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Chapter 7
Unsteady \Wave Motion
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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D
k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
11 Explain how the equations for aero-acoustics and classical acoustics are
derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Chapter 7.7
Incident and Reflected Expansion
Waves



Expansion Waves
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Expansion Waves

Properties of a left-running expansion wave

1. All flow properties are constant along C— characteristics

2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)
4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

Vs

is constant along C lines

is constant along C™ lines
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Expansion Waves
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constant flow properties in region 4: J; = J;r

J7T invariants constant along C™t characteristics:
=0 =uF
g =ud =4t

since J;r = J;r this also implies J;r = J;r

J™ invariants constant along C™ characteristics:



Expansion Waves

constant flow properties in region 4: J; = J;r

J7T invariants constant along C™t characteristics:

o
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(o f g =ud =4t
. . B N since J;m = J;r this also implies J;~ = J;r

J™ invariants constant along C™ characteristics:
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Expansion Waves

Along each C™ line u and a are constants which means that

C]Ix—u a = const
dt N

C™ characteristics are straight lines in xt-space



Expansion Waves

The start and end conditions are the same for all C* lines
JT invariants have the same value for all C™ characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves

In a left-running expansion fan:

» J is constant throughout expansion fan, which implies:

Ut 2a .y 2a, — 2a3
1 YTy Ty
> J~ is constant along C™ lines, but varies from one line to the next, which means
that
U 2a
v—1

is constant along each C~ line



Expansion Waves

Since u4 = 0 we obtain:

Ut a Ug & 2ay 2ay
y=1 a1 -1
a u
21— v —1)—=
a (v=1g;

with a = \/yRT we get



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay = =

- 50-2
1— %(7 - 1);-
12 -n2]




Expansion Wave Relations

Since C™ characteristics are straight lines, we have:

ax

— —u—a=x=(Uu-at

o ( )
a 1 u 1
—=1l—-Z(v=1)—=a=a,—-(v—1u=
o 2(7 )a4 4 2(7 )

X = u—a4+;(7—1)u]t— [(V—l)u—a4}t:>



Expansion Wave Relations

P /‘

' expansion wave | «

T expansion wave ' X

> Expansion wave head is advancing to the left with
speed a4 into the stagnant gas

> Expansion wave tail is advancing with speed
us — as, which may be positive or negative,
depending on the initial states
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2m 1/2
ar (P2 v +1
Up=Upg = — [= 1) | —F——
oo V<D1 >,02 n—1
p1 m+1

p3 - [1_ -1 (L@))rm/(m—l)
P4 2 ay

solving for us gives

b 24, - (,Og) (ya=1)/(2v4)
va—1 P4



Shock Tube Relations

But, p3 = p2 and us = us (No change in velocity and pressure over contact
discontinuity)

(va—1)/(2v4)
= Ug = 284 1-— (,O2>
va— 1 Pa

We have now two expressions for us which gives us

2m 1/2

2 ([32 — 1> _m+l _ 2ay 1_ <pz>(74_1)/(2’¥4)
7 AP P2 + n-1 ya—1 D4

p1 m+1




Shock Tube Relations

Rearranging gives:

P1 P1 V21 2+ (n+ D(p2/p1 — 1

> po/p1 as implicit function of p4/p1
» for a given ps/p1, p2/p1 Wil increase with decreased a; /a4

Pi_ P2 {1 ~ (m—D(@/as)(p2/p1 —1) }_274/(74_1)
)]

a="RT = /y(Ru/M)T

> the speed of sound in a light gas is higher than in a heavy gas

> driver gas: low molecular weight, high temperature
> driven gas: high molecular weight, low temperature
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Shock Tunnel

> Addition of a convergent-divergent nozzle to a shock tube configuration

> Capable of producing flow conditions which are close to those during the
reentry of a space vehicles into the earth’s atmosphere

> high-enthalpy, hypersonic flows (short time)
> real gas effects

> Example - Aachen TH2:
> velocities up to 4 km/s
> stagnation temperatures of several thousand degrees



Shock Tunnel

test object
diaphragm 1 diaphragm 2

\

test section
reflected shock

dump tank

High pressure in region 4 (driver section)
diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5

diaphragm 2 burst
nozzle flow initiated
hypersonic flow in test section



Shock Tunnel
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Shock Tunnel

By adding a compression tube to the shock tube a very high p, and T4 may be
achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air driver gas driven gas
p, T p1, T1

IrcssuTEEs Ell driver gas driven gas
P4, Ta P1, T1
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Riemann Problem

The shock tube problem is a special case of the general Riemann Problem

”... A Riemann problem, named after Bernhard Riemann, consists of an initial
value problem composed by a conservation equation together with piece-
wise constant data having a single discontinuity ...”

Wikipedia



Riemann Problem

May show that solutions to the shock tube problem have the general form:

p =p(x/t) where x = 0 denotes the position of the
p = p(x/t) initial jJump between states 1 and 4
u=u(x/t)

T =T(x/t)

a=a(x/t)



Riemann Problem - Shock Tube
Shock tube simulation:

> left side conditions (state 4):
> p=24kg/m?
> u=00m/s
> p=2.0bar

> right side conditions (state 1):
> p=12kg/m?
» u=0.0m/s
> p=1.0 bar

» Numerical method
» Finite-Volume Method (FVM) solver
> three-stage Runge-Kutta time stepping
> third-order characteristic upwinding scheme
> local artificial damping
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Riemann Problem - Shock Tube
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The solution can be made self similar by plotting the flow field variables as function of
X/t
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