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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and real

gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

c 1D flow with heat addition*

d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
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Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the

complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart

Niklas Andersson - Chalmers 6 / 74
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Chapter 3.2

One-Dimensional Flow Equations
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One-Dimensional Flow Equations

1

u1

ρ1, p1, T1

2

u2

ρ2, p2, T2

shock

x

Assumptions:

all flow variables only depend on x

velocity aligned with x-axis

Niklas Andersson - Chalmers 9 / 74



One-Dimensional Flow Equations

shock

x

1 2

∂Ω

Ω s
u
rf
a
c
e
a
re
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n

Control volume approach:

Define a rectangular control volume around shock, with upstream conditions

denoted by 1 and downstream conditions by 2
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One-Dimensional Flow Equations

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸
=0

+
{

∂Ω

ρv · ndS︸ ︷︷ ︸
ρ2u2A−ρ1u1A

= 0 ⇒ ρ1u1 = ρ2u2

Conservation of momentum:

d

dt

y

Ω

ρvdV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρ(v · n)v + pn]dS︸ ︷︷ ︸
(ρ2u22+p2)A−(ρ1u21+p1)A

= 0 ⇒ ρ1u
2
1 + p1 = ρ2u

2
2 + p2
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One-Dimensional Flow Equations

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸
=0

+
{

∂Ω

[ρhov · n]dS︸ ︷︷ ︸
ρ2ho2u2A−ρ1ho1u1A

= 0 ⇒ ρ1u1ho1 = ρ2u2ho2

Using the continuity equation this reduces to

ho1 = ho2

or, if written out

h1 +
1

2
u21 = h2 +

1

2
u22
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Summary:

Note! These equations are valid regardless of whether or not there is a shock

inside the control volume
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Summary:

Valid for all gases!

General gas ⇒ Numerical solution necessary

Calorically perfect gas ⇒ Can be solved analytically

Niklas Andersson - Chalmers 13 / 74



Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
�
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Chapter 3.3

Speed of Sound and Mach Number
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Speed of Sound

Sound wave / acoustic perturbation

a a + da

p

ρ

T

p + dp

ρ + dρ

T + dT

1 2

wave front

Niklas Andersson - Chalmers 16 / 74



Speed of Sound

Conservation of mass gives

ρa = (ρ+ dρ)(a+ da) = ρa+ ρda+ dρa+ dρda

products of infinitesimal quantities are removed ⇒

ρda+ dρa = 0

solve for da ⇒

da = −adρ
ρ
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Speed of Sound

The momentum equation evaluated over the wave front gives

p+ ρa2 = (p+ dp) + (ρ+ dρ)(a+ da)2

Again, removing products of infinitesimal quantities gives

dp = −2aρda− a2dρ

Solve for da ⇒

da =
dp+ a2dρ

−2aρ
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Speed of Sound

Continuity equation:

da = −adρ
ρ

Momentum equation:

da =
dp+ a2dρ

−2aρ

−adρ
ρ

=
dp+ a2dρ

−2aρ
⇒ a2 =

dp

dρ
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Speed of Sound

Sound waves are small perturbations in ρ, v, p, T (with constant entropy s)
propagating through gas with speed a

a2 =

(
∂p

∂ρ

)
s

(valid for all gases)
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Speed of Sound

Compressibility and speed of sound:

from before we have

τs =
1

ρ

(
∂ρ

∂p

)
s

insert in relation for speed of sound

a2 =

(
∂p

∂ρ

)
s

=
1

ρτs
⇒ a =

√
1

ρτs

(valid for all gases)
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Speed of Sound

Calorically perfect gas:

Isentropic process ⇒ p = Cργ (where C is a constant)

a2 =

(
∂p

∂ρ

)
s

= γCργ−1 =
γp

ρ

which implies

a =

√
γp

ρ
⇒ a =

√
γRT
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Speed of Sound

Sound wave / acoustic perturbation:

a weak wave

propagating through gas at speed of sound

small perturbations in velocity and thermodynamic properties

isentropic process
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Mach Number

The mach number, M, is a local variable

M =
v

a

where

v = |v|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted

by subscript ∞

M∞ =
v∞
a∞
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Mach Number

For a fluid element moving along a streamline, the kinetic energy per unit mass and

internal energy per unit mass are V2/2 and e, respectively

V2/2

e
=

V2/2

CvT
=

V2/2

RT/(γ − 1)
=

(γ/2)V2

a2/(γ − 1)
=

γ(γ − 1)

2
M2

i.e. the Mach number is a measure of the ratio of the fluid motion (kinetic energy) and

the random thermal motion of the molecules (internal energy)

Niklas Andersson - Chalmers 25 / 74



Physical Consequences of Speed of Sound

Sound waves is the way gas molecules convey information about what is

happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

In supersonic flow, sound waves are unable to travel upstream, since v > a

v = 0 v < a v > a
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Physical Consequences of Speed of Sound

M∞ < 1

M∞ > 1

compression shock

compression shock

oblique

shock

oblique

shocknormal

shock
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Roadmap - One-dimensional Flow

Governing equations

Normal shock relations

(stationary shocks)

1D flow with heat addition

(Rayleigh line flow)

1D flow with friction

(Fanno line flow)

Auxiliary relations

Speed of sound

Alternative forms of

the energy equation

Total and critical conditions

Conservation equations

on integral form
�

�
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Chapter 3.4

Some Conveniently Defined Flow

Parameters
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Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we get

the so-called total conditions

(total pressure po, total temperature To, total density ρo)

Since the process is isentropic, we have (for calorically perfect gas)

po

p
=

(
ρo
ρ

)γ

=

(
To

T

) γ
γ−1

Note! vo = 0 and Mo = 0 by definition
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Critical Conditions

If we accelerate/decelerate the flow adiabatically to the sonic point, where v = a, we

obtain the so-called critical conditions, e.g. p∗, T∗, ρ∗, a∗

where, by definition, v∗ = a∗

As for the total conditions, if the process is also reversible (entropy is preserved) we

obtain the relations (for calorically perfect gas)

p∗

p
=

(
ρ∗

ρ

)γ

=

(
T∗

T

) γ
γ−1
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Total and Critical Conditions

For any given steady-state flow and location, we may think of an imaginary isentropic

stagnation process or an imaginary adiabatic sonic flow process

We can compute total and critical conditions at any point

They represent conditions realizable under an isentropic/adiabatic deceleration

or acceleration of the flow

Some variables like po and To will be conserved along streamlines under certain

conditions

To is conserved along streamlines if the flow is adiabatic

conservation of po requires the flow to be isentropic (no viscous losses or shocks)
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Total and Critical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,

the total and critical conditions are results of an imaginary isentropic/adiabatic

process at one point in the flow.

However, with isentropic flow To, po, ρo, etc are constants

In order for To to be constant it is only required that the flow is adiabatic.
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Total and Critical Conditions

If A and B are two locations in a flow

1. Isentropic flow:

ToA = ToB and poA = poB

2. Adiabatic flow (not isentropic):

ToA = ToB and poA 6= poB

3. The flow is not isentropic nor adiabatic:

ToA 6= ToB and poA 6= poB
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Roadmap - One-dimensional Flow
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Chapter 3.5

Alternative Forms of the Energy

Equation
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Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that conservation of energy

gives that total enthalpy, ho, is constant along streamlines

For a calorically perfect gas we have h = CpT which implies

CpT +
1

2
v2 = CpTo

To

T
= 1 +

v2

2CpT

Inserting Cp =
γR

γ − 1
and a2 = γRT we get

To

T
= 1 +

1

2
(γ − 1)M2
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Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

To

T
= 1 +

1

2
(γ − 1)M2

ρo
ρ

=

(
To

T

) 1
γ−1

po

p
=

(
To

T

) γ
γ−1

(
a∗

ao

)2

=
T∗

To
=

2

γ + 1

ρ∗

ρo
=

(
2

γ + 1

) 1
γ−1

p∗

po
=

(
2

γ + 1

) γ
γ−1

Note! tabulated values for these relations can be found in Appendix A.1
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The Characteristic Mach Number

M∗ ≡ v

a∗

For a calorically perfect gas (1D/2D/3D flows)

M2 =
2[

(γ + 1)/M∗2
]
− (γ − 1)

This relation between M and M∗ gives:

M∗ = 0 ⇔M = 0

M∗ = 1 ⇔M = 1

M∗ < 1 ⇔M < 1

M∗ > 1 ⇔M > 1

M∗ →
√

γ + 1

γ − 1
when M → ∞
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Roadmap - One-dimensional Flow
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Chapter 3.6

Normal Shock Relations
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One-Dimensional Flow Equations

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22
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Normal Shock Relations

Calorically perfect gas

h = CpT , p = ρRT

with constant Cp

Assuming that state 1 is known and state 2 is unknown

5 unknown variables: ρ2, u2, p2, h2, T2

5 equations

⇒ solution can be found
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Normal Shock Relations

Divide the momentum equation by ρ1u1

1

ρ1u1

(
p1 + ρ1u

2
1

)
=

1

ρ1u1

(
p2 + ρ2u

2
2

)
{ρ1u1 = ρ2u2} ⇒

1

ρ1u1

(
p1 + ρ1u

2
1

)
=

1

ρ2u2

(
p2 + ρ2u

2
2

)
p1

ρ1u1
− p2

ρ2u2
= u2 − u1
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Normal Shock Relations

p1

ρ1u1
− p2

ρ2u2
= u2 − u1

Recall that a =

√
γp

ρ
, which gives

a21
γu1

− a22
γu2

= u2 − u1

Now, we will make use of the fact that the flow is adiabatic and thus a∗ is constant
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Normal Shock Relations

Energy equation:

CpT1 +
1

2
u21 = CpT2 +

1

2
u22{

Cp =
γR

γ − 1

}
⇒

γRT1
(γ − 1)

+
1

2
u21 =

γRT2
(γ − 1)

+
1

2
u22{

a =
√
γRT

}
⇒

a21
(γ − 1)

+
1

2
u21 =

a22
(γ − 1)

+
1

2
u22
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Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,

the local velocity u, and the speed of sound at sonic conditions a∗ by inserting in the
equation on the previous slide. u1 = u, a1 = a, u2 = a2 = a∗ ⇒

a2

(γ − 1)
+

1

2
u2 =

a∗2

(γ − 1)
+

1

2
a∗2

a2 =
γ + 1

2
a∗2 − γ − 1

2
u2

Evaluated in station 1 and 2, this gives

a21 =
γ + 1

2
a∗2 − γ − 1

2
u21

a22 =
γ + 1

2
a∗2 − γ − 1

2
u22
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Normal Shock Relations

Now, inserting

{
a21 =

γ + 1

2
a∗2 − γ − 1

2
u21

}
and

{
a22 =

γ + 1

2
a∗2 − γ − 1

2
u22

}

in

{
a21

(γ − 1)
+

1

2
u21 =

a22
(γ − 1)

+
1

2
u22

}
and solve for a∗ gives

a∗2 = u1u2
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Normal Shock Relations

a∗2 = u1u2

A.K.A. the Prandtl relation. Divide by a∗2 on both sides ⇒

1 =
u1

a∗
u2

a∗
= M∗

1M
∗
2

Together with the relation between M and M∗, this gives

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)
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Normal Shock Relations

Continuity equation and a∗2 = u1u2

ρ2
ρ1

=
u1

u2
=

u21
u1u2

=
u21
a∗2

= M∗
1
2

which gives

ρ2
ρ1

=
u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1
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Normal Shock Relations

Now, once again back to the momentum equation

p2 − p1 = ρ1u
2
1 − ρ2u

2
2 = {ρ1u1 = ρ2u2} = ρ1u1(u1 − u2)

p2

p1
− 1 =

ρ1u
2
1

p1

(
1− u2

u1

)
=

{
a =

√
γp

ρ
, M2 =

u2

a2

}
= γM2

1

(
1− u2

u1

)
with the expression for u2/u1 derived previously, this gives

p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1)
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Normal Shock Relations

Are the normal shock relations valid for M1 < 1.0?

Mathematically - yes!

Physically - ?
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Normal Shock Relations

Let’s have a look at the 2nd law of thermodynamics

s2 − s1 = Cp ln T2

T1
− R ln p2

p1

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

s2 − s1 = Cp ln
[(

1 +
2γ

γ + 1
(M2

1 − 1)

)(
2 + (γ − 1)M2

1

(γ + 1)M2
1

)]
+

− R ln
(
1 +

2γ

γ + 1
(M2

1 − 1)

)
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Normal Shock Relations

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−100

0

100

M1

∆s

Entropy generation (γ = 1.4)

M1 = 1 ⇒ ∆s = 0 (Mach wave)

M1 < 1 ⇒ ∆s < 0 (not physical)

M1 > 1 ⇒ ∆s > 0
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Normal Shock Relations

Normal shock ⇒ M1 > 1

M∗
1M

∗
2 = 1

M1 > 1 ⇒ M∗
1 > 1

M∗
2 =

1

M∗
1

⇒ M∗
2 < 1

M∗
2 < 1 ⇒ M2 < 1

After a normal shock the Mach number must be lower than 1.0
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Normal Shock Relations

2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

M1

M2

Downstream Mach Number (γ = 1.4)

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

M1 = 1.0 ⇒ M2 = 1.0

M1 > 1.0 ⇒ M2 < 1.0

M1 → ∞ ⇒ M2 →
√

(γ − 1)/(2γ) = {γ = 1.4} = 0.378
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Normal Shock Relations

0 1 2 3 4
−5

0

5

10

15

20

M1

p2

p1

Pressure ratio (γ = 1.4)

p2

p1
= 1 +

2γ

γ + 1

(
M2

1 − 1
)

Note! from before we know that M1 must be greater than 1.0, which means that

p2/p1 must be greater than 1.0
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Normal Shock Relations

M1 > 1.0 gives M2 < 1.0, ρ2 > ρ1, p2 > p1, and T2 > T1

What about To and po?

Energy equation: CpT1 +
u21
2

= CpT2 +
u22
2

⇒ CpTo1 = CpTo2

calorically perfect gas ⇒ To1 = To2

or more general (as long as the shock is stationary): ho1 = ho2
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Normal Shock Relations

2nd law of thermodynamics and isentropic deceleration to zero velocity (∆s

unchanged since isentropic) gives

s2 − s1 = Cp ln To2
To1

− R ln po2
po1

= {To1 = To2} = −R ln po2
po1

po2
po1

= e−(s2−s1)/R

i.e. the total pressure decreases over a normal shock
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Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

To1 = To2

ao1 = ao2

a∗1 = a∗2 = a∗

u1u2 = a∗2 (the Prandtl relation)

M∗
2 =

1

M∗
1

M2
2 =

1 +
1

2
(γ − 1)M2

1

γM2
1 −

1

2
(γ − 1)

p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1)

ρ2
ρ1

=
u1

u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

T2

T1
=

p2

p1

ρ1
ρ2
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Normal Shock Relations

As the flow passes a stationary normal shock, the following

changes will take place discontinuously across the shock:

ρ increases

p increases

u decreases

M decreases (from M > 1 to M < 1)
T increases

po decreases (due to shock loss)

s increases (due to shock loss)

To unaffected
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Normal Shock Relations

1 1.5 2 2.5 3 3.5 4
0

2

4

6

M1

Normal shock relations (γ = 1.4)

ρ2/ρ1
T2/T1
p2/p1
po2/po1
M2

A∗
2/A

∗
1

Niklas Andersson - Chalmers 62 / 74



Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for M1 ≤ 5
(approximately) for air at standard conditions

Calorically perfect gas ⇒ Shock strength depends on M1 only

Thermally perfect gas ⇒ Shock strength depends on M1 and T1

General real gas (non-perfect) ⇒ Shock strength depends on M1, p1, and T1
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Normal Shock Relations

And now to the question that probably bothers most of you but that no one

dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

Answer: We did not (explicitly)
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Normal Shock Relations

And now to the question that probably bothers most of you but that no one

dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

Answer: We did not (explicitly)

Niklas Andersson - Chalmers 64 / 74



Normal Shock Relations

The derivation is based on the fact that there should be a change in flow

properties between 1 and 2

We are assuming steady state conditions

We have said that the flow is adiabatic (no added or removed heat)

There is no work done and no friction added

A normal shock is the solution provided by nature (and math) that fulfill these

requirements!

Niklas Andersson - Chalmers 65 / 74



Chapter 3.7

Hugoniot Equation
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Hugoniot Equation

Starting point: governing equations for normal shocks

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2

h1 +
1

2
u21 = h2 +

1

2
u22

Eliminate u1 and u2 gives:

h2 − h1 =
p2 − p1

2

(
1

ρ1
+

1

ρ2

)
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Hugoniot Equation

Now, insert h = e+ p/ρ gives

e2 − e1 =
p2 + p1

2

(
1

ρ1
− 1

ρ2

)
=

p2 + p1

2
(ν1 − ν2)

which is the Hugoniot relation
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Stationary Normal Shock in One-Dimensional Flow

Normal shock:

e2 − e1 = −p2 + p1

2
(ν2 − ν1)

I More effective than isentropic

process

I Gives entropy increase

Isentropic process:

de = −pdν

I More efficient than normal shock

process

see figure 3.11 p. 100
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Stationary Normal Shock in One-Dimensional Flow

2 4 6 8 10
1

2

3

4

5

p2

p1

ρ2
ρ1

Pressure ratio (γ = 1.4)

isentropic

Hugoniot

The Rankine-Hugoniot relation

ρ2
ρ1

=
1 +

(
γ+1
γ−1

)(
p2
p1

)
(
γ+1
γ−1

)
+
(
p2
p1

)

The isentropic relation

ρ2
ρ1

=

(
p2

p1

)1/γ
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Normal Shock - Graphical Solution (for the interested)
�

(ν1, p1)

(ν2, p2)

M1 = 1.5

ν

p

Downstream pressure (γ = 1.4)

Hugoniot

isentropic

e2 − e1 =
p1 + p2

2
(ν1 − ν2)

e = f(p, ν) : e = CvT = Cv

p

Rρ

Cv =
R

γ − 1
⇒ e =

pν

γ − 1
⇒

p2 = p1
2ν1 + (ν1 − ν2)(γ − 1)

2ν2 − (ν1 − ν2)(γ − 1)

continuity and momentum gives:
p2 − p1

ν2 − ν1
= −

(
u1

ν1

)2

where u1 = M1
√
γp1ν1

Niklas Andersson - Chalmers 71 / 74



Normal Shock - Graphical Solution (for the interested)
�

(ν1, p1)

(ν2, p2)

M1 = 2.0

ν

p

Downstream pressure (γ = 1.4)

Hugoniot

isentropic

e2 − e1 =
p1 + p2

2
(ν1 − ν2)

e = f(p, ν) : e = CvT = Cv

p

Rρ

Cv =
R

γ − 1
⇒ e =

pν

γ − 1
⇒

p2 = p1
2ν1 + (ν1 − ν2)(γ − 1)

2ν2 − (ν1 − ν2)(γ − 1)

continuity and momentum gives:
p2 − p1

ν2 − ν1
= −

(
u1

ν1

)2

where u1 = M1
√
γp1ν1
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Normal Shock - Graphical Solution (for the interested)
�

(ν1, p1)

(ν2, p2)

M1 = 3.0

ν

p

Downstream pressure (γ = 1.4)

Hugoniot

isentropic

e2 − e1 =
p1 + p2

2
(ν1 − ν2)

e = f(p, ν) : e = CvT = Cv

p

Rρ

Cv =
R

γ − 1
⇒ e =

pν

γ − 1
⇒

p2 = p1
2ν1 + (ν1 − ν2)(γ − 1)

2ν2 − (ν1 − ν2)(γ − 1)

continuity and momentum gives:
p2 − p1

ν2 − ν1
= −

(
u1

ν1

)2

where u1 = M1
√
γp1ν1
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