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Learning Outcomes

12 Explain the main principles behind a modern Finite Volume CFD code and such

concepts as explicit/implicit time stepping, CFL number, conservation, handling

of compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

time for CFD!
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Roadmap - The Time-Marching Technique
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Finite Volume Method (FVM)

Practical examples

Available CFD codes

Time integration

Numerical schemes

Spatial discretization

Governing equations
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Time Stepping
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term
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Application of these equations to all cells i ∈ {1, 2, .....,N} of the computational

domain results in a system of ODEs
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Quasi-One-Dimensional Flow - Spatial Discretization
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d

dt
Qi = F(Qi) where Qi = [ρ, ρu, ρeo]i, i ∈ {1 : NCells}
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Time Stepping

The system of ODEs obtained from the spatial discretization in vector notation

d

dt
Q = F(Q)

Q is a vector containing all DOFs in all cells

F(Q) is the time derivative of Q resulting from above mentioned flux

approximations - non-linear vector-valued function
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Time Stepping

Three-stage Runge-Kutta - one example of many:

Explicit time-marching scheme

Second-order accurate
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Time Stepping - Three-stage Runge-Kutta

d

dt
Q = F(Q)

Let Qn = Q(tn) and Qn+1 = Q(tn+1)

tn is the current time level and tn+1 is the next time level

∆t = tn+1 − tn is the solver time step

Algorithm:

1. Q∗ = Qn +∆tF(Qn)

2. Q∗∗ = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗)

3. Qn+1 = Qn +
1

2
∆tF(Qn) +

1

2
∆tF(Q∗∗)
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Time Stepping - Three-stage Runge-Kutta

1 void RungeKutta : : fwd ( Domain *dom ) {
2 G3DCopy ( dom−>cons , cons0 ) ;
3

4 /* Runge−Kut ta step 1 * /
5

6 dom−>update ( ) ;

7 if ( ! G3DMode : : constdt ) { LocalTimeStep ( dom ) ; }
8 dcons−>evaluate ( dom ) ;
9 G3DWAXPY ( dom−>cons , 1 . 0 , dcons , cons0 ) ;

10 G3DAXPBY ( cons0 , 0 . 5 , 0 . 5 , dom−>cons ) ;
11

12 /* Runge−Kut ta step 2 * /
13

14 dom−>update ( ) ;

15 dcons−>evaluate ( dom ) ;
16 G3DWAXPY ( dom−>cons , 0 . 5 , dcons , cons0 ) ;
17

18 /* Runge−Kut ta step 3 * /
19

20 dom−>update ( ) ;

21 dcons−>evaluate ( dom ) ;
22 G3DWAXPY ( dom−>cons , 0 . 5 , dcons , cons0 ) ;

23 }
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Time Stepping - Explicit Schemes

Properties of explicit time-stepping schemes:

+ Easy to implement in computer codes

+ Efficient execution on most computers

+ Easy to adapt for parallel execution on distributed memory systems (e.g. Linux

clusters)

- Time step limitation (CFL number)

- Convergence to steady-state often slow (there are, however, some remedies for

this)
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Time Stepping - Explicit Schemes

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

CFLi =
∆t(|ui|+ ai)

∆xi
≤ 1

Interpretation: The fastest characteristic (C+ or C−) must not travel longer than ∆x

during one time step
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Time Stepping - Explicit Schemes

t

x

∆
t

∆x ∆x

C
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dx
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max(|u − a|, |u + a|)∆t = (|u| + a)∆t ≤ ∆x ⇒

(|u| + a)∆t

∆x
= CFL ≤ 1
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Time Stepping - Explicit Schemes

Steady-state problems:

local time stepping

each cell has an individual time step

∆ti maximum allowed value based on CFL criteria

Unsteady problems:

time accurate

all cells have the same time step

∆ti = min {∆t1, ...,∆tN}
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Boundary Conditions
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Boundary Conditions

Boundary conditions are very important for numerical simulation of compressible

flows

Main reason: both flow and acoustics involved!

Example 1:

Finite-volume CFD code for Quasi-1D compressible flow (Time-marching procedure)

What boundary conditions should be applied at the left and right ends?

x1/2 x3/2 x5/2 xN−1/2

xN+1/2

computational domain

left boundary right boundary
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Boundary Conditions

three characteristics:

1. C+

2. C−

3. advection

C
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dt
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dt
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t
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Boundary Conditions

C+ and C− characteristics describe the transport of isentropic pressure waves

(often referred to as acoustics)

The advection characteristic simply describes the transport of certain quantities

with the fluid itself (for example entropy)

In one space dimension and time, these three characteristics, together with the

quantities that are known to be constant along them, give a complete

description of the time evolution of the flow

We can use the characteristics as a guide to tell us what information that should

be specifed at the boundaries
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Left Boundary - Subsonic Inflow

C
− advection

C
+

we have three PDEs, and are solving for three unknowns

Subsonic inflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

one outgoing characteristic

two ingoing characteristics

Two variables should be specified at the boundary

The third variable must be left free
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Left Boundary - Subsonic Outflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Subsonic outflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

two outgoing characteristics

one ingoing characteristic

One variable should be specified at the boundary

The second and third variables must be left free
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Left Boundary - Supersonic Inflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u > a

u− a > 0
u > 0
u+ a > 0

no outgoing characteristics

three ingoing characteristics

All three variables should be specified at the boundary

No variables must be left free
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Left Boundary - Supersonic Outflow

C
−

advection

C
+

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u < −a

u− a < 0
u < 0
u+ a < 0

three outgoing characteristics

no ingoing characteristics

No variables should be specified at the boundary

All variables must be left free
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Right Boundary - Subsonic Inflow

C
+advection

C
−

we have three PDEs, and are solving for three unknowns

Subsonic inflow: −a < u < 0

u− a < 0
u < 0
u+ a > 0

two ingoing characteristics

one outgoing characteristic

Two variables should be specified at the boundary

The third variables must be left free
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Right Boundary - Subsonic Outflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Subsonic outflow: 0 < u < a

u− a < 0
u > 0
u+ a > 0

one ingoing characteristic

two outgoing characteristics

One variable should be specified at the boundary

The second and third variables must be left free
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Right Boundary - Supersonic Inflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Supersonic inflow: u < −a

u− a < 0
u < 0
u+ a < 0

three ingoing characteristics

no outgoing characteristics

All three variables should be specified at the boundary

No variables must be left free
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Right Boundary - Supersonic Outflow

C
+

advection

C
−

we have three PDEs, and are solving for three unknowns

Supersonic outflow: u > a

u− a > 0
u > 0
u+ a > 0

no ingoing characteristics

three outgoing characteristics

No variables should be specified at the boundary

All three variables must be left free
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1D Boundary Conditions (Summary)

Characteristic 1D subsonic inflow (left) 1D subsonic inflow (right)

advection v · n (u, 0, 0) · (−1, 0, 0) = −u < 0 (−u, 0, 0) · (1, 0, 0) = −u < 0

C
− v · n − a −u − a < 0 −u − a < 0

C
+ v · n + a −u + a > 0 −u + a > 0

Characteristic 1D subsonic outflow (left) 1D subsonic outflow (right)

advection v · n (−u, 0, 0) · (−1, 0, 0) = u > 0 (u, 0, 0) · (1, 0, 0) = u > 0

C
− v · n − a u − a < 0 u − a < 0

C
+ v · n + a u + a > 0 u + a > 0

Characteristic 1D supersonic inflow (left) 1D supersonic inflow (right)

advection v · n (u, 0, 0) · (−1, 0, 0) = −u < 0 (−u, 0, 0) · (1, 0, 0) = −u < 0

C
− v · n − a −u − a < 0 −u − a < 0

C
+ v · n + a −u + a < 0 −u + a < 0

Characteristic 1D supersonic outflow (left) 1D supersonic outflow (right)

advection v · n (−u, 0, 0) · (−1, 0, 0) = u > 0 (u, 0, 0) · (1, 0, 0) = u > 0

C
− v · n − a u − a > 0 u − a > 0

C
+ v · n + a u + a > 0 u + a > 0
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Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

Alt specified specified well-posed non-reflective

variable 1 variable 2

1 po To X

2 ρu To X

3 s J+ X X

well posed:

1. the problem has a solution

2. the solution is unique

3. the solution’s behaviour changes continuously with initial conditions
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Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt specified well-posed non-reflective

variable

1 p X

2 ρu X

3 J+ X X
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Subsonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic inflow

Assumption:

−a < v · n < 0

Four ingoing characteristics

One outgoing characteristic

Specify four variables at the boundary:

po, To, and flow direction (two angles)
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Subsonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Subsonic outflow

Assumption:

0 < v · n < a

One ingoing characteristics

Four outgoing characteristic

Specify one variables at the boundary:

static pressure
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Supersonic Inflow 2D/3D

nv

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic inflow

Assumption:

v · n < −a

Five ingoing characteristics

No outgoing characteristics

Specify five variables at the boundary:

solver variables
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Supersonic Outflow 2D/3D

n

v

n unit normal vector

v fluid velocity at boundary

exterior

interior

Supersonic outflow

Assumption:

v · n > a

No ingoing characteristics

Five outgoing characteristics

No variables specified at the boundary
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Explicit Finite-Volume Method - Summary

The described numerical approach can be categorized as

Density-based Fully coupled

Structured Explicit

with the following features

High-order

convective scheme

Shock handling

(artificial damping)
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Explicit Finite-Volume Method - Summary

Spatial discretization:

Control volume formulations of conservation equations are applied to the cells of

the discretized domain

Cell-averaged flow quantities (ρ, ρu, ρeo) are chosen as degrees of freedom

Flux terms are approximated in terms of the chosen degrees of freedom

high-order, upwind type of flux approximation is used for optimum results

A fully conservative scheme is obtained

the flux leaving one cell is identical to the flux entering the neighboring cell

The result of the spatial discretization is a system of ODEs
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Explicit Finite-Volume Method - Summary

Time marching:

Three-stage, second-order accurate Runge-Kutta scheme

Explicit time-stepping

Time step length limited by the CFL condition (CFL ≤ 1)
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Available CFD Codes
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CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly documented

Commercial codes are often claimed to be suitable for all types of flows

The reality is that the user must make sure of this!
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CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options

otherwise you may obtain completely wrong solution!

1. coupled solver

2. equation of state

3. energy equation included

Use a high-quality grid

a poor grid will either not give you any solution at all (no convergence) or at best

a very inaccurate solution!
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ANSYS-FLUENTr/STAR-CCM+r - Typical Experiences

1. Very robust solvers - will almost always give you a solution

2. Accuracy of solution depends a lot on grid quality

3. Shocks are generally smeared more than in specialized codes

4. Solver is generally very efficient for steady-state problems

5. Solver is less efficient for truly unsteady problems, where both flow and

acoustics must be resolved accurately
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