perfect Gas - Thermodynamic Relations

p = p(R,T) e = CvT

h = CpT

h = e+ p/ρ

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1a =

√
γp

ρ
=

√
γRT

γ, R, Cv, and Cp are constants
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Thermally Perfect Gas

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

In general, only translational, rotational and vibrational modes of molecular

excitation

Translational and rotational energy levels are sparsely populated, according to

Boltzmann distribution (the Boltzmann limit)

The population of the vibrational energy levels approaches the Boltzmann

limit as temperature increases

Temperature dependent values of γ for all types of molecules except

mono-atomic (no vibrational modes possible)
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Thermally Perfect Gas - Thermodynamic Relations

p = p(R,T) e = e(T)

h = h(T)

h = e+ p/ρ

Cv = de/dT

Cp = dh/dT

Cp − Cv = R

γ = Cp/Cv

Cv =
R

γ − 1

Cp =
γR

γ − 1a =

√
γp

ρ
=

√
γRT

γ, Cv, and Cp are variable (functions of T )

R is constant
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High-Temperature Effects

Example: properties of air

50 K

600 K

2000 K

region of constant γ (γ = 1.4)

region of variable γ

calorically perfect gas

thermally perfect gas

T

Thermally perfect gas:

e and h are non-linear functions of T

the temperature range represents standard atmospheric

pressure (lower pressure gives lower temperatures)
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High-Temperature Effects

e = etrans + erot + evib + eel =
3

2
RT + RT +

hν/kT

ehν/kT−1
RT + eel

For cases where the vibrational energy is not negligible (at high temperatures)

lim
T→∞

evib = RT ⇒ Cv =
7

2
R

However, chemical reactions and ionization will take place long before that ...

Translational and rotational energy fully excited above ∼5 K
Vibrational energy is non-negligible above 600 K

Chemical reactions begin to occur above ∼2000 K
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High-Temperature Effects

As temperature increase further vibrational energy becomes less important

Why is that so?

Niklas Andersson - Chalmers 43 / 48



High-Temperature Effects

Example: properties of air (continued)

2500 K

4000 K

9000 K

no reactions

O2 → 2O (start of dissociation)

N2 → 2N (start of dissociation)

O → O
+

+ e
−

(start of ionization)

T

With increasing temperature, the gas becomes more and more mono-atomic which

means that vibrational modes becomes less important
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Equilibrium Gas

For temperatures T > 2500K

Air may be described as being in thermodynamic and chemical equilibrium

(Equilibrium Gas)

reaction rates (time scales) low compared to flow time scales

reactions in both directions (example: O2 
 2O)

Tables must be used (Equilibrium Air Data) or special functions which have been

made to fit the tabulated data
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Equilibrium Gas - Thermodynamic Relations

How do we obtain a thermodynamic description?

p = p(R,T) e = e(ν,T)

h = h(p,T)

h = e+
p

ρ

Cv =

(
∂e

∂T

)
ν

Cp =

(
∂h

∂T

)
p

a2e = γRT

1 +
1

p

(
∂e

∂ν

)
T

1− ρ

(
∂h

∂p

)
T

γ =
Cp

Cv

=

(
∂h

∂T

)
p(

∂e

∂T

)
ν

RT =
p

ρ

Note! R is not a constant here

i.e. this is not the ideal gas law
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