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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

j unsteady waves and discontinuities in 1D

k basic acoustics

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

11 Explain how the equations for aero-acoustics and classical acoustics are

derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel
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Motivation

Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic

within compressible flows

We will study unsteady flows in one dimension in order to reduce complexity

and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube,

which is a rather rare application but it lets us study unsteady waves in one

dimension and it includes all physical principles introduced in chapter 7
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Roadmap - Unsteady Wave Motion
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Unsteady Wave Motion

inertial frames!

Physical laws are the same for both frame of references

Shock characteristics are the same for both observers (shape, strength, etc)
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Unsteady Wave Motion

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a moving frame of reference, the shock may be viewed as a

stationary normal shock
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Roadmap - Unsteady Wave Motion

Basic concepts

Moving normal shocks

Shock reflection

Shock tube

Elements of acoustic theory

Finite non-linear waves

Expansion waves

Shock tube relations

Riemann problem

Shock tunnel

�
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Chapter 7.2

Moving Normal Shock Waves
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Moving Normal Shock Waves

Chapter 3: stationary normal shock

2 1

u2 u1

x
stationary normal shock

u1 > a1 (supersonic flow)

u2 < a2 (subsonic flow)

p2 > p1 (sudden compression)

s2 > s1 (shock loss)
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Moving Normal Shock Waves

2 1

observer
W

u2 u1

x
stationary normal shock

I Introduce observer moving to the left with speed W

I if W is constant the observer is still in an inertial system
I all physical laws are unchanged

I The observer sees a normal shock moving to the right with speed W

I gas velocity ahead of shock: u′1 = W − u1
I gas velocity behind shock: u′2 = W − u2
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Moving Normal Shock Waves

Now, let W = u1 ⇒

u′1 = 0

u′2 = u1 − u2 > 0

The observer now sees the shock traveling to the right with speed W = u1 into a

stagnant gas, leaving a compressed gas (p2 > p1) with velocity u
′
2 > 0 behind it

Introducing up:

up = u′2 = u1 − u2
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Moving Normal Shock Waves

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock
Analogy:

Case 1

I stationary normal shock
I observer moving with velocity W

Case 2

I normal shock moving with velocity W
I stationary observer
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Moving Normal Shock Waves - Governing Equations

2 1

stationary observer

u
′
2 = up > 0 u

′
1 = 0

x

W

moving normal shock

For stationary normal shocks we have: With (u1 = W) and (u2 = W − up) we
get:

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2
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Moving Normal Shock Waves - Relations

Starting from the governing equations

ρ1W = ρ2(W − up)

ρ1W
2 + p1 = ρ2(W − up)

2 + p2

h1 +
1

2
W2 = h2 +

1

2
(W − up)

2

and using h = e+
p

ρ

it is possible to show that

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)
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Moving Normal Shock Waves - Relations

e2 − e1 =
p1 + p2

2

(
1

ρ1
+

1

ρ2

)

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same jumps in density,

velocity, pressure, etc
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Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

ρ2
ρ1

=

1 +
γ + 1

γ − 1

(
p2

p1

)
γ + 1

γ − 1
+

p2

p1

and

T2

T1
=

p2

p1


γ + 1

γ − 1
+

p2

p1

1 +
γ + 1

γ − 1

(
p2

p1

)

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Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

p2

p1
= 1 +

2γ

γ + 1
(M2

s − 1)

same as eq. (3.57) in Anderson with M1 = Ms

where

Ms =
W

a1

I Ms is simply the speed of the shock (W ), traveling into the stagnant gas,
normalized by the speed of sound in this stagnant gas (a1)

I Ms > 1, otherwise there is no shock!
I shocks always moves faster than sound - no warning before it hits you ,
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Moving Normal Shock Waves - Relations

5 10 15 20
1

2

3

4

5

p2/p1

Ms

Incident shock Mach number (γ = 1.4)
p2

p1
= 1 +

2γ

γ + 1
(M2

s − 1)

Re-arrange ⇒

Ms =

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1

shock speed directly linked to pressure ratio

Ms =
W

a1
⇒ W = a1Ms = a1

√
γ + 1

2γ

(
p2

p1
− 1

)
+ 1

Niklas Andersson - Chalmers 21 / 27



Moving Normal Shock Waves - Relations

From the continuity equation we get:

up = W

(
1− ρ1

ρ2

)
> 0

After some derivation we obtain:

up =
a1

γ

(
p2

p1
− 1

)
2γ

γ + 1
p2

p1
+

γ − 1

γ + 1


1/2
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Moving Normal Shock Waves - Relations

Induced Mach number:

Mp =
up

a2
=

up

a1

a1

a2
=

up

a1

√
T1

T2

inserting up/a1 and T1/T2 from relations on previous slides we get:

Mp =
1

γ

(
p2

p1
− 1

)
2γ

γ + 1
γ − 1

γ + 1
+

p2

p1


1/2


1 +

(
γ + 1

γ − 1

)(
p2

p1

)
(
γ + 1

γ − 1

)(
p2

p1

)
+

(
p2

p1

)2


1/2
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Moving Normal Shock Waves - Relations

Note!

lim
p2
p1

→∞
Mp →

√
2

γ(γ − 1)

for air (γ = 1.4)

lim
p2
p1

→∞
Mp → 1.89

5 10 15 20
0

0.5

1

1.5

2

Mp = 1.89

p2/p1

Mp

Induced Mach number (γ = 1.4)
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Moving Normal Shock Waves - Relations

Moving normal shock with p2/p1 = 10

(p1 = 1.0 bar, T1 = 300 K, γ = 1.4)

⇒ Ms = 2.95 and W = 1024.2 m/s

The shock is advancing with almost three times the speed of sound!

Behind the shock the induced velocity is up = 756.2 m/s ⇒ supersonic flow

(a2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u1 = W , u2 = W − up )
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Moving Normal Shock Waves - Relations

Note! ho1 6= ho2

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

u1 = 0

ho1 = h1 +
1

2
u21 = h1

ho2 = h2 +
1

2
u22

h2 > h1 ⇒ ho2 > ho1 2 4 6 8 10

1.2

1.4

1.6

1.8

2

p2/p1

γ

h2/h1 = T2/T1 (constant Cp)

1

1.5

2

2.5

3

3.5

4
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Moving Normal Shock Waves - Relations

Gas/Vapor Ratio of specific heats Gas constant

(γ) R

Acetylene 1.23 319

Air (standard) 1.40 287

Ammonia 1.31 530

Argon 1.67 208

Benzene 1.12 100

Butane 1.09 143

Carbon Dioxide 1.29 189

Carbon Disulphide 1.21 120

Carbon Monoxide 1.40 297

Chlorine 1.34 120

Ethane 1.19 276

Ethylene 1.24 296

Helium 1.67 2080

Hydrogen 1.41 4120

Hydrogen chloride 1.41 230

Methane 1.30 518

Natural Gas (Methane) 1.27 500

Nitric oxide 1.39 277

Nitrogen 1.40 297

Nitrous oxide 1.27 180

Oxygen 1.40 260

Propane 1.13 189

Steam (water) 1.32 462

Sulphur dioxide 1.29 130
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