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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*
e oblique shocks in 2D*
f shock reflection at solid walls*
g contact discontinuities
h Prandtl-Meyer expansion fans in 2D
I detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

why do we get normal shocks in some cases and oblique shocks in other?



Roadmap - Oblique Shocks and Expansion Waves
[ Shock-expansion theory J

‘ Oblique shocks ]—>£)<—[ Expansion waves ]

[ Shock intersection ] [ Prandtl-Meyer expansion ]
t

[ Detached shocks ]
t

( Shock systems <—[ Pressure-deflection diagram ]
t

Solid boundary reflection 4—[ Mach reflection ]
\ t
\ Oblique shock relations <—[ The 0 — 8 — M relation ]




Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general
oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper
approach

many practical problems or subsets of problems may be analyzed in
two-dimensions

by going from one to two dimensions we will be able to introduce physical
processes important for compressible flows



Obligue Shocks and Expansion Waves - Assumptions

Supersonic

Steady-state
Two-dimensional

Inviscid flow (no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin = inviscid theory still
relevant!



Mach Wave

Sound waves emitted from A (speed of sound a)



Mach Waves

A Mach wave is an infinitely weak oblique shock

subsonic sonic supersonic
V<a V =a




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My =~ M,
Isentropic



Oblique Shocks

compression corner

M>1

\
\
\
\
\
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gradual compression



Obligue Shocks and Mach Waves

Sphere in,,high/l\//iach number flow.

=




Obligue Shocks and Mach Waves

oblique shocks :

. perforated plate
[ N
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Chapter 4.3
Obligue Shock Relations



Oblique Shocks

Two-dimensional steady-state flow

y Stationary shock
A

Flow condition

M>1
Flow condition

B>

Significant changes of flow properties from 1 to 2
M1 > 1.0, ﬁ > [, and Ml #MQ
Not isentropic



Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ X

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

u

My, = =L\ MM, sin(3) M
a
) .

Mp, = —= = Mysin(p — 6) My

as

Vi
ai
Vo
as



Obligue Shock Relations

Conservation of mass:
%fjjpd“//+@pv~nd820
Q oQ

Mass conservation for control volume €2:

0 — p1Uu1A + patA =0 =

p1ur = pals



Obligue Shock Relations

Conservation of momentum:
% {[f pvet7 + {f lo(v-m)v+ pn}aS = [[{ ptct7
Q Bl) o

Momentum in shock-normal direction:

0 — (p1Uf +pP1)A + (pau3 + P2)A =0 =

[ p1U; +P1 = paU3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— [)1U1W1A + PQUQWQA =0=



Obligue Shock Relations

Conservation of energy:
% jjf peod¥ + @ [phov - n] dS = ffj pof-vd¥
Q o0 Q

Energy equation applied to the control volume €:

1 1
0—prurfhr + §(U% +WD)JA + pausfhy + 5(“5 +W3)A=0=

1 1




Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M, and
My with M,

. M+ 12/ 1)
" 2y/(y - 1)ME, -1

Ratios such as pa/p1, p2/p1, and T, /T can be calculated using the relations for
normal shocks with My replaced by M,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,

What about the total pressure?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,

What about the total pressure?

Sy —S1 =Cpln <T02> —RIn (’OOQ> ={To, =To,} = —RIn <p02>

TO1 01 01

entropy is a thermodynamic flow property and sy — s7 is dictated by the shock
strength and thus the total pressure ratio is a function of the shock-normal Mach
number



Obligue Shock Relations

Note! total pressure is always calculated using the flow Mach number, not the
shock-normal Mach number

However, the ratio po, /po, May be calculated using the shock-normal Mach
number

So, be careful when using relations derived for normal shocks for oblique
shocks when it comes to total flow conditions...



Obligue Shock Relations

Poz _ Po; P2 P1

is calculated as:
Poa/Pox Po, P2 P1Po;

where

1002 P2 P1
1. —= =f(My), —= =f(M,,), and — = (M
o, (M) o (Mn,) Do, (M)

or alternatively

IOOQ P2 P1
2. —= =1fM,,), — =f(Mp,), and — =f(M
D2 ( /72) p1 ( f71) p01 ( f71)

Note! in the second case the total pressures are not the true total pressures of
the flow and therefore it is suggested to use the first approach



Deflection Angle (for the interested)




Deflection Angle (for the interested)

00 Us up
ow  w?+uz; w?riuj
Us(W? +U3) —uy(W? +u3) (up —ur)(W? —uqla)
20 2 (W2 2 =0= " A2 Y
(W2 +u3)(w? + uy) (W2 +u3)(W? + uy)

Two solutions:
us = Uy (no deflection)
w? = uyus (Max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

flow deflection

oblique shock (shock angle 3)

No deflection cases:

> normal shock
(reduced shock-normal velocity)

» Mach wave Vy
(unchanged shock-normal velocity) a*



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

- \JVE+ VP

fr— a*

Solutions to the left of the sonic line
are subsonic




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

[t is not possible to deflect the flow
more than Gmax




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle 6 < 0y ax,
there are two solutions

> strong shock solution

> weak shock solution
Weak shocks give lower losses and
therefore the preferred solution




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle s for a
given deflection angle ¢




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle 3 for a
given deflection angle ¢




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1
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The 0-3-M Relation

[t can be shown that

M3 sin? 3 — 1
tan@chotB( 1sin” /3 >

M2(~ + cos 28) + 2

which is the 8-3-M relation



The 0-3-Mach Relation

A relation between:
> flow deflection angle 6
> shock angle g
> upstream flow Mach number M,

M3 sin?(3) — 1

tan(f) = 2 cot(p) <M%(’Y + cos(20)) + 2

)

Note! in general there are two solutions
for a given M (or none)

50




The 0-3-Mach Relation

» There is a small region where we may find
weak shock solutions for which My < 1

» |In most cases weak shock solutions have
My > 1

» Strong shock solutions always have My < 1

> In practical situations, weak shock solutions
are most common

» Strong shock solution may appear in special
situations due to high back pressure, which
forces My < 1

50




The 0-3-M Relation

Note! In Chapter 3 we learned that the Mach number always reduces to subsonic
values behind a shock. This is true for normal shocks (shocks that are normal to the
flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.



The 6-5-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

0-3-M relation = g for given My and 6
B gives M, according to: My, = M; sin(3)

normal shock formula with M,, instead of M; =
M, (instead of Ms)

My given by My = My, / sin(8 — 6)

normal shock formula with M, instead of M; =
p2/p1, P2/pP1, etc

upstream conditions + p2/p1, P2/pP1, €tc =
downstream conditions



Chapter 4.4
Supersonic Flow over Wedges and
Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

Similar to wedge flow, we do get a constant-strength shock wave, attached at
the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

> The flow condition immediately downstream of the shock is uniform

> However, downstream of the shock the streamlines are curved and the flow
varies in a more complex manner (3D relieving effect - as R increases there is
more and more space around cone for the flow)

> (3 for cone shock is always smaller than that for wedge shock, if M is the same
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Chapter 4.6
Regular Reflection from a Solid
Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

M3 > 1
My > 1

.

Assumptions:
> steady-state inviscid flow
> weak shocks



Shock Reflection

first shock:
upstream condition:
My > 1, flow in x-direction
downstream condition:

weak shock = My > 1
deflection angle 6
shock angle :

second shock:
upstream condition:
same as downstream condition of first shock
downstream condition:

weak shock = M3z > 1
deflection angle 0
shock angle B2



Shock Reflection

Solution:
first shock:

> 3y calculated from 6-3-M relation for specified 6 and M, (weak solution)
» flow condition 2 according to formulas for normal shocks (M,, = M; sin(5;) and
M, = Mz sin(B1 — 0))

second shock:

> By calculated from 6-3-M relation for specified 6 and My (weak solution)
» flow condition 3 according to formulas for normal shocks (M,, = M sin(f2) and
M, = M sin(Bs — 0))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.11
Mach Reflection



Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see 6-3-M
relation)

My > 1




Mach Reflection

normal shock

/

slip line

reflected oblique shock
incident oblique shock

Mach reflection:
> appears when regular reflection is not possible
» more complex flow than for a regular reflection
> no analytic solution - numerical solution necessary



Obligue Shocks and Mach Waves

M1>M2

My > 1.0

01 =1f(My,p1), My =F(My,61,051)



Obligue Shocks and Mach Waves

p1 = 28°
M; =3.1

} =0 =~ 11.2°, My ~ 2.5



Obligue Shocks and Mach Waves

01 =0



Obligue Shocks and Mach Waves

M1 >M2 >M3
Ms > 1.0

B2 > B

Bo =f(Ma,0), M3 =1f(Ms,02,[2)

Note! Shock wave reflection at solid wall is not specular



Obligue Shocks and Mach Waves




Obligue Shocks and Mach Waves
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