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Chapter 7
Unsteady \Wave Motion
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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D
k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
11 Explain how the equations for aero-acoustics and classical acoustics are
derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Chapter 7.3
Reflected Shock Wave



One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?



Shock Reflection

ax
contact surface, — = 0
dt

N\

ax
contact surface, — = up
dt

solid wall

/

S~

ax
initial moving shock, =
dt

ax
reflected shock, i —Wr



Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the shock) will be affected
by the moving shock and follow the blue path
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Shock Reflection Relations

velocity ahead of reflected shock: W, + up
velocity behind reflected shock: W,

Continuity:
pa (Wi + Up) = psWi
Momentum:
p2 + p2(Wr + Up)2 =Ps5 + p5Wr2
Energy:

1 1
ho + §<Wr+up)2 =hs + §W,»2



Shock Reflection Relations

Reflected shock is determined such that us = 0

M, Ms 2y — 1) 1
= 1 Mz —1 —
ME—1 M§—1¢ B CESIE AR v

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction
between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible,
thus prolonging the duration of condition 5



Tailored v.s. Non-Tailored Shock Reflection

under-tailored tailored over-tailored
t t t
shock wave 1 wall 1 wall 1 wall
contact surface
expansion wave
® ® © ® ® ®
©) ©) ©)
©, ©, ©,
Under-tailored conditions:  * *

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:
Mach number of incident wave higher than in tailored conditions



Shock Reflection - Example

Shock reflection in shock tube (y = 1.4)

(Example 7.1 in Anderson)

Incident shock (given data) Calculated data
p2/p1 10.0 My 2.09
Ms 2.95 ps/p2  4.978
To/T1 2.623 Ts/Ty 177
pP1 1.0 [bar]

T, 300.0 [K]



Shock Reflection - Shock Tube

> Very high pressure and temperature conditions in a specified location with very
high precision (o5, T5)

> measurements of thermodynamic properties of various gases at extreme
conditions, e.g. dissociation energies, molecular relaxation times, etc.

> measurements of chemical reaction properties of various gas mixtures at extreme
conditions
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The Shock Tube



Shock Tube

diaphragm

l

| ® | ®

P4

P1

T

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > p1:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube

expansion fan contact discontinuity moving normal shock
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Shock Tube

> As the diaphragm is removed, a pressure discontinuity is generated

> The only process that can generate a pressure difference in the gas is a shock

> The velocity upstream of the shock must be supersonic

> Since the gas is standing still when the shock tube is started, the shock must
move in order to establish a relative velocity

> The shock must move in to the gas with the lower pressure



Shock Tube

» By using light gases for the driver section (e.g. He) and heavier gases for the
driven section (e.g. air) the pressure p,4 required for a specific pa/p; ratio is
significantly reduced

» If T4/T; is increased, the pressure p,4 required for a specific p2/p; is also
reduced
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves

sound wave Ly [dB] Ap [Pa]

Weakest audible sound wave 0 283x107°

Loud sound wave 91 1

Amplified music 120 28

Jet engine @ 30 m 130 90

Threshold of pain 140 283

Military jet @ 30 m 150 890
Example:

Ap ~ 1 Pagives Ap ~ 85 x 107% kg/m? and Au ~ 2.4 x 1073 m/s



Elements of Acoustic Theory

PDE:s for conservation of mass and momentum are derived in Chapter 6:

conservation form non-conservation form
% v (v =0 8 p(vv =0

mass — . (pv) = _ V) =
ot v Dt r

15} v
momentum o (pv) + V - (pvww+pI) =0 p— +Vp=0
C




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Ds
i = 0
Assume one-dimensional flow
- dp ap ou
continuit u— — =0
p =px,t) Y ot - ox er(?
v =u(x,t)ex N 5 5 3
p=pxt) momentum  p—- + pli_ + o= =0
s=constant
op )

can —
)%

be expressed in terms of density?




Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any tow
other state variables

) () 4 (P
b =p(p.s) = db = <ap)sd”+ <8s>pds

s=constant gives



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoot+ADp P=pPoc+Ap T=Toc+AT U=Uco + AU= {Usc =0} =Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6x< )

b5} a 5 0
(Poc + Ap) —(AU) + (poo + Ap)Au—(Au) +8° —(Ap) =0
ot Ix ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P=pPoot+ADp P=pPoc+Ap T=Toc+AT U=Uco + AU= {Usc =0} =Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

6] el o
—(Ap) + Au—(Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6x< )

=
15} o
(Poo + Ap) — (AU) + (poo + Ap)Au— (A
ot ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable = a* = a*(p, s). With entropy
constant = a* = a*(p)

Taylor expansion around @, With (Ap = p — pso) gives

2= a2 + (;p(a?)))o Apt sy <§;(32))m ()’ + ...

{ ft( p) + USX( p) + (poo + Ap) X( u)
=

(o + A0) 2 (A0) + (poo + Ap) AU (AU) + |22 +(3<a2>) apt | Liap =0
L ot = ox o ap - ox



Elements of Acoustic Theory - Acoustic Equations

Since Ap and Au are assumed to be small (Ap < pso, AU K a)
products of perturbations can be neglected
higher-order terms in the Taylor expansion can be neglected

0 (Au) =0

B,
57 (AP) + poo

0

0 0
o A Ap) =
oo (AU) + 82,2 (Ap) = 0

Note! Only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

(combine the time derivative of the continuity egn. and the divergence of the momentum eqn.)
General solution:

Ap(X,t) = F(X — acot) + G(X + acol)

wave traveling in wave traveling in
positive x-direction negative x-direction
with speed aoo with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

oF oF O(X — anol)
ot (X — axt) ot

oF oF O(X —ast)
Ox  O(x —ast)  Ox

spatial and temporal derivatives of G can of course be obtained in the same way...



Elements of Acoustic Theory - Wave Equation

F(x —axt) + G(x + axt) and the derivatives of F and G we get

with Ap(x,t) =
02
8t2(Ap) aZOF” +a§OG”
and
82
@(Ap) — F// + G//
which gives
0? 0?2
22 (Ap) —as a 5 (Ap) =

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — anot)

If Ap is constant (constant wave amplitude), (x — at) must be a constant which
implies
X =asl+cC

where ¢ is a constant

*_,
a



Elements of Acoustic Theory - Wave Equation

We want a relation between Ap and Au

Ap(x,t) = F(x — ant) (wave in positive x direction) gives:

0 0
—(Ap) = —asF’ —(Ap) =F'
ot and Ox
0 0
~—— ~—
—acoF’ F’
or
0 1 0
“Z(Ap) = - — 2
o (BF) Q. 57 (AP)



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

o) )
o= (A —a’, —(A
poo g (AU) = —a5 - (Ap) =

2
(a0 === 2 an) = { 2ap) = - San | = 2= 2 )

Poo OX oo O Poo OF
9 (A — Ap) =0= Au— aioAp = const

In undisturbed gas Au = Ap = 0 which implies that the constant must be zero and
thus

a
Au=">Ap
Poc




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction) we obtain:

Au=—22n,
Poo
Also, since Ap = a2 Ap we get:
. , , . Ao 1

Right going wave (+x direction) Au=—Ap= o Ap

Poo oo Poo
. . . oo 1
Left going wave (-x direction) Au=-——Ap=— Ap

Poo Ao Poo



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the positive x-direction

Qoo Ap _ 4 Ap
Poo AooPoo

Au =+

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the opposite direction as the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

Oo(B) =a% ()

Due to the assumptions made, the equation is not exact
More and more accurate as the perturbations becomes smaller and smaller
How should we describe waves with larger amplitudes?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic equations become
poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations

dp 8p ou
ot Yok TPax 0

ou ou 10p

E—i_uﬁx—i_pﬁx




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

Op _(9p) b _ 10p o _
ot \op/), ot aot ox
Inserted in the continuity equation this gives:
op ap 50U
ou_ ou 10p
ot ox  pox

(

dp
op

)

o _1ap
S Ox  azox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum equation:

B +U+a)— +—

154 ot

ou ou 1 [op
ox

+ (u +a)ap} =0

If we instead subtraction 1/(pa) times the continuity equation from the momentum
equation, we get:

[gt‘lJr(u—a)gﬂ—l[gﬁ;Jr( )ap}:()



Finite (Non-Linear) Waves

Since u = u(x,t), we have:

8u au Bu ou dx

ax )
Let i = Uu+agives
ou ou
du = [& + (u+a)ax} dt

. . adx
Interpretation: change of u in the direction of line T u+a



Finite (Non-Linear) Waves

In the same way we get:

_op Op dx
dp = Edt + aadt

and thus
op

_ Ip
ap = {at + (u+a)8X] dt



Finite (Non-Linear) Waves

Now, if we combine

ou +turad
ot ox
dU - |:af
ap
dp = {81‘

we get




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{dqudpo}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

» We have found a path through a point (x1, t1) along which the governing partial
differential equations reduces to ordinary differential equations

> These paths or lines are called characteristic lines

» The C™ and C~ characteristic lines are physically the paths of right- and
left-running sound waves in the xt-plane



Characteristic Lines

_ o ax
C™ characteristic line: — =u-—a
dt
- ) dp
t compatibility equation: du— — =0
pa

/

+ - ax
C™ characteristic line: a =u+a
. dp
compatibility equation: du+ — =0
pa
VX

X1



Characteristic Lines - Summary

au 1 dp .
—+——=0 a + characterist
Ot + oa df along C™ characteristic
du 1d -
g pao’ﬁt) =0 along C~ characteristic
dp n _
au + p—a =0 along C" characteristic
o/
au — —Z =0 along C~ characteristic
P




Riemann Invariants

Integration gives:

a -
JT=u+ / —5 = constant along C* characteristic
P

a .
J =u-— / —Z = constant along C™~ characteristic
p

We need to rewrite do to be able to perform the integrations

pa



Riemann Invariants

Let’s consider an isentropic processes:

p =c TV = cyg27/(v=1)
where ¢ and ¢y are constants and thus

ap =co < 271> al2v/(v=1)-1] 44

Assume calorically perfect gas: a? = _ P =p= Zg
p

with p = 282"/~ we get p = coyal2/ (=12



Riemann Invariants

2y

27 ) 512v/(v=1)-1]
C2(5-1)4 20
J+:u+/d§:u+/ (7 1) da:u+/ a
12

coyal2y/(v=1)-1] v —1




Riemann Invariants

If J* and J~ are known at some point (x, t), then

It £ Jm = 2u u= Ut )

4&1:>

+— =
SrevT = .

Flow state is uniquely defined!



Method of Characteristics

t

1
tn

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here




Summary

Acoustic waves

Ap, Au, etc - very small

All parts of the wave propagate with
the same velocity a..

The wave shape stays the same

The flow is governed by linear
relations

Finite (non-linear) waves

Ap, Au, etc - can be large

Each local part of the wave
propagates at the local velocity
u+a)

The wave shape changes with time
The flow is governed by non-linear
relations



One-Dimensional Flow with Friction

the method of characteristics is a central element in classic compressible flow theory
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