Compressible Flow - TME085

Lecture 11

Niklas Andersson

Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Mechanics
Gothenburg, Sweden
niklas.andersson@chalmers.se

Chapter 7
Unsteady Wave Motion

Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
4 Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation principles they are based on
8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
a 1D isentropic flow*
—b normal shocks*
Eij unsteady waves and discontinuities in 1D
K basic acoustics
9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)
11 Explain how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations moving normal shocks - frame of reference seems to be the key here?!

Roadmap - Unsteady Wave Motion

Chapter 7.3
Reflected Shock Wave

One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?

Shock Reflection

Shock Reflection - Particle Path

A fluid particle located at x_{0} at time t_{0} (a location ahead of the shock) will be affected by the moving shock and follow the blue path

time	location	velocity
t_{0}	x_{0}	0
t_{1}	x_{0}	u_{p}
t_{2}	x_{1}	u_{p}
t_{3}	x_{1}	0

Shock Reflection Relations

- velocity ahead of reflected shock: $W_{r}+u_{p}$
- velocity behind reflected shock: W_{r}

Continuity:

$$
\rho_{2}\left(W_{r}+u_{p}\right)=\rho_{5} W_{r}
$$

Momentum:

$$
p_{2}+\rho_{2}\left(W_{r}+u_{p}\right)^{2}=p_{5}+\rho_{5} W_{r}^{2}
$$

Energy:

$$
h_{2}+\frac{1}{2}\left(W_{r}+u_{p}\right)^{2}=h_{5}+\frac{1}{2} W_{r}^{2}
$$

Shock Reflection Relations

Reflected shock is determined such that $u_{5}=0$

$$
\frac{M_{r}}{M_{r}^{2}-1}=\frac{M_{s}}{M_{s}^{2}-1} \sqrt{1+\frac{2(\gamma-1)}{(\gamma+1)^{2}}\left(M_{s}^{2}-1\right)\left(\gamma+\frac{1}{M_{s}^{2}}\right)}
$$

where

$$
M_{r}=\frac{W_{r}+u_{p}}{a_{2}}
$$

Tailored v.s. Non-Tailored Shock Reflection

- The time duration of condition 5 is determined by what happens after interaction between reflected shock and contact discontinuity
- For special choice of initial conditions (tailored case), this interaction is negligible, thus prolonging the duration of condition 5

Tailored v.s. Non-Tailored Shock Reflection

Under-tailored conditions:

Mach number of incident wave lower than in tailored conditions
Over-tailored conditions:
Mach number of incident wave higher than in tailored conditions

Shock Reflection - Example

$\underset{\text { (Example } 7.1 \text { in Anderson) }}{\text { Shock }}$ in shock tube $(\gamma=1.4)$

Incident shock (given data)

$$
\begin{array}{cl}
p_{2} / p_{1} & 10.0 \\
M_{s} & 2.95 \\
T_{2} / T_{1} & 2.623 \\
p_{1} & 1.0[\mathrm{bar}] \\
T_{1} & 300.0[\mathrm{~K}]
\end{array}
$$

Calculated data

$$
\begin{array}{cl}
M_{r} & 2.09 \\
p_{5} / p_{2} & 4.978 \\
T_{5} / T_{2} & 1.77
\end{array}
$$

$$
\begin{aligned}
p_{5} & =\left(\frac{p_{5}}{p_{2}}\right)\left(\frac{p_{2}}{p_{1}}\right) p_{1}=49.78 \\
T_{5} & =\left(\frac{T_{5}}{T_{2}}\right)\left(\frac{T_{2}}{T_{1}}\right) T_{1}=1393
\end{aligned}
$$

Shock Reflection - Shock Tube

- Very high pressure and temperature conditions in a specified location with very high precision $\left(p_{5}, T_{5}\right)$
- measurements of thermodynamic properties of various gases at extreme conditions, e.g. dissociation energies, molecular relaxation times, etc.
\rightarrow measurements of chemical reaction properties of various gas mixtures at extreme conditions

Roadmap - Unsteady Wave Motion

The Shock Tube

Shock Tube

tube with closed ends
diaphragm inside, separating two different constant states
(could also be two different gases)
if diaphragm is removed suddenly (by inducing a breakdown) the two states come into contact and a flow develops
assume that $p_{4}>p_{1}$:
state 4 is "driver" section
state 1 is "driven" section

Shock Tube

flow at some time after diaphragm breakdown

Shock Tube

Shock Tube

- As the diaphragm is removed, a pressure discontinuity is generated
- The only process that can generate a pressure difference in the gas is a shock
- The velocity upstream of the shock must be supersonic
- Since the gas is standing still when the shock tube is started, the shock must move in order to establish a relative velocity
- The shock must move in to the gas with the lower pressure

Shock Tube

- By using light gases for the driver section (e.g. He) and heavier gases for the driven section (e.g. air) the pressure p_{4} required for a specific p_{2} / p_{1} ratio is significantly reduced
- If T_{4} / T_{1} is increased, the pressure p_{4} required for a specific p_{2} / p_{1} is also reduced

Roadmap - Unsteady Wave Motion

Chapter 7.5
Elements of Acoustic Theory

Sound Waves

sound wave

Weakest audible sound wave Loud sound wave
Amplified music
Jet engine @ 30 m
Threshold of pain
Military jet @ 30 m
$L_{p}[\mathrm{~dB}] \quad \Delta \mathrm{p}[\mathrm{Pa}]$
02.83×10^{-5}
$91 \quad 1$
12028
13090
140283
150890

Example:

$\Delta p \sim 1$ Pa gives $\Delta \rho \sim 8.5 \times 10^{-6} \mathrm{~kg} / \mathrm{m}^{3}$ and $\Delta u \sim 2.4 \times 10^{-3} \mathrm{~m} / \mathrm{s}$

Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

	conservation form	non-conservation form
mass	$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0$	$\frac{D \rho}{D t}+\rho(\nabla \cdot \mathbf{v})=0$
momentum	$\frac{\partial}{\partial t}(\rho \mathbf{v})+\nabla \cdot(\rho \mathbf{v} \mathbf{v}+p \mathbf{I})=0$	$\rho \frac{D \mathbf{v}}{D t}+\nabla p=0$

Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

$$
\frac{D s}{D t}=0
$$

Assume one-dimensional flow

$$
\left.\begin{array}{l}
\rho=\rho(x, t) \\
\mathbf{v}=u(x, t) \mathbf{e}_{x} \\
p=p(x, t) \\
\ldots
\end{array}\right\} \Rightarrow \quad \begin{array}{ll}
\text { continuity } & \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\text { momentum } & \rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0 \\
s=\text { constant }
\end{array}
$$

can $\frac{\partial p}{\partial x}$ be expressed in terms of density?

Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow other state variables

$$
p=p(\rho, s) \Rightarrow d p=\left(\frac{\partial p}{\partial \rho}\right)_{s} d \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} d s
$$

$s=$ constant gives

$$
\begin{gathered}
d p=\left(\frac{\partial p}{\partial \rho}\right)_{s} d \rho=a^{2} d \rho \\
\Rightarrow\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+a^{2} \frac{\partial \rho}{\partial x}=0
\end{array}\right.
\end{gathered}
$$

Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

$$
\rho=\rho_{\infty}+\Delta \rho \quad p=p_{\infty}+\Delta p \quad T=T_{\infty}+\Delta T \quad u=u_{\infty}+\Delta u=\left\{u_{\infty}=0\right\}=\Delta u
$$

where $\rho_{\infty}, p_{\infty}$, and T_{∞} are constant
Now, insert $\rho=\left(\rho_{\infty}+\Delta \rho\right)$ and $u=\Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}(\Delta u)+a^{2} \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
$$

Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

$$
\rho=\rho_{\infty}+\Delta \rho \quad p=p_{\infty}+\Delta p \quad T=T_{\infty}+\Delta T \quad u=u_{\infty}+\Delta u=\left\{u_{\infty}=0\right\}=\Delta u
$$

where $\rho_{\infty}, p_{\infty}$, and T_{∞} are constant
Now, insert $\rho=\left(\rho_{\infty}+\Delta \rho\right)$ and $u=\Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}\left(\Delta u+a^{2} \frac{\partial}{\partial x}(\Delta \rho)=0\right.
\end{array}\right.
$$

Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable $\Rightarrow a^{2}=a^{2}(\rho, s)$. With entropy constant $\Rightarrow a^{2}=a^{2}(\rho)$

Taylor expansion around a_{∞} with ($\Delta \rho=\rho-\rho_{\infty}$) gives

$$
\begin{gathered}
a^{2}=a_{\infty}^{2}+\left(\frac{\partial}{\partial \rho}\left(a^{2}\right)\right)_{\infty} \Delta \rho+\frac{1}{2}\left(\frac{\partial^{2}}{\partial \rho^{2}}\left(a^{2}\right)\right)_{\infty}(\Delta \rho)^{2}+\ldots \\
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial \hat{\partial}}(\Delta \rho)+\Delta u \frac{\partial}{\partial x}(\Delta \rho)+\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial x}(\Delta u)=0 \\
\left(\rho_{\infty}+\Delta \rho\right) \frac{\partial}{\partial t}(\Delta u)+\left(\rho_{\infty}+\Delta \rho\right) \Delta u \frac{\partial}{\partial x}(\Delta u)+\left[a_{\infty}^{2}+\left(\frac{\partial}{\partial \rho}\left(a^{2}\right)\right)_{\infty} \Delta \rho+\ldots\right] \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
\end{gathered}
$$

Elements of Acoustic Theory - Acoustic Equations

Since $\Delta \rho$ and Δu are assumed to be small $\left(\Delta \rho \ll \rho_{\infty}, \Delta u \ll a\right)$

- products of perturbations can be neglected
- higher-order terms in the Taylor expansion can be neglected

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial}{\partial t}(\Delta \rho)+\rho_{\infty} \frac{\partial}{\partial x}(\Delta u)=0 \\
\rho_{\infty} \frac{\partial}{\partial t}(\Delta u)+a_{\infty}^{2} \frac{\partial}{\partial x}(\Delta \rho)=0
\end{array}\right.
$$

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear

Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:
"... describe the motion of gas induced by the passage of a sound wave ..."

Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)
$$

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)
General solution:

$$
\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)+G\left(x+a_{\infty} t\right)
$$

wave traveling in positive x-direction with speed a_{∞}
wave traveling in negative x-direction with speed a_{∞}
F and G may be arbitrary functions
Wave shape is determined by functions F and G

Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial t}=\frac{\partial F}{\partial\left(x-a_{\infty} t\right)} \frac{\partial\left(x-a_{\infty} t\right)}{\partial t}=-a_{\infty} F^{\prime} \\
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial\left(x-a_{\infty} t\right)} \frac{\partial\left(x-a_{\infty} t\right)}{\partial x}=F^{\prime}
\end{array}\right.
$$

spatial and temporal derivatives of G can of course be obtained in the same way...

Elements of Acoustic Theory - Wave Equation

with $\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)+G\left(x+a_{\infty} t\right)$ and the derivatives of F and G we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} F^{\prime \prime}+a_{\infty}^{2} G^{\prime \prime}
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)=F^{\prime \prime}+G^{\prime \prime}
$$

which gives

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)-a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)=0
$$

i.e., the proposed solution fulfils the wave equation

Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume $G=0$

$$
\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)
$$

If $\Delta \rho$ is constant (constant wave amplitude), $\left(x-a_{\infty} t\right)$ must be a constant which implies

$$
x=a_{\infty} t+c
$$

where c is a constant

$$
\frac{d x}{d t}=a_{\infty}
$$

Elements of Acoustic Theory - Wave Equation

We want a relation between $\Delta \rho$ and Δu
$\Delta \rho(x, t)=F\left(x-a_{\infty} t\right)$ (wave in positive x direction) gives:

$$
\frac{\partial}{\partial t}(\Delta \rho)=-a_{\infty} F^{\prime}
$$

$$
\frac{\partial}{\partial x}(\Delta \rho)=F^{\prime}
$$

$$
\underbrace{\frac{\partial}{\partial t}(\Delta \rho)}_{-a_{\infty} F^{\prime}}+a_{\infty} \underbrace{\frac{\partial}{\partial x}(\Delta \rho)}_{F^{\prime}}=0
$$

$$
\begin{gathered}
\text { or } \\
\frac{\partial}{\partial x}(\Delta \rho)=-\frac{1}{a_{\infty}} \frac{\partial}{\partial t}(\Delta \rho)
\end{gathered}
$$

Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

$$
\begin{gathered}
\rho_{\infty} \frac{\partial}{\partial t}(\Delta u)=-a_{\infty}^{2} \frac{\partial}{\partial x}(\Delta \rho) \Rightarrow \\
\frac{\partial}{\partial t}(\Delta u)=-\frac{a_{\infty}^{2}}{\rho_{\infty}} \frac{\partial}{\partial x}(\Delta \rho)=\left\{\frac{\partial}{\partial x}(\Delta \rho)=-\frac{1}{a_{\infty}} \frac{\partial}{\partial t}(\Delta \rho)\right\}=\frac{a_{\infty}}{\rho_{\infty}} \frac{\partial}{\partial t}(\Delta \rho) \\
\frac{\partial}{\partial t}\left(\Delta u-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho\right)=0 \Rightarrow \Delta u-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=\mathrm{const}
\end{gathered}
$$

In undisturbed gas $\Delta u=\Delta \rho=0$ which implies that the constant must be zero and thus

$$
\Delta u=\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho
$$

Elements of Acoustic Theory - Wave Equation

Similarly, for $\Delta \rho(x, t)=G\left(x+a_{\infty} t\right)$ (wave in negative x direction) we obtain:

$$
\Delta u=-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho
$$

Also, since $\Delta p=a_{\infty}^{2} \Delta \rho$ we get:
Right going wave $(+x$ direction $) \quad \Delta u=\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=\frac{1}{a_{\infty} \rho_{\infty}} \Delta \rho$
Left going wave (-x direction) $\Delta u=-\frac{a_{\infty}}{\rho_{\infty}} \Delta \rho=-\frac{1}{a_{\infty} \rho_{\infty}} \Delta p$

Elements of Acoustic Theory - Wave Equation

$\Delta \Delta u$ denotes induced mass motion and is positive in the positive x-direction

$$
\Delta u= \pm \frac{a_{\infty} \Delta \rho}{\rho_{\infty}}= \pm \frac{\Delta p}{a_{\infty} \rho_{\infty}}
$$

- condensation (the part of the sound wave where $\Delta \rho>0$):
Δu is always in the same direction as the wave motion
$>$ rarefaction (the part of the sound wave where $\Delta \rho<0$):
Δu is always in the opposite direction as the wave motion

Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

$$
\frac{\partial^{2}}{\partial t^{2}}(\Delta \rho)=a_{\infty}^{2} \frac{\partial^{2}}{\partial x^{2}}(\Delta \rho)
$$

- Due to the assumptions made, the equation is not exact
- More and more accurate as the perturbations becomes smaller and smaller
- How should we describe waves with larger amplitudes?

Roadmap - Unsteady Wave Motion

Chapter 7.6
Finite (Non-Linear) Waves

Finite (Non-Linear) Waves

When $\Delta \rho, \Delta u, \Delta \rho, \ldots$ Become large, the linearized acoustic equations become poor approximations

Non-linear equations must be used
One-dimensional non-linear continuity and momentum equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0
\end{aligned}
$$

Finite (Non-Linear) Waves

We still assume isentropic flow, $d s=0$

$$
\frac{\partial \rho}{\partial t}=\left(\frac{\partial \rho}{\partial p}\right)_{s} \frac{\partial p}{\partial t}=\frac{1}{a^{2}} \frac{\partial p}{\partial t}
$$

$$
\frac{\partial \rho}{\partial x}=\left(\frac{\partial \rho}{\partial p}\right)_{s} \frac{\partial p}{\partial x}=\frac{1}{a^{2}} \frac{\partial p}{\partial x}
$$

Inserted in the continuity equation this gives:

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+u \frac{\partial p}{\partial x}+\rho a^{2} \frac{\partial u}{\partial x}=0 \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0
\end{aligned}
$$

Finite (Non-Linear) Waves

Add $1 /(\rho a)$ times the continuity equation to the momentum equation:

$$
\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right]+\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right]=0
$$

If we instead subtraction $1 /(\rho a)$ times the continuity equation from the momentum equation, we get:

$$
\left[\frac{\partial u}{\partial t}+(u-a) \frac{\partial u}{\partial x}\right]-\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u-a) \frac{\partial p}{\partial x}\right]=0
$$

Finite (Non-Linear) Waves

Since $u=u(x, t)$, we have:

$$
d u=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} d x=\frac{\partial u}{\partial t} d t+\frac{\partial u}{\partial x} \frac{d x}{d t} d t
$$

$$
\text { Let } \frac{d x}{d t}=u+a \text { gives }
$$

$$
d u=\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right] d t
$$

Interpretation: change of u in the direction of line $\frac{d x}{d t}=u+a$

Finite (Non-Linear) Waves

In the same way we get:

$$
d p=\frac{\partial p}{\partial t} d t+\frac{\partial p}{\partial x} \frac{d x}{d t} d t
$$

and thus

$$
d p=\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right] d t
$$

Finite (Non-Linear) Waves

Now, if we combine

$$
\begin{gathered}
{\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right]+\frac{1}{\rho a}\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right]=0} \\
d u=\left[\frac{\partial u}{\partial t}+(u+a) \frac{\partial u}{\partial x}\right] d t \\
d p=\left[\frac{\partial p}{\partial t}+(u+a) \frac{\partial p}{\partial x}\right] d t
\end{gathered}
$$

we get

$$
\frac{d u}{d t}+\frac{1}{\rho a} \frac{d p}{d t}=0
$$

Characteristic Lines

Thus, along a line $d x=(u+a) d t$ we have

$$
d u+\frac{d p}{\rho a}=0
$$

In the same way we get along a line where $d x=(u-a) d t$

$$
d u-\frac{d p}{\rho a}=0
$$

Characteristic Lines

- We have found a path through a point $\left(x_{1}, t_{1}\right)$ along which the governing partial differential equations reduces to ordinary differential equations
- These paths or lines are called characteristic lines
- The C^{+}and C^{-}characteristic lines are physically the paths of right- and left-running sound waves in the $x t$-plane

Characteristic Lines

Characteristic Lines - Summary

$$
\begin{array}{ll}
\frac{d u}{d t}+\frac{1}{\rho a} \frac{d p}{d t}=0 & \text { along } C^{+} \text {characteristic } \\
\frac{d u}{d t}-\frac{1}{\rho a} \frac{d p}{d t}=0 & \text { along } C^{-} \text {characteristic }
\end{array}
$$

$$
\begin{array}{ll}
d u+\frac{d p}{\rho a}=0 & \\
\text { along } C^{+} \text {characteristic } \\
d u-\frac{d p}{\rho a}=0 & \text { along } C^{-} \text {characteristic }
\end{array}
$$

Riemann Invariants

Integration gives:

$$
\begin{aligned}
& J^{+}=u+\int \frac{d p}{\rho a}=\text { constant along } C^{+} \text {characteristic } \\
& J^{-}=u-\int \frac{d p}{\rho a}=\text { constant along } C^{-} \text {characteristic }
\end{aligned}
$$

We need to rewrite $\frac{d p}{\rho a}$ to be able to perform the integrations

Riemann Invariants

Let's consider an isentropic processes:

$$
p=c_{1} T^{\gamma /(\gamma-1)}=c_{2} a^{2 \gamma /(\gamma-1)}
$$

where c_{1} and c_{2} are constants and thus

$$
d p=c_{2}\left(\frac{2 \gamma}{\gamma-1}\right) a^{[2 \gamma /(\gamma-1)-1]} d a
$$

Assume calorically perfect gas: $\mathrm{a}^{2}=\frac{\gamma p}{\rho} \Rightarrow \rho=\frac{\gamma p}{a^{2}}$
with $p=c_{2} a^{2 \gamma /(\gamma-1)}$ we get $\rho=c_{2} \gamma a^{[2 \gamma /(\gamma-1)-2]}$

Riemann Invariants

$$
J^{+}=u+\int \frac{d p}{\rho a}=u+\int \frac{c_{2}\left(\frac{2 \gamma}{\gamma-1}\right) a^{[2 \gamma /(\gamma-1)-1]}}{c_{2} \gamma a^{[2 \gamma /(\gamma-1)-1]}} d a=u+\int \frac{2 d a}{\gamma-1}
$$

$$
\begin{aligned}
J^{+} & =u+\frac{2 a}{\gamma-1} \\
J^{-} & =u-\frac{2 a}{\gamma-1}
\end{aligned}
$$

Riemann Invariants

If J^{+}and J^{-}are known at some point (x, t), then

$$
\left\{\begin{array} { l }
{ J ^ { + } + J ^ { - } = 2 u } \\
{ J ^ { + } - J ^ { - } = \frac { 4 a } { \gamma - 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
u=\frac{1}{2}\left(J^{+}+J^{-}\right) \\
a=\frac{\gamma-1}{4}\left(J^{+}-J^{-}\right)
\end{array}\right.\right.
$$

Flow state is uniquely defined!

Method of Characteristics

Summary

Acoustic waves

- $\Delta \rho, \Delta u$, etc - very small
- All parts of the wave propagate with the same velocity a_{∞}
- The wave shape stays the same The flow is governed by linear relations

Finite (non-linear) waves

- $\Delta \rho, \Delta u$, etc - can be large
- Each local part of the wave propagates at the local velocity $(u+a)$
- The wave shape changes with time
- The flow is governed by non-linear relations

One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory

