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Learning Outcomes

12 Explain the main principles behind a modern Finite Volume CFD code and such

concepts as explicit/implicit time stepping, CFL number, conservation, handling

of compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution

15 Explain the limitations in fluid flow simulation software

time for CFD!
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Roadmap - The Time-Marching Technique

Basic concepts and definitions
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Available CFD codes

Time integration

Numerical schemes

Spatial discretization
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Quasi-1D equations

Boundary conditions
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Motivation

Computational Fluid Dynamics (CFD) is the backbone of all practical engineering

compressible flow analysis

As an engineer doing numerical compressible flow analyzes it is extremely

important to have knowledge about the fundamental numerical principles and

their limitations

Going through the material covered in this section will not make you understand

all the details but you will get a feeling, which is a good start
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The Time-Marching Technique

The problems that we like to investigate numerically within the field of compressible

flows can be categorized as

steady-state

compressible flows

unsteady

compressible flows

The Time-marching technique is a solver framework that addresses both problem

categories
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The Time-Marching Technique

Steady-state problems:

1. define simple initial solution

2. apply specified boundary conditions

3. march in time until steady-state solution is reached

Unsteady problems:

1. apply specified initial solution

2. apply specified boundary conditions

3. march in time for specified total time to reach a desired unsteady solution

establish fully developed flow before initiating data sampling
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The Time-Marching Technique

The time-marching approach is a good alternative for simulating flows where there

are both supersonic and subsonic regions

supersonic/hyperbolic:

perturbations propagate in preferred directions

zone of influence/zone of dependence

PDEs can be transformed into ODEs

subsonic/elliptic:

perturbations propagate in all directions
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Zone of Influence and Zone of Dependence

M∞ > 1.0

B
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C

µ
D

µ
E

A, B and C at the same axial position in the flow

D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but not in A and C

Mach waves generated at E will affect the flow in C but not in A and B

The flow in A is unaffected by the both D and E
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Zone of Influence and Zone of Dependence
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The zone of dependence for point A and the zone of influence of point A are

defined by C+ and C− characteristic lines
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Characterization of CFD Methods

Density-based Pressure-based

Fully coupled Segregated

Structured Unstructured

Explicit Implicit
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Characterization of CFD Methods

Approach taken in this presentation

Density-based Pressure-based

Fully coupled Segregated

Structured Unstructured

Explicit Implicit
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Characterization of CFD Methods - Equations

Density-based

solve for density in the continuity equation

mostly for transonic/supersonic steady-state and unsteady flows

Pressure-based

the continuity and momentum equations are combined to form a pressure

correction equation

mostly for subsonic/transonic steady-state flows
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Characterization of CFD Methods - Solver Approach

Fully coupled

all equations (continuity, momentum, energy, ...) are solved simultaneously

mostly for transonic/supersonic steady-state and unsteady flows

Segregated

solve the equations in sequence

mostly for subsonic steady-state flows
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Characterization of CFD Methods - Time Stepping

Explicit

mostly for transonic/supersonic steady-state and unsteady flows

short time steps

usually very stable

Implicit

mostly for subsonic/transonic steady-state flows

longer time steps possible
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Characterization of CFD Methods - Time Stepping

Explicit Time

Stepping

Implicit Time

Stepping

In general implicit solvers are more efficient than explicit solvers

For high-supersonic flows, explicit solvers may very well outperform implicit

solvers
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Governing Equations
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Quasi-One-Dimensional Flow - Conceptual Idea

Introduce cross-section-averaged flow quantities ⇒
all quantities depend on x only

A = A(x), ρ = ρ(x), u = u(x), p = p(x), ...

1

2

Ω

Γ

x

S1 S2

Ω control volume

S1 left boundary (area A1)

S2 right boundary (area A2)

Γ perimeter boundary

∂Ω = S1 ∪ Γ ∪ S2
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Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

d

dt

y

Ω

ρdV +
{

∂Ω

ρv · ndS = 0

d

dt

y

Ω

ρudV +
{

∂Ω

[ρ(v · n)u+ p(n · ex)]dS = 0

d

dt

y

Ω

ρeodV +
{

∂Ω

ρho(v · n)dS = 0
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Quasi-One-Dimensional Flow
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Example:

Nozzle simulation
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Spatial Discretization
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Spatial Discretization

Discretization in space and time:

Method of Lines (a very common approach):

1. discretize in space ⇒ system of ordinary differential equations (ODEs)

2. discretize in time ⇒ time-stepping scheme for system of ODEs

Spatial discretization techniques:

FDM Finite-Difference Method

FVM Finite-Volume Method

FEM Finite-Element Method
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Quasi-One-Dimensional Flow - Spatial Discretization

Let’s look at a small tube segment with length ∆x

Ωi

Γi

x

A
i− 1

2
A
i+1

2

∆xi

x
i− 1

2
x
i+1

2

Streamtube with area A(x)

Ai− 1
2
= A(xi− 1

2
)

Ai+ 1
2
= A(xi+ 1

2
)

∆xi = xi+ 1
2
− xi− 1

2

Ωi - control volume enclosed by Ai− 1
2
,

Ai+ 1
2
, and Γi

⇒ spatial discretization
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Quasi-One-Dimensional Flow - Spatial Discretization

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

Integer indices: control volumes or cells

Fractional indices: interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum, energy to control

volume Ωi
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

Conservation of mass:

d

dt

y

Ωi

ρdV

︸ ︷︷ ︸
VOLi

d
dt
ρ̄i

+
x

x
i− 1

2

ρv · ndS

︸ ︷︷ ︸
−(ρu)

i− 1
2
A
i− 1

2

+
x

x
i+1

2

ρv · ndS

︸ ︷︷ ︸
(ρu)

i+1
2
A
i+1

2

+
x

Γi

ρv · ndS

︸ ︷︷ ︸
0

= 0

where

VOLi =
y

Ωi

dV

ρ̄i =
1

VOLi

y

Ωi

ρdV

(ρu)i− 1
2
=

1

Ai− 1
2

x

x
i− 1

2

ρudS

(ρu)i+ 1
2
=

1

Ai+ 1
2

x

x
i+1

2

ρudS
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

source term

Conservation of momentum:

d

dt

y

Ωi

ρudV

︸ ︷︷ ︸
VOLi

d
dt
(ρu)i

+
x

x
i− 1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
−(ρu2+p)

i− 1
2
A
i− 1

2

+

+
x

x
i+1

2

[ρ(v · n)u+ p(n · ex)]dS

︸ ︷︷ ︸
(ρu2+p)

i+1
2
A
i+1

2

+
x

Γi

[ρ(v · n)u+ p(n · ex)]dS︸ ︷︷ ︸
−
s

Γi
pdA

= 0
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Quasi-One-Dimensional Flow

cell-averaged quantity

face-averaged quantity

Conservation of energy:

d

dt

y

Ωi

ρeodV

︸ ︷︷ ︸
VOLi

d
dt
(ρeo)i

+
x

x
i− 1

2

ρho(v · n)dS

︸ ︷︷ ︸
−(ρuho)i− 1

2
A
i− 1

2

+

+
x

x
i+1

2

ρho(v · n)dS

︸ ︷︷ ︸
(ρuho)i+1

2
A
i+1

2

+
x

Γi

ρho(v · n)dS

︸ ︷︷ ︸
0

= 0
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Quasi-One-Dimensional Flow

Lower order term due to varying stream tube area:

x

Γi

pdA ≈ p̄i

(
Ai+ 1

2
− Ai− 1

2

)

where p̄i is calculated from cell-averaged quantities (DOFs)
{
ρ̄, (ρu), (ρeo)

}
i
as

p̄i = (γ − 1)

(
(ρeo)i −

1

2
ρ̄iū

2
i

)
, ūi =

(ρu)i
ρ̄i
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Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity

face-averaged quantity

source term

VOLi
d

dt
ρ̄i − (ρu)i− 1

2
Ai− 1

2
+ (ρu)i+ 1

2
Ai+ 1

2
= 0

VOLi
d

dt
(ρu)i − (ρu2 + p)i− 1

2
Ai− 1

2
+ (ρu2 + p)i+ 1

2
Ai+ 1

2
= p̄i

(
Ai+ 1

2
− Ai− 1

2

)
VOLi

d

dt
(ρeo)i − (ρuho)i− 1

2
Ai− 1

2
+ (ρuho)i+ 1

2
Ai+ 1

2
= 0

Application of these equations to all cells i ∈ {1, 2, .....,N} of the computational

domain results in a system of ODEs
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Spatial Discretization - Summary

Steps to achieve spatial discretization:

1. Choose primary variables (degrees of freedom)

2. Approximate all other quantities in terms of the primary variables

⇒ System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose
{
ρ̄, (ρu), (ρeo)

}
i
in all control volumes Ωi, i ∈ {1, 2, ...,N} as degrees of

freedom, or primary variables

Note that these are cell-averaged quantities

What about the face values?
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Numerical Schemes
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Flux Term Approximation



(ρu)

(ρu2 + p)

(ρuho)


i+ 1

2

= f




ρ

(ρu)

(ρeo)


i

,


ρ

(ρu)

(ρeo)


i+1

, ...


cell face values cell-averaged values

Simple example:

(ρu)i+ 1
2
≈ 1

2

[
(ρu)i + (ρu)i+1

]
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Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy

more cell values involved (wider flux molecule)

boundary conditions more difficult to implement

Optimized numerical dissipation:

upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)

artificial damping
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q(x) = A+ Bx + Cx2 + Dx3

Assume constant area: A(x) = 1.0
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =
1

VOL1

ˆ −1

−2
Q(x)dx

VOL1 = A1∆x1 = {A1 = 1.0, ∆x1 = 1.0} = 1.0

⇒ Q1 =

ˆ −1

−2
Q(x)dx
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 =

ˆ −1

−2
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]−1

−2

Q2 =

ˆ 0

−1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]0
−1

Q3 =

ˆ 1

0
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]1
0

Q4 =

ˆ 2

1
Q(x)dx =

[
Ax +

1

2
Bx2 +

1

3
Cx3 +

1

4
Dx4

]2
1
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q1 = A− 3

2
B+

7

3
C− 15

4
D

Q2 = A− 1

2
B+

1

3
C− 1

4
D

Q3 = A+
1

2
B+

1

3
C+

1

4
D

Q4 = A+
3

2
B+

7

3
C+

15

4
D
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

A =
1

12

[
−Q1 + 7Q2 + 7Q3 −Q4

]
B =

1

12

[
Q1 − 15Q2 + 15Q3 −Q4

]
C =

1

4

[
Q1 −Q2 −Q3 +Q4

]
D =

1

6

[
−Q1 + 3Q2 − 3Q3 +Q4

]
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = Q(0) + δQ′′′(0) ⇒ Q0 = A+ 6δD

δ = 0 ⇒ fourth-order central scheme

δ = 1/12 ⇒ third-order upwind scheme

δ = 1/96 ⇒ third-order low-dissipation upwind scheme
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Flux Term Approximation

-2 -1 0 1 2

Q1 Q2 Q3 Q4

Q0 = A+ 6δD = {δ = 1/12} = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0left = −1

6
Q1 +

5

6
Q2 +

1

3
Q3

Q0right = −1

6
Q4 +

5

6
Q3 +

1

3
Q2

method of characteristics used in order to decide whether left- or

right-upwinded flow quantities should be used
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Flux Term Approximation

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

i − 1 i i + 1 i + 2

x
i− 3

2

x
i− 1

2

x
i+1

2

x
i+3

2

x
i+5

2

Ωi

mass conservation:

cell (i):

cell (i + 1):

VOLi
d

dt
ρ̄i + (ρu)

i+1
2
A
i+1

2
− (ρu)

i− 1
2
A
i− 1

2
= 0

VOLi+1

d

dt
ρ̄i+1 + (ρu)

i+3
2
A
i+3

2
− (ρu)

i+1
2
A
i+1

2
= 0

(similarly for momentum and energy conservation)
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Conservative Scheme

Conservative scheme

”The flux leaving one control volume equals the flux entering neighbouring

control volume”

Conservation property for mass, momentum and energy is crucial for the correct

prediction of shocks∗

∗
correct prediction of shocks:

strength

position

velocity
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Shock Capturing

Jameson shock detector:

νi+ 1
2
= max {νi, νi+1}

where νi is a scaled pressure derivative

νi =
|pi+1 − 2pi + pi−1|
pi+1 + 2pi + pi−1

For a smooth pressure field ν O(∆x2) and near a shock ν O(1)

Artificial damping term (α is a user-defined constant):

α (|u|+ c)i+ 1
2
νi+ 1

2
Ai+ 1

2
(Qi+1 −Qi)
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Density Discontinuities

Jameson-type detector:

νi+ 1
2
= max {νi, νi+1}

where νi is a scaled density derivative

νi =
|ρi+1 − 2ρi + ρi−1|
ρi+1 + 2ρi + ρi−1

For a smooth density field ν O(∆x2) and near a density discontinuity ν O(1)

Artificial damping term (β is a user-defined constant):

β |u|i+ 1
2
νi+ 1

2
Ai+ 1

2
(Qi+1 −Qi)
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