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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

j unsteady waves and discontinuities in 1D

k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

11 Explain how the equations for aero-acoustics and classical acoustics are

derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel

�

�
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Chapter 7.3

Reflected Shock Wave
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One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?

Niklas Andersson - Chalmers 7 / 58



Shock Reflection

x
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initial moving shock,
dx

dt
= W

reflected shock,
dx

dt
= −Wr

contact surface,
dx

dt
= up

contact surface,
dx

dt
= 0

solid wall
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Shock Reflection - Particle Path

A fluid particle located at x0 at time t0 (a location ahead of the shock) will be affected

by the moving shock and follow the blue path

time location velocity

t0 x0 0
t1 x0 up
t2 x1 up
t3 x1 0

x

t

x0 x1
t0

t1

t2

t3
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Shock Reflection Relations

I velocity ahead of reflected shock: Wr + up

I velocity behind reflected shock: Wr

Continuity:

ρ2(Wr + up) = ρ5Wr

Momentum:

p2 + ρ2(Wr + up)
2 = p5 + ρ5W

2
r

Energy:

h2 +
1

2
(Wr + up)

2 = h5 +
1

2
W2

r
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Shock Reflection Relations

Reflected shock is determined such that u5 = 0

Mr

M2
r − 1

=
Ms

M2
s − 1

√
1 +

2(γ − 1)

(γ + 1)2
(M2

s − 1)

(
γ +

1

M2
s

)

where

Mr =
Wr + up

a2
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Tailored v.s. Non-Tailored Shock Reflection

I The time duration of condition 5 is determined by what happens after interaction

between reflected shock and contact discontinuity

I For special choice of initial conditions (tailored case), this interaction is negligible,

thus prolonging the duration of condition 5
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Tailored v.s. Non-Tailored Shock Reflection
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Under-tailored conditions:

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions
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Shock Reflection - Example

Shock reflection in shock tube (γ = 1.4)
(Example 7.1 in Anderson)

Incident shock (given data)

p2/p1 10.0

Ms 2.95

T2/T1 2.623

p1 1.0 [bar]

T1 300.0 [K]

Calculated data

Mr 2.09

p5/p2 4.978

T5/T2 1.77

p5 =

(
p5

p2

)(
p2

p1

)
p1 = 49.78

T5 =

(
T5

T2

)(
T2

T1

)
T1 = 1393
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Shock Reflection - Shock Tube

I Very high pressure and temperature conditions in a specified location with very

high precision (p5,T5)

I measurements of thermodynamic properties of various gases at extreme

conditions, e.g. dissociation energies, molecular relaxation times, etc.

I measurements of chemical reaction properties of various gas mixtures at extreme

conditions
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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The Shock Tube
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Shock Tube

p

x

p4

p1

4 1

diaphragm

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-

ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by

inducing a breakdown) the two states

come into contact and a flow develops

assume that p4 > p1:

state 4 is ”driver” section

state 1 is ”driven” section
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Shock Tube
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Shock Tube
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Shock Tube

I As the diaphragm is removed, a pressure discontinuity is generated

I The only process that can generate a pressure difference in the gas is a shock

I The velocity upstream of the shock must be supersonic

I Since the gas is standing still when the shock tube is started, the shock must

move in order to establish a relative velocity

I The shock must move in to the gas with the lower pressure
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Shock Tube

I By using light gases for the driver section (e.g. He) and heavier gases for the

driven section (e.g. air) the pressure p4 required for a specific p2/p1 ratio is
significantly reduced

I If T4/T1 is increased, the pressure p4 required for a specific p2/p1 is also
reduced
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube
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Finite non-linear waves

Expansion waves
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Chapter 7.5

Elements of Acoustic Theory
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Sound Waves

sound wave Lp [dB] ∆p [Pa]

Weakest audible sound wave 0 2.83× 10−5

Loud sound wave 91 1
Amplified music 120 28
Jet engine @ 30 m 130 90
Threshold of pain 140 283
Military jet @ 30 m 150 890

Example:

∆p ∼ 1 Pa gives ∆ρ ∼ 8.5× 10−6 kg/m3 and ∆u ∼ 2.4× 10−3 m/s
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Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form non-conservation form

mass
∂ρ

∂t
+ ∇ · (ρv) = 0

Dρ

Dt
+ ρ(∇ · v) = 0

momentum
∂

∂t
(ρv) + ∇ · (ρvv + pI) = 0 ρ

Dv
Dt

+ ∇p = 0
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Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds

Dt
= 0

Assume one-dimensional flow

ρ = ρ(x, t)
v = u(x, t)ex
p = p(x, t)
...

 ⇒

continuity
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

momentum ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0

s=constant

can
∂p

∂x
be expressed in terms of density?
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Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow

other state variables

p = p(ρ, s) ⇒ dp =

(
∂p

∂ρ

)
s

dρ+

(
∂p

∂s

)
ρ

ds

s=constant gives

dp =

(
∂p

∂ρ

)
s

dρ = a2dρ

⇒


∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

ρ
∂u

∂t
+ ρu

∂u

∂x
+ a2

∂ρ

∂x
= 0
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Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

ρ = ρ∞ + ∆ρ p = p∞ + ∆p T = T∞ + ∆T u = u∞ + ∆u = {u∞ = 0} = ∆u

where ρ∞, p∞, and T∞ are constant

Now, insert ρ = (ρ∞ +∆ρ) and u = ∆u in the continuity and momentum equations

(derivatives of ρ∞ are zero)

⇒


∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) + a

2 ∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable ⇒ a2 = a2(ρ, s). With entropy

constant ⇒ a2 = a2(ρ)

Taylor expansion around a∞ with (∆ρ = ρ− ρ∞) gives

a2 = a2∞ +

(
∂

∂ρ
(a2)

)
∞
∆ρ+

1

2

(
∂2

∂ρ2
(a2)

)
∞
(∆ρ)2 + ...

⇒



∂

∂t
(∆ρ) + ∆u

∂

∂x
(∆ρ) + (ρ∞ + ∆ρ)

∂

∂x
(∆u) = 0

(ρ∞ + ∆ρ)
∂

∂t
(∆u) + (ρ∞ + ∆ρ)∆u

∂

∂x
(∆u) +

[
a
2
∞ +

(
∂

∂ρ
(a

2
)

)
∞

∆ρ + ...

]
∂

∂x
(∆ρ) = 0
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Elements of Acoustic Theory - Acoustic Equations

Since ∆ρ and ∆u are assumed to be small (∆ρ � ρ∞, ∆u � a)

I products of perturbations can be neglected

I higher-order terms in the Taylor expansion can be neglected

⇒


∂

∂t
(∆ρ) + ρ∞

∂

∂x
(∆u) = 0

ρ∞
∂

∂t
(∆u) + a2∞

∂

∂x
(∆ρ) = 0

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear
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Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”
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Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

∆ρ(x, t) = F(x − a∞t) + G(x + a∞t)

wave traveling in

positive x-direction

with speed a∞

wave traveling in

negative x-direction

with speed a∞

F and G may be arbitrary functions

Wave shape is determined by functions F and G
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Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to


∂F

∂t
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂t
= −a∞F ′

∂F

∂x
=

∂F

∂(x − a∞t)

∂(x − a∞t)

∂x
= F ′

spatial and temporal derivatives of G can of course be obtained in the same way...
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Elements of Acoustic Theory - Wave Equation

with ∆ρ(x, t) = F(x − a∞t) + G(x + a∞t) and the derivatives of F and G we get

∂2

∂t2
(∆ρ) = a2∞F ′′ + a2∞G′′

and

∂2

∂x2
(∆ρ) = F ′′ +G′′

which gives

∂2

∂t2
(∆ρ)− a2∞

∂2

∂x2
(∆ρ) = 0

i.e., the proposed solution fulfils the wave equation
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Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

∆ρ(x, t) = F(x − a∞t)

If ∆ρ is constant (constant wave amplitude), (x − a∞t) must be a constant which
implies

x = a∞t + c

where c is a constant

dx

dt
= a∞

Niklas Andersson - Chalmers 34 / 58



Elements of Acoustic Theory - Wave Equation

We want a relation between ∆ρ and ∆u

∆ρ(x, t) = F(x − a∞t) (wave in positive x direction) gives:

∂

∂t
(∆ρ) = −a∞F ′

and

∂

∂x
(∆ρ) = F ′

∂

∂t
(∆ρ)︸ ︷︷ ︸

−a∞F ′

+a∞
∂

∂x
(∆ρ)︸ ︷︷ ︸
F ′

= 0

or

∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)
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Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

ρ∞
∂

∂t
(∆u) = −a2∞

∂

∂x
(∆ρ) ⇒

∂

∂t
(∆u) = −a2∞

ρ∞

∂

∂x
(∆ρ) =

{
∂

∂x
(∆ρ) = − 1

a∞

∂

∂t
(∆ρ)

}
=

a∞
ρ∞

∂

∂t
(∆ρ)

∂

∂t

(
∆u− a∞

ρ∞
∆ρ

)
= 0 ⇒ ∆u− a∞

ρ∞
∆ρ = const

In undisturbed gas ∆u = ∆ρ = 0 which implies that the constant must be zero and
thus

∆u =
a∞
ρ∞

∆ρ
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Elements of Acoustic Theory - Wave Equation

Similarly, for ∆ρ(x, t) = G(x + a∞t) (wave in negative x direction) we obtain:

∆u = −a∞
ρ∞

∆ρ

Also, since ∆p = a2∞∆ρ we get:

Right going wave (+x direction) ∆u =
a∞
ρ∞

∆ρ =
1

a∞ρ∞
∆p

Left going wave (-x direction) ∆u = −a∞
ρ∞

∆ρ = − 1

a∞ρ∞
∆p
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Elements of Acoustic Theory - Wave Equation

I ∆u denotes induced mass motion and is positive in the positive x-direction

∆u = ±a∞∆ρ

ρ∞
= ± ∆p

a∞ρ∞

I condensation (the part of the sound wave where ∆ρ > 0):
∆u is always in the same direction as the wave motion

I rarefaction (the part of the sound wave where ∆ρ < 0):
∆u is always in the opposite direction as the wave motion

Niklas Andersson - Chalmers 38 / 58



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

∂2

∂t2
(∆ρ) = a2∞

∂2

∂x2
(∆ρ)

I Due to the assumptions made, the equation is not exact

I More and more accurate as the perturbations becomes smaller and smaller

I How should we describe waves with larger amplitudes?
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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Chapter 7.6

Finite (Non-Linear) Waves
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Finite (Non-Linear) Waves

When ∆ρ, ∆u, ∆p, ... Become large, the linearized acoustic equations become

poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0
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Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

∂ρ

∂t
=

(
∂ρ

∂p

)
s

∂p

∂t
=

1

a2
∂p

∂t

∂ρ

∂x
=

(
∂ρ

∂p

)
s

∂p

∂x
=

1

a2
∂p

∂x

Inserted in the continuity equation this gives:

∂p

∂t
+ u

∂p

∂x
+ ρa2

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0

Niklas Andersson - Chalmers 43 / 58



Finite (Non-Linear) Waves

Add 1/(ρa) times the continuity equation to the momentum equation:

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

If we instead subtraction 1/(ρa) times the continuity equation from the momentum

equation, we get:

[
∂u

∂t
+ (u− a)

∂u

∂x

]
− 1

ρa

[
∂p

∂t
+ (u− a)

∂p

∂x

]
= 0
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Finite (Non-Linear) Waves

Since u = u(x, t), we have:

du =
∂u

∂t
dt +

∂u

∂x
dx =

∂u

∂t
dt +

∂u

∂x

dx

dt
dt

Let
dx

dt
= u+ a gives

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

Interpretation: change of u in the direction of line
dx

dt
= u+ a
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Finite (Non-Linear) Waves

In the same way we get:

dp =
∂p

∂t
dt +

∂p

∂x

dx

dt
dt

and thus

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt
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Finite (Non-Linear) Waves

Now, if we combine[
∂u

∂t
+ (u+ a)

∂u

∂x

]
+

1

ρa

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
= 0

du =

[
∂u

∂t
+ (u+ a)

∂u

∂x

]
dt

dp =

[
∂p

∂t
+ (u+ a)

∂p

∂x

]
dt

we get

du

dt
+

1

ρa

dp

dt
= 0
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Characteristic Lines

Thus, along a line dx = (u+ a)dt we have

du+
dp

ρa
= 0

In the same way we get along a line where dx = (u− a)dt

du− dp

ρa
= 0
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Characteristic Lines

I We have found a path through a point (x1, t1) along which the governing partial
differential equations reduces to ordinary differential equations

I These paths or lines are called characteristic lines

I The C+ and C− characteristic lines are physically the paths of right- and

left-running sound waves in the xt-plane
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Characteristic Lines

x

t

x1

t1

C
−

characteristic line:
dx

dt
= u − a

compatibility equation: du −
dp

ρa
= 0

C
+

characteristic line:
dx

dt
= u + a

compatibility equation: du +
dp

ρa
= 0
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Characteristic Lines - Summary

du

dt
+

1

ρa

dp

dt
= 0 along C+ characteristic

du

dt
− 1

ρa

dp

dt
= 0 along C− characteristic

du+
dp

ρa
= 0 along C+ characteristic

du− dp

ρa
= 0 along C− characteristic
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Riemann Invariants

Integration gives:

J+ = u+

ˆ
dp

ρa
= constant along C+ characteristic

J− = u−
ˆ

dp

ρa
= constant along C− characteristic

We need to rewrite
dp

ρa
to be able to perform the integrations
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Riemann Invariants

Let’s consider an isentropic processes:

p = c1T
γ/(γ−1) = c2a

2γ/(γ−1)

where c1 and c2 are constants and thus

dp = c2

(
2γ

γ − 1

)
a[2γ/(γ−1)−1]da

Assume calorically perfect gas: a2 =
γp

ρ
⇒ ρ =

γp

a2

with p = c2a
2γ/(γ−1) we get ρ = c2γa

[2γ/(γ−1)−2]
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Riemann Invariants

J+ = u+

ˆ
dp

ρa
= u+

ˆ c2

(
2γ
γ−1

)
a[2γ/(γ−1)−1]

c2γa[2γ/(γ−1)−1]
da = u+

ˆ
2da

γ − 1

J+ = u+
2a

γ − 1

J− = u− 2a

γ − 1
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Riemann Invariants

If J+ and J− are known at some point (x, t), then


J+ + J− = 2u

J+ − J− =
4a

γ − 1

⇒


u =

1

2
(J+ + J−)

a =
γ − 1

4
(J+ − J−)

Flow state is uniquely defined!
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Method of Characteristics

t

x

tn

tn+1

flow state known

here

flow state may be

computed here

J
−

J
+

J
−

J
+

J
−

J
+

J
−

J
+

transfer J
+

along C
+

characteristics, and vice versa
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Summary

Acoustic waves

I ∆ρ, ∆u, etc - very small

I All parts of the wave propagate with

the same velocity a∞

I The wave shape stays the same

I The flow is governed by linear

relations

Finite (non-linear) waves

I ∆ρ, ∆u, etc - can be large

I Each local part of the wave

propagates at the local velocity

(u+ a)

I The wave shape changes with time

I The flow is governed by non-linear

relations
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One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory
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