Compressible Flow - TME085 Lecture 7

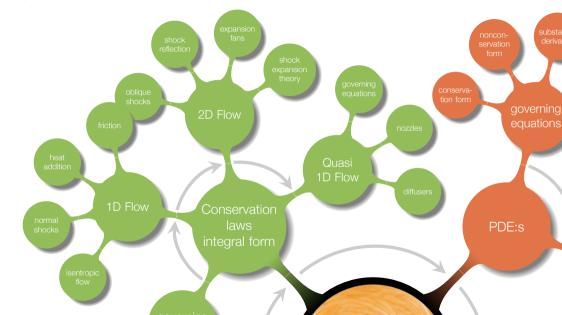
Niklas Andersson

Chalmers University of Technology
Department of Mechanics and Maritime Sciences
Division of Fluid Mechanics
Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 5 Quasi-One-Dimensional Flow

Overview

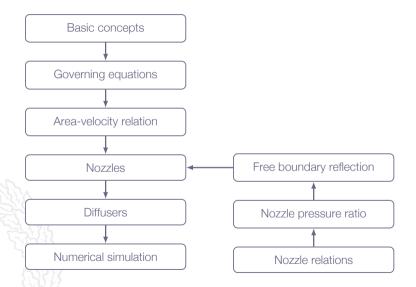


Learning Outcomes

- 4 Present at least two different formulations of the governing equations for compressible flows and explain what basic conservation principles they are based on
- 6 Define the special cases of calorically perfect gas, thermally perfect gas and real gas and explain the implication of each of these special cases
- 7 Explain why entropy is important for flow discontinuities
- 8 Derive (marked) and apply (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - i detached blunt body shocks, nozzle flows
- Solve engineering problems involving the above-mentioned phenomena (8a-8k)

what does quasi-1D mean? either the flow is 1D or not, or?

Roadmap - Quasi-One-Dimensional Flow

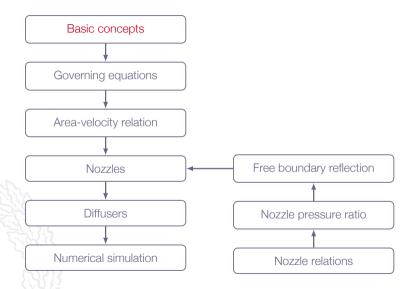


Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional we will be able to establish important relations using the quasi-one-dimensional approach

Roadmap - Quasi-One-Dimensional Flow



Quasi-One-Dimensional Flow

Chapter 3 - One-dimensional steady-state flow

overall assumption:

one-dimensional flow constant cross section area

applications:

normal shock one-dimensional flow with heat addition one-dimensional flow with friction

Chapter 4 - Two-dimensional steady-state flow

overall assumption:

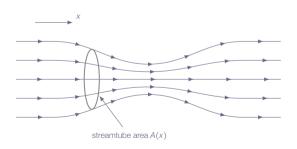
two-dimensional flow uniform supersonic freestream

applications:

oblique shock expansion fan shock-expansion theory

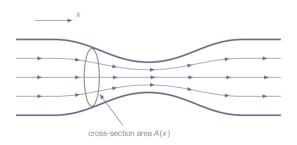
Quasi-One-Dimensional Flow

- Extension of one-dimensional flow to allow variations in streamtube area
- Steady-state flow assumption still applied

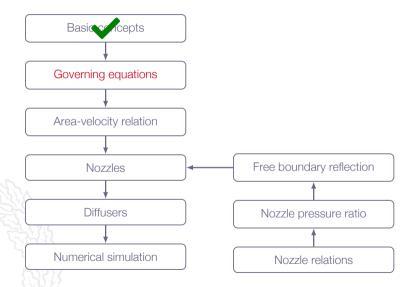


Quasi-One-Dimensional Flow

Example: tube with variable cross-section area



Roadmap - Quasi-One-Dimensional Flow

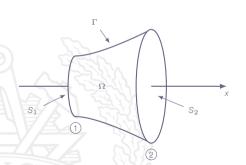


Chapter 5.2 Governing Equations

Governing Equations

Introduce cross-section-averaged flow quantities \Rightarrow all quantities depend on x only

$$A = A(x), \ \rho = \rho(x), \ u = u(x), \ \rho = \rho(x), \dots$$



 Ω control volume

 S_1 left boundary (area A_1)

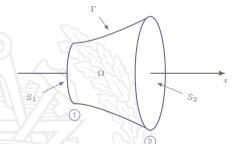
 S_2 right boundary (area A_2)

Γ perimeter boundary

$$\partial\Omega=S_1\cup\Gamma\cup S_2$$

Governing Equations - Assumptions

- 1. Inviscid flow (no boundary layers)
- 2. Steady-state flow (no unsteady effects)
- 3. No flow through Γ (control volume aligned with streamlines)



Governing Equations - Conservation of Mass

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho d\mathcal{V}}_{=0} + \underbrace{\iint_{\partial \Omega} \rho \mathbf{v} \cdot \mathbf{n} dS}_{-\rho_1 u_1 A_1 + \rho_2 u_2 A_2} = 0$$

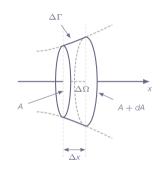
$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$

Governing Equations - Conservation of Momentum

$$\underbrace{\frac{d}{dt} \iiint\limits_{\Omega} \rho \mathbf{v} d\mathcal{V} + \iint\limits_{\partial \Omega} \left[\rho (\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS}_{=0} = 0$$

$$\iint\limits_{\partial\Omega} \rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} dS = -\rho_1 u_1^2 A_1 + \rho_2 u_2^2 A_2$$

$$\iint_{\partial\Omega} \rho \mathbf{n} dS = -\rho_1 A_1 + \rho_2 A_2 - \int_{A_1}^{A_2} \rho dA$$



$$\left[(\rho_1 u_1^2 + \rho_1) A_1 + \int_{A_1}^{A_2} \rho dA = (\rho_2 u_2^2 + \rho_2) A_2 \right]$$

Governing Equations - Conservation of Energy

$$\underbrace{\frac{d}{dt} \iiint\limits_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint\limits_{\partial \Omega} \left[\rho h_{o}(\mathbf{v} \cdot \mathbf{n}) \right] dS = 0}_{=0}$$

which gives

$$\rho_1 u_1 A_1 h_{O_1} = \rho_2 u_2 A_2 h_{O_2}$$

from continuity we have that $ho_1 u_1 A_1 =
ho_2 u_2 A_2 \Rightarrow$

$$\left[h_{o_1} = h_{o_2}\right]$$

Governing Equations - Summary

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$

$$(\rho_1 u_1^2 + \rho_1) A_1 + \int_{A_1}^{A_2} \rho dA = (\rho_2 u_2^2 + \rho_2) A_2$$

$$h_{O_1} = h_{O_2}$$

Continuity equation:

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$
 or $\rho u A = C$

where c is a constant \Rightarrow

$$d(\rho uA) = 0$$

Momentum equation:

$$(\rho_1 u_1^2 + \rho_1)A_1 + \int_{A_1}^{A_2} p dA = (\rho_2 u_2^2 + \rho_2)A_2 \Rightarrow$$

$$d \left[(\rho u^2 + \rho)A \right] = p dA \Rightarrow$$

$$d(\rho u^2 A) + d(\rho A) = p dA \Rightarrow$$

$$u \underbrace{d(\rho u A)}_{=0} + \rho u A du + A d\rho + p dA = p dA \Rightarrow$$

$$\rho u A du + A d\rho = 0 \Rightarrow$$

$$dp = -\rho u du$$
 Euler's equation

Energy equation:

$$h_{O_1} = h_{O_2} \Rightarrow dh_O = 0$$

$$h_0 = h + \frac{1}{2}u^2 \Rightarrow$$

$$(dh + udu = 0)$$

Summary (valid for all gases):

$$d(\rho uA) = 0$$

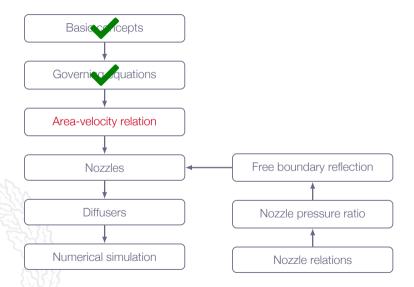
$$dp = -\rho u du$$

$$dh + udu = 0$$

Assumptions:

- 1. quasi-one-dimensional flow
- 2. inviscid flow
- 3. steady-state flow

Roadmap - Quasi-One-Dimensional Flow



Chapter 5.3 Area-Velocity Relation

$$d(\rho uA) = 0 \Rightarrow uAd\rho + \rho Adu + \rho udA = 0$$

divide by ρuA gives

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

Euler's equation:

$$dp = -\rho u du \Rightarrow \frac{dp}{\rho} = \frac{dp}{d\rho} \frac{d\rho}{\rho} = -u du$$

Assuming adiabatic, reversible (isentropic) process and the definition of speed of sound gives

$$\frac{d\rho}{d\rho} = \left(\frac{\partial\rho}{\partial\rho}\right)_{s} = a^{2} \Rightarrow a^{2}\frac{d\rho}{\rho} = -udu \Rightarrow \frac{d\rho}{\rho} = -M^{2}\frac{du}{u}$$

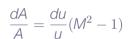
Now, inserting the expression for $\frac{d\rho}{\rho}$ in the rewritten continuity equation gives

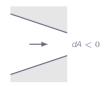
$$(1 - M^2)\frac{du}{u} + \frac{dA}{A} = 0$$

or

$$\frac{dA}{A} = (M^2 - 1)\frac{du}{u}$$

which is the area-velocity relation





Subsonic M < 1 Supersonic M > 1

subsonic diffuser	supersonic nozzle
du < 0	du > 0
dp > 0	dp < 0

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

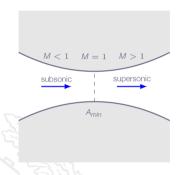
$$M=1$$
 when $dA=0$

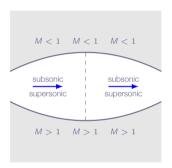
$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$M = 1$$
 when $dA = 0$

maximum or minimum area





- A converging-diverging nozzle is the only possibility to obtain supersonic flow!
- A supersonic flow entering a convergent-divergent nozzle will slow down and, if the conditions are right, become sonic at the throat - hard to obtain a shock-free flow in this case

$$M \to 0 \Rightarrow \frac{dA}{A} = -\frac{du}{u}$$
$$\frac{dA}{A} + \frac{du}{u} = 0 \Rightarrow$$
$$\frac{1}{Au} [udA + Adu] = 0 \Rightarrow$$

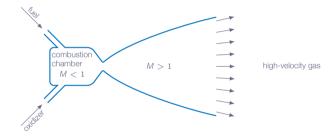
 $d(uA) = 0 \Rightarrow Au = c$

where c is a constant

Note 1 The area-velocity relation is only valid for isentropic flow not valid across a compression shock (due to entropy increase)

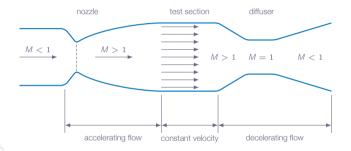
Note 2 The area-velocity relation is valid for all gases

Area-Velocity Relation Examples - Rocket Engine

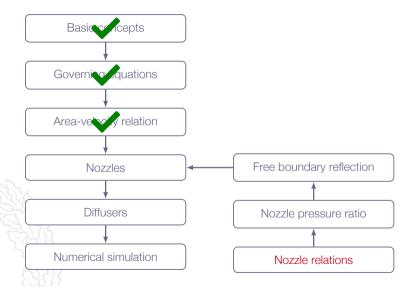


High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH 2 /LOx rocket engine: $\rho_o \sim 120$ [bar], $T_o \sim 3600$ [K], exit velocity ~ 4000 [m/s]

Area-Velocity Relation Examples - Wind Tunnel



Roadmap - Quasi-One-Dimensional Flow



Chapter 5.4 Nozzles

Nozzle Flow with Varying Pressure Ratio

time for rocket science!

Calorically perfect gas assumed:

From Chapter 3:

$$\frac{T_o}{T} = \left(\frac{a_o}{a}\right)^2 = 1 + \frac{1}{2}(\gamma - 1)M^2$$

$$\frac{p_o}{p} = \left(\frac{T_o}{T}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_{\rm O}}{\rho} = \left(\frac{T_{\rm O}}{T}\right)^{\frac{1}{\gamma - 1}}$$

Critical conditions:

$$\frac{T_o}{T^*} = \left(\frac{a_o}{a^*}\right)^2 = \frac{1}{2}(\gamma + 1)$$

$$\frac{p_o}{p^*} = \left(\frac{T_o}{T^*}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{\rho_{\rm O}}{\rho^*} = \left(\frac{T_{\rm O}}{T^*}\right)^{\frac{1}{\gamma - 1}}$$

$$M^{*^2} = \frac{u^2}{a^{*^2}} = \frac{u^2}{a^2} \frac{a^2}{a^{*^2}} = \frac{u^2}{a^2} \frac{a^2}{a_0^2} \frac{a_0^2}{a^{*^2}} \Rightarrow$$

$$\frac{\frac{u^2}{a^2} = M^2}{\frac{a^2}{a_0^2}} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1}$$

$$\Rightarrow M^{*2} = M^2 \frac{\frac{1}{2}(\gamma + 1)}{1 + \frac{1}{2}(\gamma - 1)M^2}$$

$$\frac{a_0^2}{a^{*2}} = \frac{1}{2}(\gamma + 1)$$

For nozzle flow we have

$$\rho UA = C$$

where c is a constant and therefore

$$\rho^* u^* A^* = \rho u A$$

or, since at critical conditions $u^* = a^*$

$$\rho^* a^* A^* = \rho u A$$

which gives

$$\frac{A}{A^*} = \frac{\rho^*}{\rho} \frac{a^*}{u} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} \frac{a^*}{u}$$

$$\frac{A}{A^*} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} \frac{a^*}{u}$$

$$\frac{\rho^*}{\rho_o} = \left(\frac{T_o}{T^*}\right)^{\frac{-1}{\gamma-1}}$$

$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{1}{\gamma-1}}$$

$$\Rightarrow \frac{A}{A^*} = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{1}{\gamma-1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{1}{\gamma-1}}M^*}$$

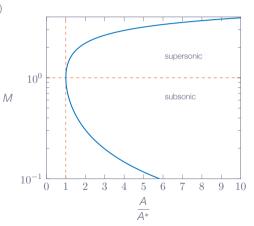
$$\frac{a^*}{u} = \frac{1}{M^*}$$

$$\begin{pmatrix} A \\ A^* \end{pmatrix}^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{2}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{2}{\gamma - 1}}M^{*2}} \\
M^{*2} = M^2 \frac{\frac{1}{2}(\gamma + 1)}{1 + \frac{1}{2}(\gamma - 1)M^2} \end{pmatrix} \Rightarrow$$

$$\left(\frac{A}{A^*}\right)^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{\gamma + 1}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{\gamma + 1}{\gamma - 1}}M^2}$$

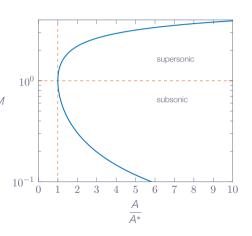
which is the area-Mach-number relation

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1} \right]^{(\gamma + 1)/(\gamma - 1)}$$



$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1} \right]^{(\gamma + 1)/(\gamma - 1)}$$

Note!
$$\frac{A}{A^*} = \frac{\rho^* u^*}{\rho u}$$

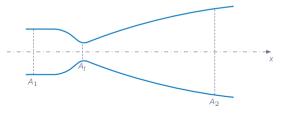


- Note 1 Critical conditions used here are those corresponding to isentropic flow. Do not confuse these with the conditions in the cases of one-dimensional flow with heat addition and friction
- Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both total and critical conditions are constant along streamlines unless shocks are present (then the flow is no longer isentropic)
- Note 3 The derived area-Mach-number relation is only valid for calorically perfect gas and for isentropic flow. It is not valid across a compression shock

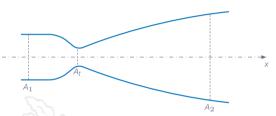
Nozzle Flow

Assumptions:

- 1. inviscid
- 2. steady-state
- 3. quasi-one-dimensional
- 4. calorically perfect gas



Sub-critical (non-choked) nozzle flow

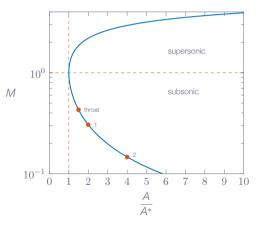


M < 1 at nozzle throat

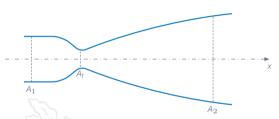
 $A_t > A^*$

 $M_1 < 1$

 $M_2 <$



Critical (choked) nozzle flow

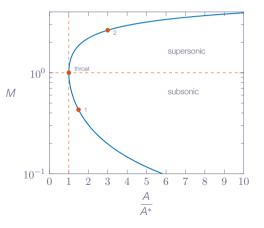


M=1 at nozzle throat

 $A_t = A^*$

 $M_1 < 1$

 $M_2 >$



Nozzle Flow

Choked nozzle flow (no shocks):

- \triangleright A^* is constant throughout the nozzle
- $ightharpoonup A_t = A^*$

 M_1 given by the subsonic solution of

$$\left(\frac{A_1}{A^*}\right)^2 = \left(\frac{A_1}{A_t}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma + 1} (1 + \frac{1}{2}(\gamma - 1)M_1^2) \right]^{\frac{\gamma + 1}{\gamma - 1}}$$

 M_2 given by the supersonic solution of

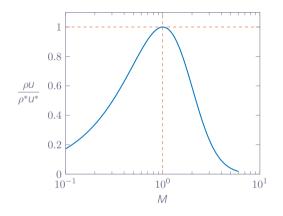
$$\left(\frac{A_2}{A^*}\right)^2 = \left(\frac{A_2}{A_t}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma+1} (1 + \frac{1}{2}(\gamma-1)M_2^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of throat and supersonic flow downstream of throat

$$\rho uA = \rho^* A^* u^* \Rightarrow \frac{A^*}{A} = \frac{\rho u}{\rho^* u^*}$$

From the area-Mach-number relation

$$\frac{A^*}{A} = \begin{cases} < 1 & \text{if} & M < 1\\ 1 & \text{if} & M = 1\\ < 1 & \text{if} & M > 1 \end{cases}$$



The maximum possible massflow through a duct is achieved when its throat reaches sonic conditions

For a choked nozzle:

$$\dot{m} = \rho_1 u_1 A_1 = \rho^* u^* A^* = \rho_2 u_2 A_2$$

$$\rho^* = \frac{\rho^*}{\rho_0} \rho_0 = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} \frac{\rho_0}{RT_0}$$

$$a^* = \frac{a^*}{a_0} a_0 = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{2}} \sqrt{\gamma RT_0}$$

$$\dot{m} = \frac{\rho_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

$$\dot{m} = \frac{\rho_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$

The maximum mass flow that can be sustained through the nozzle Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically perfect gas

Note! The massflow formula is valid even if there are shocks present downstream of throat!

How can we increase mass flow through nozzle?

- ightharpoonup increase p_o
- ightharpoonup decrease T_o
- ightharpoonup increase A_t
- ightharpoonup decrease R (increase molecular weight, without changing γ)