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Chapter 3
One-Dimensional Flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Chapter 3.8
One-Dimensional Flow with Heat
Addition



One-Dimensional Flow with Heat Addition
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Pipe flow:
no friction
1D steady-state = all variables depend on x only
q is the amount of heat per unit mass added between 1 and 2
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Heat Addition

p1rur = paUs

p1U; + P1 = paU3 + P2

1 1
h1+§U%+q:h2+§U%

A

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = can be solved analytically



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = C,T):

1 1

1 1
q= (CpTg + 2u§> - (CpTl + 2u%>

[ q=Cp(To, — To,) ]

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:

P2 —pP1 = /J1U% - 02U§
{pu2 = pa’M? = prZ = “/PMZ}

p2 — p1 = YP1M; — ypaM3 =

P2 1—&-7/\4%
pi  1+~M3




Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same”?



Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same?

Answer: There is no difference. If we would insert My = f(M;) from the normal
shock relations, we would end up with the normal shock relation for py/p;.

The relation for My = f(M;) for normal shocks was derived assuming adiabatic
flow



One-Dimensional Flow with Heat Addition

ldeal gas law:
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:
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One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:
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One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M = 1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas
for some limiting heat addition g*, the flow will eventually become sonic M =1

|”

Note! The (*) condition in this context is not the same as the “critical” condition

discussed for isentropic flow



One-Dimensional Flow with Heat Addition

p2 1+ M

p1 1+ M3

Calculate the ratio between the pressure at a specific location in the flow p and
the pressure at sonic conditions p*

p1=p, My =M, py=p*, and My =1

p* _1+7M2

p 147




One-Dimensional Flow with Heat Addition
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One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*
o



One-Dimensional Flow with Heat Addition

©, ©) ®
My, ————— M
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— q —>
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Note! for a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Note! it is theoretically possible to Rayleigh curve ('Y - 14)
heat an initially subsonic flow to reach 1.2
sonic conditions and then continue to : ! !
accelerate the flow by cooling —M<1

1H—M>1

e /M = 1 (sonic point)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904

H 0.6
o 0.4
As vy+1 \
AS="—"=In |M?* [ L —
S G, n (1+7M2) 0.2
U - 05 0
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One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system
studied, the system entropy would increase both when adding and removing
heat.



One-Dimensional Flow with Heat Addition

M < 1: Adding heat will M > 1: Adding heat will
increase M decrease M
decrease p increase p
increase T, increase T,
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (g) and heat per unit surface area and

_—
X

Pipe with arbitrary cross section (constant in x):

mass flow through pipe m
axial length of pipe L
circumference of pipe b = 2xr

g LbC?Wa//
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Chapter 3.9
One-Dimensional Flow with Friction



One-Dimensional Flow with Friction

inviscid flow with friction?!



One-Dimensional Flow with Friction

Thermally insulated walls

Pipe flow:
adiabatic (g = 0)
cross section area A is constant
average all variables in each cross-section = only x-dependence
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
@ 7wdS = b / e s
0

o0

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

p1rur = paUs

4 L
p1UT +p1 — D/ TwOX = palis + P2
0

1 1




One-Dimensional Flow with Friction

Tw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

4 d 4
d(pu® +p) = —pTwax & &(pUZ +P) =~ 5w



One-Dimensional Flow with Friction

From the continuity equation we get

d
Uy = paly = const = —(pu) =0
p1ruy = paUz O,X(/))

Writing out all terms in the momentum equation gives

d dp 4 du dp

g( U2 +p) = ud—u+u—( U)+— = —=Tw = pu— + —
ax P TR = U P T o T T T Y T ax
~—

=0

Common approximation for 7 :

Ol =

Tw



One-Dimensional Flow with Friction

Energy conservation:

hO] :h02 = CKho — 0



One-Dimensional Flow with Friction

Summary: p .
OT(PU) =
du dp 2 5
Uax Tax — ™7
d
&ho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = Can be solved analytically (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

Ma

/‘X? 4f 1 y+1 M?
X

—1
1+ 1= me
2 M



One-Dimensional Flow with Friction

Calorically perfect gas and adiabatic flow:

To  TaTo,To T2To _ 2+ (y— 1M}
—=——"—={lp=const} = —— =
Tl T02 Tol Tl { ¢ } 7-o Tl 2+ (7 - 1>M%
Continuity:
P2 uq a1M1 Tl Ml
2 _ 71 N Ay = ol G B i
P1 Us agMQ {a v } T2 <M2
Perfect gas:
P2 p2l2
P2 _p— pRT = 22
P1 tp=pRT} p1lh

Total pressure:
Poy _ Po, P2 P1

IO01 p2 pl 1001



One-Dimensional Flow with Friction

Calorically perfect gas:

Ty 24 (y—1M; p2
T1 24+ (’Y — 1)M% P1

p1 My

py My {2+(v—1)/w%]1/2 Poy




One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

My will increase as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Initially supersonic flow (M7 > 1)
My will decrease as L increases
for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

|”

Note! The (*) condition in this context is not the same as the “critical” condition

discussed for isentropic flow



One-Dimensional Flow with Friction

T (a+D p 12+ (¢ —1m)?
T 24 (y—1)M? p* M v+1

p* M

p 1 v+1 1/2 Po 1 [24 (v— 1M CEsy
2+ M2 o5 M

(v—1 v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

A (R S e Y

/L* Af 1 y+1 M?
o D YM? 2y 1+771M2
2

M
where L* is the tube length needed to change current state to sonic conditions

Let f be the average friction coefficient over the length L* =

4fL* 1M +7+11n (v + 1)M?
D M2 27y 2+ (y—1)M?

Turbulent pipe flow — f ~ 0.005 (Re > 1()5, roughness ~ 0.001D)



One-Dimensional Flow with Friction
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Fanno curve (y = 1.4)

—M< 1
—M>1
e M = 1 (sonic point)




One-Dimensional Flow with Friction

M < 1: Friction will M > 1: Friction will
increase M decrease M
decrease p increase p
decrease T increase T
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses
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