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One-Dimensional Flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real
gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic



Roadmap - One-dimensional Flow

Conservation equations
on integral form

f
[ Governing equations ’ | Speed of sound |

I '

i} Auxiliary relations

t

Normal shock relations | ( )

(stationary shocks) Alternative forms. of
the energy equation

l L T )

1D flow with heat addition |

(Rayleigh line flow) [ Total and critical conditions ]

.

1D flow with friction
(Fanno line flow)




Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the
complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart



Roadmap - One-dimensional Flow

Conservation equations
on integral form

f
[ Governing equations ’ | Speed of sound |

I '

? Auxiliary relations

t

Normal shock relations | ( )

(stationary shocks) Alternative forms. of
the energy equation

l L T )

1D flow with heat addition |

(Rayleigh line flow) [ Total and critical conditions ]

.

1D flow with friction
(Fanno line flow)




Chapter 3.2
One-Dimensional Flow Equations



One-Dimensional Flow Equations

shock
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Assumptions:
all flow variables only depend on x
velocity aligned with x-axis
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One-Dimensional Flow Equations
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Control volume approach:

Define a rectangular control volume around shock, with upstream conditions
denoted by 1 and downstream conditions by 2



One-Dimensional Flow Equations

Conservation of mass:

%jfjﬁd“f/—&—ﬁpvmﬁszoémul = palls
Q o0

=0 ngzAfplulA

Conservation of momentum:

d
o jf pvd“//+@ [p(v-n)v +pn]dS = 0 = piu? +p1 = pas + Po
Q o9

=0 (p2u3+p2)A—(p1ui+p1)A



One-Dimensional Flow Equations

Conservation of energy:

% jfj peod¥ + (ﬁﬁ [phov - n]dS = 0 = piurho,
Q o2

=0 thOQUQAfplholulA

Using the continuity equation this reduces to

h01 = h02
or, if written out

1 1
hy + §U% =hy + iug

= pauz2ho,



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Note! These equations are valid regardless of whether or not there is a shock
inside the control volume



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pgug + P2

1 1
hy + §U% =hy + §U%

Valid for all gases!
General gas = Numerical solution necessary
Calorically perfect gas = Can be solved analytically
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Chapter 3.3
Speed of Sound and Mach Number



Speed of Sound

Sound wave / acoustic perturbation

wave front

a a-+da
 —_— —_—
p p+dp
P p+dp
T T+dT




Speed of Sound

Conservation of mass gives

pa = (p+dp)(a+da) = pa+ pda+ dpa+ dpda

products of infinitesimal quantities are removed =

pda+dpa =0

solve for da =



Speed of Sound

The momentum equation evaluated over the wave front gives

p+pa’ = (p+dp) + (p+dp)(a+da)?

Again, removing products of infinitesimal quantities gives

dp = —2apda — a’dp

Solve for da =

_ dp+a*dp

da
—2ap



Speed of Sound

Continuity equation:

d
da=-a-L
P
Momentum equation:
2
da — ap +a*dp
—2ap

dp _ dp + a%dp 22 dp

P —2ap dp



Speed of Sound

Sound waves are small perturbations in p, v, p, T (with constant entropy s)
propagating through gas with speed a

8,0)
a’= (-
(30 s

(valid for all gases)



Speed of Sound

Compressibility and speed of sound:

()
L L(op
T p\dp/,

insert in relation for speed of sound

/1
ap s PTs PTs

from before we have

(valid for all gases)



Speed of Sound

Calorically perfect gas:

Isentropic process = p = Cp? (where C is a constant)

which implies



Speed of Sound

Sound wave / acoustic perturbation:

a weak wave
propagating through gas at speed of sound
small perturbations in velocity and thermodynamic properties

isentropic process



Mach Number

The mach number, M, is a local variable
Vv
M= —
a
where

v =lv|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted
by subscript oo



Mach Number
For a fluid element moving along a streamline, the kinetic energy per unit mass and

internal energy per unit mass are V2/2 and e, respectively

vie _vEe o VA2 (/Y A=) e
e CJT ART/(y—1) a%/(y—-1) 2

i.e. the Mach number is a measure of the ratio of the fluid motion (kinetic energy) and
the random thermal motion of the molecules (internal energy)



Physical Consequences of Speed of Sound

Sound waves is the way gas molecules convey information about what is
happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

In supersonic flow, sound waves are unable to travel upstream, since v > a




Physical Consequences of Speed of Sound

compression shock

e compression shock

oblique
normal oblique shock
shock shock



Roadmap - One-dimensional Flow

nservation tion ) . S ee%ound
Conservation equations [ Govem%uahons ’ P

on integral form
T :

? Auxiliary relations

t

Normal shock relations | ( )

(stationary shocks) Alternative forms. of
the energy equation

l L T )

1D flow with heat addition |

(Rayleigh line flow) [ Total and critical conditions ]

.

1D flow with friction
(Fanno line flow)




Chapter 3.4
Some Conveniently Defined Flow
Parameters



Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we get
the so-called total conditions

(total pressure py, total temperature T, total density po)

Since the process is isentropic, we have (for calorically perfect gas)
0
5-()- ()
P P T

Note! v, = 0 and M, = 0 by definition



Critical Conditions

If we accelerate/decelerate the flow adiabatically to the sonic point, where v = a, we
obtain the so-called critical conditions, e.g. p*, T*, p*, a*

where, by definition, v* = a*

As for the total conditions, if the process is also reversible (entropy is preserved) we
obtain the relations (for calorically perfect gas)

p \p) \T



Total and Critical Conditions

For any given steady-state flow and location, we may think of an imaginary isentropic
stagnation process or an imaginary adiabatic sonic flow process

We can compute total and critical conditions at any point

They represent conditions realizable under an isentropic/adiabatic deceleration
or acceleration of the flow

Some variables like p, and T, will be conserved along streamlines under certain
conditions

T, is conserved along streamlines if the flow is adiabatic

conservation of p, requires the flow to be isentropic (no viscous losses or shocks)



Total and Critical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,
the total and critical conditions are results of an imaginary isentropic/adiabatic
process at one point in the flow.

However, with isentropic flow Ty, po, po, €tC are constants

In order for T, to be constant it is only required that the flow is adiabatic.



Total and Critical Conditions
If A and B are two locations in a flow

Isentropic flow:
TOA - TOB and :OOA - /OOB

Adiabatic flow (not isentropic):

TOA - TOB and IOOA # IOOB

The flow is not isentropic nor adiabatic:

To, # Tog @nd po, # Pog
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Chapter 3.5
Alternative Forms of the Energy
Equation



Alternative Forms of the Energy Equation
For steady-state adiabatic flow, we have already shown that conservation of energy
gives that total enthalpy, h,, is constant along streamlines

For a calorically perfect gas we have h = C, T which implies
1 2

To V2
o0y 7
T TaeT

R
Inserting Cp, = A ; and a? = yRT we get
/y J—

{TTO:1+;(7—1)M2}




Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

TO 1 2
O L Z(y—1M
T +2(7 )

Note! tabulated values for these relations can be found in Appendix A.1




The Characteristic Mach Number

%4
*
M:ai*

For a calorically perfect gas (1D/2D/3D flows)

, 2
(v +1)/M**] — (y = 1)

This relation between M and M* gives:
M =0&M=0

M =1eM=1 M*—M/’y—ﬂwhenl\ﬂ%oo
M <1eM<1 7-1

ME>1eM>1
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Chapter 3.6
Normal Shock Relations



One-Dimensional Flow Equations

piUy = paUs

mU? +pP1 = P2U% + P2

1 1
hy + §U? =hy + iug




Normal Shock Relations

Calorically perfect gas

h=C,T, p=pRT

with constant C,

Assuming that state 1 is known and state 2 is unknown
5 unknown variables: ps, Ua, P2, ha, To
5 equations

= solution can be found



Normal Shock Relations

Divide the momentum equation by piu;

1
— (,01 + ﬂ1U%) = (,02 + PQU%)

p1us p1Uy

{p1U1 = P2U2} =

b oy L 2
P (,01 + /)1U1) = ool (,02 + qug)



Normal Shock Relations

PP
piur - palz
Recall thata = 4/ @, which gives
P
2 2
a a
il S B
w1 U2

Now, we will make use of the fact that the flow is adiabatic and thus a* is constant



Normal Shock Relations
Energy equation:

1 1

_ IR
{Cp_v—l}j

(-1 21T o1y Tt

{a:\/ﬁ}:

2 2
a a
1 2 2 2

1 1
—ut = —u
DR CE




Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,
the local velocity u, and the speed of sound at sonic conditions a* by inserting in the
equation on the previous slide. uy = u,a; =a, Uy =as =a* =

32 N 1u2 B 8*2 N 1a*2
(v=1) 2 (v=1) 2
oY+l o0 y—1,
a’=-"—a"*-'—u
2 2

Evaluated in station 1 and 2, this gives

1 —1
%:’Y—i— 8*2 Y 2

a Uy

2 2

o Y+l o -1,
aQZTa - 2 U2




Normal Shock Relations

. . 1 -1 1 —1
Now, inserting {a% _ Ot e ] uf} and {a% _ Yt e ug}
2 2 2

: a? 1, a3 1, .
iN<——+ —uy = —u5 » and solve for a* gives
{(7 T oo Tt J

[ a*? = uyUs ]




Normal Shock Relations

a*? = UjUs

A.K.A. the Prandtl relation. Divide by a*? on both sides =

ui u
1= 222 = MM
a* a*

Together with the relation between M and M*, this gives

1
1+ 5(7 — 1)M?

1
YM; — 5(7 - 1)

M3 =




Normal Shock Relations

Continuity equation and a*2 = ujus

2 2
p2_ Ui _ U Uy

*2
=l T ax2 Ml
P1 Uz urUs a

which gives

p2 _ U _ (Y DME
pr Uz 24 (y—1)M7




Normal Shock Relations

Now, once again back to the momentum equation

P2 —pP1 = PlU% - P2U% = {p1u1 = pauz} = p1u1 (U1 — U2)

2 2
pz_l_mul(l_w)_{a_ V'O7M2—U}—yl\/lf<1—u?>
P1 P1 ui P a? Ui

with the expression for us /uy derived previously, this gives

[’321+27(M§1)}

P1 v+1




Normal Shock Relations

Are the normal shock relations valid for My < 1.07?

Mathematically - yes!

Physically - ?



Normal Shock Relations

Let’s have a look at the 277 law of thermodynamics

T2 P2
-5 =Cpln—=—-RIn—=
Sy —81 =Cp 1r17_1 n X

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

S3—51=Cpln [(1 - ’ﬁjl(/\ﬂ% - 1)> (H(’Y—l)/\ﬁ)} +

(v + 1)M?
2y 2
Rln (1 M 1)>



Normal Shock Relations

Entropy generation (y = 1.4)

100

My =1 = As = 0 (Mach wave) !

M; < 1 = As < 0 (not physical) As
M >1=As>0 —100

~9200 1 ! ! ! !
04 06 08 1 12 14 16 18 2

My




Normal Shock Relations
Normal shock = M; > 1
MiM5 =1
My >1=M;>1
* 1 *
MQ = Mif = M2 < 1
M; <1l=M;<1

After a normal shock the Mach number must be lower than 1.0



Normal Shock Relations

Lo 2
Ve 1+2(7 )M

2 1
W2 - Ly - 1)

M1 = 10:>M2 =1.0

My >1.0= My <1.0

Downstream Mach Number (v = 1.4)

1.2 T T T T

9 | | | |
0 2 4 6 8 10

Mi —oco=My—+/(y—1)/(2y) ={y=14} =0.378



Normal Shock Relations

Pressure ratio (y = 1.4)
20 T T T

P24 2 -
o o MY P2

P1

Note! from before we know that M; must be greater than 1.0, which means that
p2/p1 must be greater than 1.0



Normal Shock Relations

My > 1.0 gives My < 1.0, po > p1, P2 > p1,and To > T

What about T, and py?

2 2
Energy equation: CpT1 + % =Cpla+ UQ—2 = Cplo, =CpTo,

calorically perfect gas = T, = To,

or more general (as long as the shock is stationary): ho, = ho,



Normal Shock Relations

279 law of thermodynamics and isentropic deceleration to zero velocity (As
unchanged since isentropic) gives

To Po Po
So—S1=Coln—=—-RIn—=2={T,, =Ty,} = —RIn—=
’ ! P Tol pOl { o 02} pOl

Pos _ o=(s2-s1)/R
pO1

i.e. the total pressure decreases over a normal shock



Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

p— 1
Tor = T, Lt oy — DM
M= —2—
8oy = o, WM =50 =1)
aj=a,=a" 2
1= L R Sy
P1 v+1

2
uils = a* (the Prandtl relation)
p2 Ui (y+ DM}

pr Uz 24 (y— DM
2M; To _P2p1
Ti  p1p2



Normal Shock Relations

As the flow passes a stationary normal shock, the following
changes will take place discontinuously across the shock:

p increases
p increases
U decreases
M decreases (from M > 1to M < 1)
T increases

po decreases (due to shock loss)
S increases (due to shock loss)
To unaffected




Normal Shock Relations

Normal shock relations (y = 1.4)

—p2/;m
—Ts/Th
p2/pP1
_DO‘Z/DO1
— M,
—AY/AL




Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for M; <5
(approximately) for air at standard conditions

Calorically perfect gas = Shock strength depends on My only

Thermally perfect gas = Shock strength depends on M; and T;

General real gas (non-perfect) = Shock strength depends on My, p1, and T;



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?7



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 27?

Answer: We did not (explicitly)



Normal Shock Relations

The derivation is based on the fact that there should be a change in flow
properties between 1 and 2

We are assuming steady state conditions
We have said that the flow is adiabatic (no added or removed heat)
There is no work done and no friction added

A normal shock is the solution provided by nature (and math) that fulfill these
requirements!



Chapter 3.7
Hugoniot Equation



Hugoniot Equation

Starting point: governing equations for normal shocks

p1ur = paUsz

p1UT +P1 = paU3 + P2

1 1

Eliminate u; and us gives:

— 1 1
/’)2—/’)1:'02 P1 <+>
2 p1 - P2



Hugoniot Equation

Now, insert h = e +p/p gives

+ 1 1 +
6261:/132/31():;32 pl(VlfVQ)
P P2

which is the Hugoniot relation



Stationary Normal Shock in One-Dimensional Flow

Normal shock:

6y — 0, = P2 J2r,01 (va — 1)
More effective than isentropic
process

Gives entropy increase

Isentropic process:
de = —pdv

More efficient than normal shock
process

see figure 3.11 p. 100



The Rankine-Hugoniot relation

v+1 P2
pp 1H (H) (p)

v+l p2
e (25) + ()

The isentropic relation

P2 _ <D2>” !
P1 P1

P1

ot

o~

Stationary Normal Shock in One-Dimensional Flow

Pressure ratio (y = 1.4)

| | — isentropic A
— Hugoniot
| | | |
2 4 6 8
P2
P1

10



Normal Shock - Graphical Solution (for the interested)

+
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7 Rp
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continuity and momentum gives:

P2 —pP1

vy =11

Downstream pressure (y = 1.4)

— Hugoniot
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Normal Shock - Graphical Solution (for the interested)

+
eg—elzp12p2(y — )
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7 Rp
B p
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continuity and momentum gives:

P2 —pP1

vy =11

Downstream pressure (y = 1.4)
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Normal Shock - Graphical Solution (for the interested) I—8

P1+ P2 Downstream pressure (y = 1.4)
€9 — €1 = 5 (V — VQ)
(v2,p2) — Hugoniot
P ‘ — isentropic

P2 —P1

vy =11

continuity and momentum gives:
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