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Compressible Flow

"Compressible flow (gas dynamics) is a branch of fluid mechanics that deals
with flows having significant changes in fluid density”

Wikipedia



Gas Dynamics

”... the study of motion of gases and its effects on physical systems ...”
”... based on the principles of fluid mechanics and thermodynamics ...”

”... gases flowing around or within physical objects at speeds comparable
to the speed of sound ...”

Wikipedia
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Introduction
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Learning Outcomes

1 Define the concept of compressibility for flows

2 Explain how to find out if a given flow is subject to significant compressibility
effects

3 Describe typical engineering flow situations in which compressibility effects are
more or less predominant (e.g. Mach number regimes for steady-state flows)

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases

in this lecture we will find out what compressibility means and do a brief review
of thermodynamics
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Applications - Classical

Treatment of calorically perfect gas

Exact solutions of inviscid flow in 1D

Shock-expansion theory for steady-state 2D flow

Approximate closed form solutions to linearized equations in 2D and 3D

Method of Characteristics (MOC) in 2D and axi-symmetric inviscid supersonic
flows



Applications - Modern

Computational Fluid Dynamics (CFD)
Complex geometries (including moving boundaries)

Complex flow features (compression shocks, expansion waves, contact
discontinuities)

Viscous effects
Turbulence modeling
High temperature effects (molecular vibration, dissociation, ionization)

Chemically reacting flow (equilibrium & non-equilibrium reactions)



Applications - Examples

Turbo-machinery flows:
Gas turbines, steam turbines, compressors
Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:
Flow induced noise (jets, wakes, moving surfaces)
Sound propagation in high speed flows

External flows:
Aircraft (airplanes, helicopters)
Space launchers (rockets, re-entry vehicles)

Internall flows:
Nozzle flows
Inlet flows, diffusers
Gas pipelines (natural gas, bio gas)

Free-shear flows:
High speed jets

Combustion:
Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow, mufflers)
Combustion induced noise (turbulent combustion)
Combustion instabilities
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Chapter 1.2
Compressibility



Compressibility

10v
T__;%a (v="-)

1
P
Not really precise!

Is T held constant during the compression or not?




Compressibility

Two fundamental cases:

Constant temperature
Heat is cooled off to keep T constant inside the cylinder

Adiabatic process
Thermal insulation prevents heat exchange



Compressibility

Isothermal process:

Adiabatic reversible (isentropic) process:
__1(ov
=T op /s

Air at normal conditions: 7~ 1.0x107°  [m?/N]
Water at normal conditions: 77 ~ 5.0 x 1071 [m?/N]



Compressibility

T = —1@ where v = 1 and thus
v op p
o (1 L\ 9p _ 10

T =

—p%
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Compressibility

Definition of compressible flow:

If p changes with amount Ap over a characteristic length scale of the flow, such
that the corresponding change in density, given by Ap ~ pTA p, is too large to
be neglected, the flow is compressible (typically Ap/p > 0.05)

Note! Bernoulli's equation is restricted to incompressible flow, i.e. it is not valid for
compressible flow!



Compressibility - Mach Number

The freestream Mach number is defined as

Uso
oo

My =

where Uy, is the freestream flow speed and a, is the speed of sound at freestream
conditions



Compressibility

Assume incompressible flow and estimate the maximum pressure difference using

1
Ap = ~ ps,U?
P~ 5peUs

For air at normal conditions we have

1ap> { <ap> 1} 11
=—|=] = =pRT = |— ) =—=/)=—=—
X p<apT ooy ap); RT] ~ pRT b

(ideal gas law for perfect gas p = pRT)



Compressibility

Using the relations on previous slide we get

1 2
Ap 11 §Poouoo
p TTTOPE b aPete = R

for a calorically perfect gas we have a = \/yRT

L A U?
which gives us 2P W
p  2a%

now, using the definition of Mach number we get:

Ap 2
oo

p 2
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Chapter 1.3
Flow Regimes



Flow Regimes

Incompressible Mo < 0.1

Subsonic My < 1 and M < 1 everywhere

Transonic case 1: My, < 1and M > 1 locally

case 2: My, > 1and M < 1 locally

Supersonic Mo > 1 and M > 1 everywhere

Local Mach number M is based on local flow speed, U = |U]|, and local speed of sound, a

Compressible
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Chapter 1.5
Aerodynamic Forces



Aerodynamic Forces

Q) region occupied by body
o) surface of body
n outward facing unit normal vector




Aerodynamic Forces

Overall forces on the body du to the flow

F= @(—pn—i-T -n)dS

where p is static pressure and 7 is a stress tensor



Aerodynamic Forces

Drag is the component of F which is parallel with the freestream direction:

where D, is drag due to pressure and Dy is drag due to friction

Lift is the component of F which is normal to the free stream direction:

L=Lp+Ls
(Ls is usually negligible)



Aerodynamic Forces

Inviscid flow around slender body (attached flow)

subsonic flow: D =0
transonic or supersonic flow: D > 0

Explanation: Wave drag



Aerodynamic Forces

Wave drag is an inviscid phenomena, connected to the formation of
compression shocks and entropy increase

Viscous effects are present in all Mach regimes

At transonic and supersonic conditions a particular phenomena named
shock/boundary-layer interaction may appear

shocks trigger flow separation

usually leads to unsteady flow
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Chapter 1.4
Review of Thermodynamics



Thermodynamic Review

Compressible flow:

”

¥ strong interaction between flow and thermodynamics ...



Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules
pv=RTor? —RT
p

where R is the gas constant [R] = J/kgK

Also, R = Ryniy/M where M is the molecular weight of gas molecules (in
kg/kmol) and R, = 8314 J /kmol K



Internal Energy and Enthalpy

Internal energy e ([e] = J/kg)

Enthalpy h ([h] = J/kg)

h=e+pr=e+ P (valid for all gases)
P

For any gas in thermodynamic equilibrium, € and h are functions of only two
thermodynamic variables (any two variables may be selected) e.qg.

e=e(T,p)orh="h(T,p)



Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e=e(T)andh =h(T)

OK assumption for air at near atmospheric conditions and 100K < T < 2500K
Calorically perfect gas:

e=C,Tandh =C,T (C, and C, are constants)

OK assumption for air at near atmospheric pressure and 100K < T < 1000K



Specific Heat

For thermally perfect (and calorically perfect) gas

oh oe
%=(o7), o= (),

sinceh =e+p/p=e+ RT we obtain:

The ratio of specific heats, +, is defined as:

'YECV



Specific Heat

Important!

calorically perfect gas:

Cy, Cp, and v are constants

thermally perfect gas:

Cy, Cp, and v will depend on temperature



Specific Heat

Cp_C\/:FI)




Specific Heat

divide by C, divide by Cp




Specific Heat

CP_CV:R

divide by C,

C,O_CV:R

divide by C,



Specific Heat

Cp_CV:R

divide by C,

Cp_CV:R

divide by C,,



Specific Heat

Cp—CV:R

divide by C,

Cp_CV:R

divide by Cp

valid for both thermally perfect and calorically perfect gas!
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First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an imaginary flexible
boundary, is defined as a system. This system obeys the relation

de =g — ow
where
de is a change in internal energy of system
6q is heat added to the system
ow is work done by the system (on its surroundings)

Note! de only depends on starting point and end point of the process while g and
ow depend on the actual process also



First Law of Thermodynamics

Examples:

Adiabatic process:
0q = 0.

Reversible process:
no dissipative phenomena (no flow losses)

Isentropic process:
a process which is both adiabatic and reversible



First Law of Thermodynamics

Reversible process:

ow = pdv = pd(1/p)

de = dq —pd(1/p)
Adiabatic & reversible process:

0q = 0.

de = —pd(1/p)



Entropy

Entropy s is a property of all gases, uniquely defined by any two thermodynamic
variables, e.g.

s=s(p,T)ors=s(p,T)ors=s(p,p)ors=s(eh)or...



Second Law of Thermodynamics

Concept of entropy s:

) )
_ %y _ 99 ds;- where ds;, > 0. and thus

a. —
ST 77




Second Law of Thermodynamics

Concept of entropy s:

) )
_ %y _ 99 ds;- where ds;, > 0. and thus

a. —
ST 77 .

1 .,S+ds
{ o }

(8Q)rev

14



Second Law of Thermodynamics

In general:

For adiabatic processes:

as > 0.



Calculation of Entropy

For reversible processes (0w = pd(1/p) and dq = Tds):
1 1

de = Tds — pd (> & Tds = de + pd <>
p p

from before we have h = e +p/p =

dh = de + pd (1) + <1) dp < de =dh — pd <1> - <1> dp
P P p p



Calculation of Entropy

aTr a
For thermally perfect gases, p = pRT and dh = CpdT = ds = Cp— = RFD

Integration from starting point (1) to end point (2) gives:

oo (o (2

and for calorically perfect gases

T2> (,O2>
Sy — S Cpl Rln
STt n<71 P1




Calculation of Entropy

If we instead use de = C,dT we get

for thermally perfect gases

and for calorically perfect gases

SQ—Sl—CV1n<

2
Ty

)

)
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Isentropic Relations

For calorically perfect gases, we have

T2> <,02)
So—81=Cpln[ =) —RIn
o : n<71 P1

For adiabatic reversible processes:

T
o’s:O.:>slsz:>Cpln<2> Rln<

Tq
pa\ _Co, (T2
ln(,Ol)H R ln<71>



Isentropic Relations




Isentropic Relations

T
Alternatively, using ss —s; = 0=Cy In <T2> — Rln <p2> =
1 P1

n By
p1 I




Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

-0
P1 P1 T

A.K.A. the isentropic relations




Thermodynamic Relations and Process Diagrams

Many times it’s process diagrams makes it easier to understand physics
Examples of process diagrams: Ts-diagram and pr-diagram

We will use process diagrams in the following chapters to give insights into
physical processes such as shocks, heat addition and friction



Thermodynamic Relations and Process Diagrams

From before:

dT  _dv _dT _dp




Ts-diagram

T v
v v
dv = ﬁdS - CVWO’T
v Cy
dv = RO’S— 5 ar

ds = 0 = dv < 0 for positive dT

. dT _dbp
__Pk P
dp = — 2ds + Cp z=dT

dp = —gds + CppdT

ds =0 = dp > 0 for positive dT



Ts-diagram

p and p increases

S = constant



Ts-diagram - Isochoric process

v Cy
_ Vv
dl/—RdS al

From before: v decreases with T and p increases with T and thus
for a given dT, dv will be greater at lower T than at higher T

v=constant lines will be closely spaced at low T and more sparse at high T

v=constant = drv = 0:

v daT ar T
O_R<dsCVT>:>dS_CV

slope is positive and increases with temperature



T's-diagram - Isobaric process

ds:cpg —R(f

p=constant = dp = 0:

P dar ar T
OE’(C‘)T ds>:>dscp

slope is positive and increases with temperature

Cp > C, = isobars are less steep than isochors



T's-diagrams

—— isochor
— isobar




Ts-diagrams




pr-diagrams

subtract
T
V .
from
ar dp]
Cy o’s—CpT—F?p_
gives

ds (Cp— C,) = chdl +he, P o s = cp@ 1o,
S——— P P

R



pr-diagrams
v P
. . dp
dv = 0 (isochoric process) = ds = CVF

entropy increases with increasing pressure

from before: temperature increases with increasing pressure



pr-diagrams

s and T increases

v = constant



pr-diagrams - isentropic process

dS — Cp% + CVOI*IJ
v p

s=constant (ds = 0):

dv g g
cp7+cvgp:o:»d—’i:f7§

negative slope

slope becomes steeper with increased pressure and decreased v



pr-diagrams - isothermal process

dT  _dv daT  _dp
ds = Cy - +R—-=Cop —R->

T=constant (dT = 0):

dv _ b _ dp_ p

v D dv v

~v > 0 = isentropes are steeper than isotherms



pr-diagrams - isothermal process

— isentrop
— isotherm




pr-diagrams - isothermal process

/)

NN\
— isentrop
— isotherm

W,

47777

i
L

R
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Chapter 2
Integral Forms of the Conservation
Equations for Inviscid Flows
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations
7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Motivation

We need to formulate the basic form of the governing equations for compressible
flow before we get to the applications
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t

Conservation of momentum

i

Conservation of mass <—[ Control volume ]

—{ Control volume example ]




Integral Forms of the Conservation Equations

Conservation principles:

conservation of mass
conservation of momentum (Newton’s second law)

conservation of energy (first law of thermodynamics)



Integral Forms of the Conservation Equations

The control volume approach

Notation:

Q) fixed control volume

00 boundary of Q2

n outward facing unit normal vector
v fluid velocity (v = |v|)




Roadmap - Integral Relations
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t

Conservation of momentum

Conservation of mass ]<—[ Com%lume ]

—{ Control volume example ]




Chapter 2.3
Continuity Equation



Continuity Equation

Conservation of mass:

& Af) v+ §f ov -nos = 0
Q o0

rate of change of net mass flow out
total mass in 2 from

Note! notation in the text book n - dS = dS
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‘ Conservation of energy ’

t

Conservation of momentum

t
[ ConseM of mass ]4—[ Comwlume ]

]—{ Control volume example ]




Chapter 2.4
Momentum Equation



Momentum Equation

Conservation of momentum:

% Hf pva¥ + f_ﬁ [p(v-m)v+pn|dS = jﬂ pfd ¥
Q o0 o

net momentum flow out from rate of momentum
Q plus surface force on 92 generation due to
due to pressure forces inside €2

rate of change of total
momentum in

Note! friction forces due to viscosity are not included here. To account for these
forces, the term —(7 - n) must be added to the surface integral term.
The body force, f, is force per unit mass.
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Chapter 2.5
Energy Equation



Energy Equation
Conservation of energy:

() peecr + f lpeots ) +pv-mjas = [f[ pf-var
Q 0N Q

net flow of total internal energy
out from € plus work due to
surface pressure on 92

rate of change of total
internal energy in Q

work due to forces
inside 2

where

e et e
= -V -V = —_
PEo = p 9 P B

is the total internal energy



Energy Equation

The surface integral term may be rewritten as follows:

ﬁ {p<e+;v2> (v-n)—i—pv-n] as

90
&

é%ﬁ {p <e+ '(; + ;v2> (v n)} ds
&



Energy Equation

Introducing total enthalpy

1

we get

% {[[ peoc? + {J lohov - njas = [[[ pf-var
Q o0 Q



Energy Equation

Note 1: to include friction work on 052, the energy equation is extended as

i jffpeod“//+@ [phov - n—(7 -n) - v]dS = ffjpf vay

Note 2: to include heat transfer on 052, the energy equation is further extended

%Hfﬂeod“yﬂfﬁ[phov'n—(wn) -v+q-n}d8:fﬂpf.vd«;/
Q Bly) 5

where q is the heat flux vector



Energy Equation

Note 3: the force f inside 2 may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference



Energy Equation

Note 4: there may be objects inside {2 which we choose to represent as sources of
momentum and energy.

For example, there may be a solid object inside €2 which acts on the fluid with a force
F and performs work W on the fluid

Momentum equation:

gt [[[ ova? + {J lo(v - m)v + pu]ds = [{[ ptar +F
Q o0 Q

Energy equation:

() peocy + {f lohov -nlas = [[[ pf-var + V¥
Q o0 Q
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Integral Equations - Applications

How can we use control volume formulations of conservation laws?

Let Q — 0: In the limit of vanishing volume the control volume formulations give
the Partial Differential Equations (PDE:s) for mass, momentum and energy
conservation (see Chapter 6)

Apply in a "smart” way = Analysis tool for many practical problems involving
compressible flow (see Chapter 2, Section 2.8)



Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

control volume where the sur-
faces C1 and Co are normal to
the flow and C3 and Cy4 are par-
allel to the stream lines



Integral Equations - Applications

Conservation of mass:

% fffpd“l/nL(ﬁﬁpv'ndS: 0
o) o0

=0 —p1ViA1L + pavaAs

Conservation of energy:

% J]J peod” + gj) [phov -n]dS =0
L 30

=0 —p1hoy V1AL + p2hoyvaA2



Integral Equations - Applications

Conservation of mass:
P1VIAL = paVoAs
Conservation of energy:

p1ho,ViAL = p2ho,VaA2

hol == h02

Total enthalpy hy is conserved along streamlines in steady-state adiabatic inviscid
flow
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Chapter 3
One-Dimensional Flow
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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

¢ 1D flow with heat addition*
d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic
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Motivation

Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the
complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart
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Chapter 3.2
One-Dimensional Flow Equations



One-Dimensional Flow Equations

Problems analyzed using the one-dimensional flow equations can be divided in
to two categories:

problems with wave solutions (discontinuous)

acoustic wave
normal shock

problems with continuous solutions

flow with heat addition
flow with friction



One-Dimensional Flow Equations

shock

—_— —_—
uq uz
p1, P1, T1 P2, P2, T2

Assumptions:
all flow variables only depend on x
velocity aligned with x-axis

Y



One-Dimensional Flow Equations

o2 |
—m ] —
<
—»: — 5
— — g
—>|® @:—» 3
s}
—1 — £
—1 Q e >
—1 s @

Y

>

Control volume approach:

Define a rectangular control volume around shock, with upstream conditions
denoted by 1 and downstream conditions by 2



One-Dimensional Flow Equations

Conservation of mass:

%jfjﬁd“f/—&—ﬁpvmﬁszoémul = palls
Q o0

=0 ngzAfplulA

Conservation of momentum:

d
o jf pvd“//+@ [p(v-n)v +pn]dS = 0 = piu? +p1 = pas + Po
Q o9

=0 (p2u3+p2)A—(p1ui+p1)A



One-Dimensional Flow Equations

Conservation of energy:

% jfj peod¥ + (ﬁﬁ [phov - n]dS = 0 = piurho,
Q o2

=0 thOQUQAfplholulA

Using the continuity equation this reduces to

h01 = h02
or, if written out

1 1
hy + §U% =hy + iug

= pauz2ho,



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Note! These equations are valid regardless of whether or not there is a shock
inside the control volume



One-Dimensional Flow Equations

Summary:

p1ur = paUs

p1U% +p01 = pzug + P2

1 1
hy + §U% =hy + §U%

Valid for all gases!
General gas = Numerical solution necessary
Calorically perfect gas = Can be solved analytically
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Chapter 3.3
Speed of Sound and Mach Number



Speed of Sound

Sound wave / acoustic perturbation

wave front

a a-+da
 —_— —_—
p p+dp
P p+dp
T T+dT




Speed of Sound

Conservation of mass gives

pa = (p+dp)(a+da) = pa+ pda+ dpa+ dpda

products of infinitesimal quantities are removed =

pda+dpa =0

solve for da =



Speed of Sound

The momentum equation evaluated over the wave front gives

p+pa’ = (p+dp) + (p+dp)(a+da)?

Again, removing products of infinitesimal quantities gives

dp = —2apda — a’dp

Solve for da =

_ dp+a*dp

da
—2ap



Speed of Sound

Continuity equation:

d
da=-a-L
P
Momentum equation:
2
da — ap +a*dp
—2ap

dp _ dp + a%dp 22 dp

P —2ap dp



Speed of Sound

Sound waves are small perturbations in p, v, p, T (with constant entropy s)
propagating through gas with speed a

8,0)
a’= (-
(30 s

(valid for all gases)



Speed of Sound

Compressibility and speed of sound:

()
L L(op
T p\dp/,

insert in relation for speed of sound

/1
ap s PTs PTs

from before we have

(valid for all gases)



Speed of Sound

Calorically perfect gas:

Isentropic process = p = Cp? (where C is a constant)

which implies



Speed of Sound

Sound wave / acoustic perturbation:

a weak wave
propagating through gas at speed of sound
small perturbations in velocity and thermodynamic properties

isentropic process



Mach Number

The mach number, M, is a local variable
Vv
M= —
a
where

v =lv|

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted
by subscript oo



Mach Number

For a fluid element moving along a streamline, the kinetic energy per unit mass and
internal energy per unit mass are V2/2 and e, respectively

vie _vEe o VA2 (/Y A=) e
e CT RT/(v-1) a%/(y-1) 2

i.e. the Mach number is a measure of the ratio of the fluid motion (kinetic energy)
and the random thermal motion of the molecules (internal energy)



Physical Consequences of Speed of Sound

Sound waves is the way gas molecules convey information about what is
happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

In supersonic flow, sound waves are unable to travel upstream, since v > a




Physical Consequences of Speed of Sound

compression shock

e compression shock

oblique
normal oblique shock
shock shock
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Chapter 3.4
Some Conveniently Defined Flow
Parameters



Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down isentropically (without flow losses) to zero velocity we
get the so-called total conditions (or stagnation flow properties)

(e.g. total pressure p,, total temperature Ty, total density po, and total speed of
sound ap)

Since the process is isentropic, we have (for calorically perfect gas)
v-(5)-(7)
p p T

Note! 7, and a, only requires an adiabatic deceleration process



Critical Conditions

If the flow is accelerated/decelerated isentropically to the sonic point, where
v = a, we obtain the so-called critical conditions, e.g. p*, T, p*, a*

where, by definition, v* = a*

As for the total conditions, if the process is also reversible (entropy is preserved) we
obtain the relations (for calorically perfect gas)

:O* —<p*)’7_ (T*>’Y71
Po Po -\ T

Note! 7" and a* only requires an adiabatic acceleration/deceleration process



Total and Critical Conditions

For any given steady-state flow and location, we may think of an imaginary
isentropic/adiabatic stagnation process or sonic flow process and thus

We can obtain total and critical conditions at any point in a flow

The total/critical conditions represent conditions realizable under an
isentropic/adiabatic deceleration or acceleration of the flow

In an adiabatic flow, T, is conserved along streamlines

Conservation of p, along streamlines requires that the flow is isentropic (no
viscous losses or shocks)



Total and Critical Conditions

Note! The actual flow does not have to be adiabatic or isentropic from point to point,
the total and critical conditions are results of an imaginary isentropic/adiabatic
process at one point in the flow.

However, with isentropic flow Ty, po, po, €tC are constants

In order for T, to be constant it is only required that the flow is adiabatic.



Total and Critical Conditions
If A and B are two locations in a flow

Isentropic flow:
TOA - TOB and :OOA - /OOB

Adiabatic flow (not isentropic):

TOA - TOB and IOOA # IOOB

The flow is not isentropic nor adiabatic:

To, # Tog @nd po, # Pog
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Chapter 3.5
Alternative Forms of the Energy
Equation



Alternative Forms of the Energy Equation
For steady-state adiabatic flow, we have already shown that conservation of energy
gives that total enthalpy, h,, is constant along streamlines

For a calorically perfect gas we have h = C, T which implies
1 2

To V2
o0y 7
T TaeT

R
Inserting Cp, = A ; and a? = yRT we get
/y J—

{TTO:1+;(7—1)M2}




Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

TO 1 2
O L Z(y—1M
T +2(7 )

Note! tabulated values for these relations can be found in Appendix A.1




The Characteristic Mach Number

%4
*
M:ai*

For a calorically perfect gas (1D/2D/3D flows)

, 2
(v +1)/M**] — (y = 1)

This relation between M and M* gives:
M =0&M=0

M =1eM=1 M*—M/’y—ﬂwhenl\ﬂ%oo
M <1eM<1 7-1

ME>1eM>1
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Chapter 3.6
Normal Shock Relations



One-Dimensional Flow Equations

piUy = paUs

mU? +pP1 = P2U% + P2

1 1
hy + §U? =hy + iug




Normal Shock Relations

Calorically perfect gas

h=C,T, p=pRT

with constant C,

Assuming that state 1 is known and state 2 is unknown
5 unknown variables: ps, Ua, P2, ha, To
5 equations

= solution can be found



Normal Shock Relations

Divide the momentum equation by piu;

1
— (,01 + ﬂ1U%) = (,02 + PQU%)

p1us p1Uy

{p1U1 = P2U2} =

b oy L 2
P (,01 + /)1U1) = ool (,02 + qug)



Normal Shock Relations

PP
piur - palz
Recall thata = 4/ @, which gives
P
2 2
a a
il S B
w1 U2

Now, we will make use of the fact that the flow is adiabatic and thus a* is constant



Normal Shock Relations
Energy equation:

1 1

_ IR
{Cp_v—l}j

(-1 21T o1y Tt

{a:\/ﬁ}:

2 2
a a
1 2 2 2

1 1
—ut = —u
DR CE




Normal Shock Relations

In any position in the flow we can get a relation between the local speed of sound a,
the local velocity u, and the speed of sound at sonic conditions a* by inserting in the
equation on the previous slide. uy = u,a; =a, Uy =as =a* =

32 N 1u2 B 8*2 N 1a*2
(v=1) 2 (v=1) 2
oY+l o0 y—1,
a’=-"—a"*-'—u
2 2

Evaluated in station 1 and 2, this gives

1 —1
%:’Y—i— 8*2 Y 2

a Uy

2 2

o Y+l o -1,
aQZTa - 2 U2




Normal Shock Relations

. . 1 -1 1 —1
Now, inserting {a% _ Ot e ] uf} and {a% _ Yt e ug}
2 2 2

: a? 1, a3 1, .
iN<——+ —uy = —u5 » and solve for a* gives
{(7 T oo Tt J

[ a*? = uyUs ]




Normal Shock Relations

a*? = UjUs

A.K.A. the Prandtl relation. Divide by a*? on both sides =

ui u
1= 222 = MM
a* a*

Together with the relation between M and M*, this gives

1
1+ 5(7 — 1)M?

1
YM; — 5(7 - 1)

M3 =




Normal Shock Relations

Continuity equation and a*2 = ujus

2 2
p2_ Ui _ U Uy

*2
=l T ax2 Ml
P1 Uz urUs a

which gives

p2 _ U _ (Y DME
pr Uz 24 (y—1)M7




Normal Shock Relations

Now, once again back to the momentum equation

P2 —pP1 = PlU% - P2U% = {p1u1 = pauz} = p1u1 (U1 — U2)

2 2
pz_l_mul(l_w)_{a_ V'O7M2—U}—yl\/lf<1—u?>
P1 P1 ui P a? Ui

with the expression for us /uy derived previously, this gives

[’321+27(M§1)}

P1 v+1




Normal Shock Relations

Are the normal shock relations valid for My < 1.07?

Mathematically - yes!

Physically - ?



Normal Shock Relations

Let’s have a look at the 277 law of thermodynamics

T2 P2
-5 =Cpln—=—-RIn—=
Sy —81 =Cp 1r17_1 n X

We get the ratios (T2/T1) and (p2/p1) from the normal shock relations

S3—51=Cpln [(1 - ’ﬁjl(/\ﬂ% - 1)> (H(’Y—l)/\ﬁ)} +

(v + 1)M?
2y 2
Rln (1 M 1)>



Normal Shock Relations

Entropy generation (y = 1.4)

100

My =1 = As = 0 (Mach wave) !

M; < 1 = As < 0 (not physical) As
M >1=As>0 —100

~9200 1 ! ! ! !
04 06 08 1 12 14 16 18 2

My




Normal Shock Relations
Normal shock = M; > 1
MiM5 =1
My >1=M;>1
* 1 *
MQ = Mif = M2 < 1
M; <1l=M;<1

After a normal shock the Mach number must be lower than 1.0



Normal Shock Relations

Lo 2
Ve 1+2(7 )M

2 1
W2 - Ly - 1)

M1 = 10:>M2 =1.0

My >1.0= My <1.0

Downstream Mach Number (v = 1.4)

1.2 T T T T

9 | | | |
0 2 4 6 8 10

Mi —oco=My—+/(y—1)/(2y) ={y=14} =0.378



Normal Shock Relations

Pressure ratio (y = 1.4)
20 T T T

P24 2 -
o o MY P2

P1

Note! from before we know that M; must be greater than 1.0, which means that
p2/p1 must be greater than 1.0



Normal Shock Relations

My > 1.0 gives My < 1.0, po > p1, P2 > p1,and To > T

What about T, and py?

2 2
Energy equation: CpT1 + % =Cpla+ UQ—2 = Cplo, =CpTo,

calorically perfect gas = T, = To,

or more general (as long as the shock is stationary): ho, = ho,



Normal Shock Relations

279 law of thermodynamics and isentropic deceleration to zero velocity (As
unchanged since isentropic) gives

To Po Po
So—S1=Coln—=—-RIn—=2={T,, =Ty,} = —RIn—=
’ ! P Tol pOl { o 02} pOl

Pos _ o=(s2-s1)/R
pO1

i.e. the total pressure decreases over a normal shock



Normal Shock Relations

Normal shock relations for calorically perfect gas (summary):

p— 1
Tor = T, Lt oy — DM
M= —2—
8oy = o, WM =50 =1)
aj=a,=a" 2
1= L R Sy
P1 v+1

2
uils = a* (the Prandtl relation)
p2 Ui (y+ DM}

pr Uz 24 (y— DM
2M; To _P2p1
Ti  p1p2



Normal Shock Relations

As the flow passes a stationary normal shock, the following
changes will take place discontinuously across the shock:

p increases
p increases
U decreases
M decreases (from M > 1to M < 1)
T increases

po decreases (due to shock loss)
S increases (due to shock loss)
To unaffected




Normal Shock Relations

Normal shock relations (y = 1.4)

—p2/;m
—Ts/Th
p2/pP1
_DO‘Z/DO1
— M,
—AY/AL




Normal Shock Relations

The normal shock relations for calorically perfect gases are valid for M; <5
(approximately) for air at standard conditions

Calorically perfect gas = Shock strength depends on My only

Thermally perfect gas = Shock strength depends on M; and T;

General real gas (non-perfect) = Shock strength depends on My, p1, and T;



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?7



Normal Shock Relations

And now to the question that probably bothers most of you but that no one
dares to ask ...

When or where did we say that there was going to be a shock between 1 and 27?

Answer: We did not (explicitly)



Normal Shock Relations

The derivation is based on the fact that there should be a change in flow
properties between 1 and 2

We are assuming steady state conditions
We have said that the flow is adiabatic (no added or removed heat)
There is no work done and no friction added

A normal shock is the solution provided by nature (and math) that fulfill these
requirements!



Chapter 3.7
Hugoniot Equation



Hugoniot Equation

Starting point: governing equations for normal shocks

p1ur = paUsz

p1UT +P1 = paU3 + P2

1 1

Eliminate u; and us gives:

— 1 1
/’)2—/’)1:'02 P1 <+>
2 p1 - P2



Hugoniot Equation

Now, insert h = e +p/p gives

+ 1 1 +
6261:/132/31():;32 pl(VlfVQ)
P P2

which is the Hugoniot relation



Stationary Normal Shock in One-Dimensional Flow

Normal shock:

6y — 0, = P2 J2r,01 (va — 1)
More effective than isentropic
process

Gives entropy increase

Isentropic process:
de = —pdv

More efficient than normal shock
process

see figure 3.11 p. 100



The Rankine-Hugoniot relation

v+1 P2
pp 1H (H) (p)

v+l p2
e (25) + ()

The isentropic relation

P2 _ <D2>” !
P1 P1

P1

ot

o~

Stationary Normal Shock in One-Dimensional Flow

Pressure ratio (y = 1.4)

| | — isentropic A
— Hugoniot
| | | |
2 4 6 8
P2
P1

10



The Normal-shock Process
to 2 without passing

isobar
1 |---shock

Note!
over the shock, the flow state changes discontinuously from 1
I

any intermediate states

P2 ‘\




The Normal-shock Process

Note!
Mi>1.0and My <1.0 =T <T" < Ty

isobar
— T =T
—T =T
---T=T"
--- shock




The Normal-shock Process

isobar
8 - Poi A\ 01 —_S = Sl
--- shock
6 [
g
~
Q 4
2 [
O |
0.2 0.4 0.6 0.8



The Normal-shock Process

Note!
isotherms are less steep than isentropes = po, < Po,

- -~ isobar
—3S =9
—S =99
_T: TO
--- shock




The Normal-shock Process

Isotherm
||---T=T*
--- Isentrope
—P =P
| |7== P =Po
—P =pP2
---P = Po,

0.8

: | | | |
0 02 04 0.6 0.8
(s—51)/s2



The Normal-shock Process

Continuity:

pur = paus =C >0
Momentum:
2 2

. C
P1+P1Uf:D2+02U§$D1+;:D2+E:>F)1+V1CQZD2+VQCQ
1

P1 — P2 2

vy — 12

a line in pr-space with negative slope



The Normal-shock Process

Energy equation:

u? u
/71-1—?1:/72—1-*

2

2

withh = CpT = T and u = vC we get
7R 1 YR _, P2
T QCQ T QCQ M
1 + = 9 141 N — 2 + pl

quadratic function in pr-space (Hugoniot curve)

only thermodynamic variables



The Normal-shock Process

12 ¢
i - - - Isobar
10 [ - - - Isentrope
E -----isotherm
8 === T=T"
—dp/dv = -C?
Y 6 — Hugoniot curve
Q
4
2
O unphysical .7
L

0.2 0.4 0.6 0.8 1 1.2



The Normal-shock Process

12
--- |sobar
10 - - - Isentrope
-----isotherm
8 ---T=T"
—adp/dv = —C?
Y 6 — Hugoniot curve
Q
4
2
O unphysical .7
[ NG

0.2 0.4 0.6 0.8 1 1.2



The Normal-shock Process

12
--- |sobar
10 - - - Isentrope
-----isotherm
8 ---T=T"
: —dp/dv = —C?
q 6 —— Hugoniot curve
Q
4
2
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Chapter 3.8
One-Dimensional Flow with Heat
Addition



One-Dimensional Flow with Heat Addition

+Q
T === ==============3 e
— 1 1 —
— ! control volume €2 ! —
- O '@ =
— e 1 —
oA

1D pipe flow with heat addition:
no friction
1D steady-state = all variables depend on x only
q is the amount of heat per unit mass added between 1 and 2
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Heat Addition

p1rur = paUs

p1U; + P1 = paU3 + P2

1 1
h1+§U%+C/:h2+§U§

A

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = can be solved analytically



One-Dimensional Flow with Heat Addition

Calorically perfect gas (h = C,T):

1 1

1 1
q= (CpTg + 2u§> - (CpTl + 2u%>

[ q=Cp(To, — To,) ]

i.e. heat addition increases T, downstream



One-Dimensional Flow with Heat Addition

Momentum equation:

P2 —pP1 = /J1U% - 02U§
{pu2 = pa’M? = prZ = “/PMZ}

p2 — p1 = YP1M; — ypaM3 =

P2 1—&-7/\4%
pi  1+~M3




Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same”?



Normal Shock Relations

We used the momentum equation to derive the relation for py/p;. In what way
is this relation different than the one for normal shocks — the momentum
equation is the same?

Answer: There is no difference. If we would insert My = f(M;) from the normal
shock relations, we would end up with the normal shock relation for py/p;.

The relation for My = f(M;) for normal shocks was derived assuming adiabatic
flow



One-Dimensional Flow with Heat Addition

ldeal gas law:

T R
s P _To_p2pR_pap

pR " Ti  pRpP1  Ppipe
Continuity equation:

P1 Uz
p1UL = pals = — = —
P2 Uy

Up _Maay MovyRTz o M T2
uq /\//181 Mls/’)/RTl P2 M1 T1

T (1+M3\° (Mo’
i \1+M3) \M




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

T2
Ty

P2
P1

p2
P1

1M
B 1+ M3

(1 +yM?]
|1+ M3

1+ M3 ]
|1+ AMF |




One-Dimensional Flow with Heat Addition

Calorically perfect gas, analytic solution:

Po> _
pOl

7= [l ()
To, L+yM2 ] \ M,

0
[1+7Mq 1+ 3(y—1Mm3\ !
L+AME |\ 1+ (v — 1)M?

1+ 3(y—MZ\ 7"
L+ iy —1)Mm2




One-Dimensional Flow with Heat Addition

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas

for some limiting heat addition g*, the flow will eventually become sonic M =1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas

for some limiting heat addition g*, the flow will eventually become sonic M =1

Note! The () condition in this context is not the same as the "critical” condition
discussed for isentropic flow



One-Dimensional Flow with Heat Addition

p2 1+ M

p1 1+ M3

Calculate the ratio between the pressure at a specific location in the flow p and
the pressure at sonic conditions p*

p1=p, My =M, py=p*, and My =1

p* _1+7M2

p 147




One-Dimensional Flow with Heat Addition

T _[ 149 'QMQ Po [ 147 ](2+(—DM*\71
[ R U ps |1+ yM? (v+1)

p o [14+M*] ( 1 ) To  (v+1)M? )

= — o0 I (94 (y— 1M

pr | 14y | \M? TS (1+7M2)2( O =1V




One-Dimensional Flow with Heat Addition

Amount of heat per unit mass needed to choke the flow:

T*
o



One-Dimensional Flow with Heat Addition

©, ©) ®
My, ————— M
P1 P2
— q —>
1 T2
Pl e P2
My M*
p1 g* P
T B T
p1 p" \
identical values!
M v
P2 o i p*
s 2 T
P2 p
95 =4y — ¢

Note! for a given flow, the starred quantities are constant values



One-Dimensional Flow with Heat Addition

Note! it is theoretically possible to Rayleigh curve ('Y - 14)
heat an initially subsonic flow to reach 1.2
sonic conditions and then continue to : ! !
accelerate the flow by cooling —M<1

1H—M>1

e /M = 1 (sonic point)

Lord Rayleigh 1842-1919
Nobel prize in physics 1904

H 0.6
o 0.4
As vy+1 \
AS="—"=In |M?* [ L —
S G, n (1+7M2) 0.2
U - 05 0
H_Q_C/oT_l_ (v + )M]? . AS
Th TGl T |1+ AMP



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!



One-Dimensional Flow with Heat Addition

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn’t that a violation of the second
law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system
studied, the system entropy would increase both when adding and removing
heat.



One-Dimensional Flow with Heat Addition

M < 1: Adding heat will M > 1: Adding heat will
increase M decrease M
decrease p increase p
increase T, increase T,
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



The Rayleigh-flow Process

Unlike the normal shock, Rayleigh flow has continuous solutions

A small addition of heat §g will change flow properties slightly

u-+au

p +dp

T+dT

p+dp —
M + dM

S+ ds

To +dT,

;{wib\ibt

0q



The Rayleigh-flow Process - Subsonic Heat Addition

Note!
Heat addition moves the H-curve in the direction of increasing pressure and in-
creasing specific volume

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
1.2 T . T 1.2 T T T T T
--- isentrope - - - isentrope ;
1L —H-curve (1) || 1 H|— Rayleigh line d‘> 71
— H-curve (q2)
0.8 F — Rayleigh line 0.8 ! il
5 3 |
S 06 = 0.6 L
2 S :
0.4F 0.4 ! .
0.2 0.2 | =
0 0 :




The Rayleigh-flow Process - Choked Subsonic Flow

Note!
When g = g*, the H-curve is tangent to the Rayleigh line (thermal choking)
Further heat addition will move the H-curve away from the Rayleigh line

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
1.2 T T . : 1.2 T I T T [0)
. |--- isentrope - - - isentrope ;
1+ ', |—H-curve (q1) H 1 H — Rayleigh line ‘
| — H-curve (g2)
0.8 — Rayleigh line
Q061
Q
0.4
0.2
0 2 4 6 8 10




The Rayleigh-flow Process - Choked Subsonic Flow

Note!

If is added such that g > g%, the inlet static flow properties will change (new mass-
flow) such that the new g* is equal to the added heat g

Total flow properties at the inlet remains the same (only work or heat addition can
change the total flow properties)




The Rayleigh-flow Process - Supersonic Heat Addition

Note!
A supersonic flow is in general closer to thermal choking than a subsonic flow due
to the high energy level (and thereby high T,)

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)

1.2 T T . : 1.2 T T T T T
- - - isentrope - - - isentrope o)
1 — H-curve (1) | 1 - — Rayleigh line (lr) : 71
— H-curve (q2) ‘
0.8 — Rayleigh line || -
&@ |
S 06
0.4 -
0.2 -

2 1 6 8 10 12 14




The Rayleigh-flow Process - Choked Supersonic Flow

Note!
When heat is added to a thermally choked supersonic flow, a shock will be gener-
ated at the exit of the pipe

Rayleigh line (pv-diagram) Rayleigh line (Ts-diagram)
12 T T .‘ T 12 T T T T | @
--- isentrope - - - isentrope Lo
1 — H-curve (1) |] 1 |-|— Rayleigh line & AT
— H-curve (q2) |
0.8 — Rayleigh line || 0.8 b
5 3
S S
Q ~ 0.6 7
E 0 6 [~ :

0.4

0.2




The Rayleigh-flow Process - Choked Supersonic Flow
The shock generated at the exit will be infinitely weak (M = 1)

As the shock does not affect 7,, T*, p* etc, it does not affect the thermal
choking condition (remember: T* and p* are not the critical conditions)

The heat process and the normal shock process operates along the same line
in pr-space

The shock will travel upstream through the pipe

If the supersonic flow is generated in a convergent-diveregent nozzle, the shock
will propagate upstream in the nozzle until the resulting pipe inlet condition
allows for the heat to be added with thermal choking at the pipe exit



The Rayleigh-flow Process - Maxumim Temperature

dT 1 —yM?> T
[t can be showed that s 1 CTQ

Rayleigh line (Ts-diagram)

ar 1 : ‘
ds()ﬁM\/;

we will have the maximum temperature
for a subsonic Mach number

T/ Tmax

le.O@ﬂzoo .
as ‘

S/Smax

1 1
0.8 0.85 0.9 0.95 1



Rayleigh Flow Trends

1 1
0 0.2 0.4 0.6 0.8 1

—p/P1

= p/p
—u/uy

—a/a;

| —Po/Po;

—To/To,

—

o

N

S / Smax

—T/T,
—p/p1
p/p1

|—u/uy

—a/a;

| — Po/Po;

—To/To,

/

0.2

1 1
0.4 0.6 0.8

S/Smax
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One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (g) and heat per unit surface area and

_—
X

Pipe with arbitrary cross section (constant in x):

mass flow through pipe m
axial length of pipe L
circumference of pipe b = 2xr

g LbC?Wa//
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Chapter 3.9
One-Dimensional Flow with Friction



One-Dimensional Flow with Friction

inviscid flow with friction?!



One-Dimensional Flow with Friction

Thermally insulated walls

1D pipe flow with friction:
adiabatic (g = 0)
cross section area A is constant
average all variables in each cross-section = only x-dependence
analyze by setting up a control volume between station 1 and 2



One-Dimensional Flow with Friction

Wall-friction contribution in momentum equation

L
@ 7wdS = b / e s
0

o0

where L is the tube length and b is the circumference



One-Dimensional Flow with Friction

p1rur = paUs

4 L
p1UT +p1 — D/ TwOX = palis + P2
0

1 1




One-Dimensional Flow with Friction

Tw varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

4 d 4
d(pu® +p) = —pTwax & &(pUZ +P) =~ 5w



One-Dimensional Flow with Friction

From the continuity equation we get

d
Uy = paly = const = —(pu) =0
p1ruy = paUz O,X(/))

Writing out all terms in the momentum equation gives

d dp 4 du dp

g( U2 +p) = ud—u+u—( U)+— = —=Tw = pu— + —
ax P TR = U P T o T T T Y T ax
~—

=0

Common approximation for 7 :

Ol =

Tw



One-Dimensional Flow with Friction

Energy conservation:

hO] :h02 = CKho — 0



One-Dimensional Flow with Friction

Summary: p .
OT(PU) =
du dp 2 5
Uax Tax — ™7
d
o’ixho =0

Valid for all gases!
General gas = Numerical solution necessary

Calorically perfect gas = Can be solved analytically (for constant f)



One-Dimensional Flow with Friction

Calorically perfect gas:

Ma

/‘X? 4f 1 y+1 M?
X

—1
1+ 1= me
2 M



One-Dimensional Flow with Friction

Calorically perfect gas and adiabatic flow:

To  TaTo,To T2To _ 2+ (y— 1M}
—=——"—={lp=const} = —— =
Tl T02 Tol Tl { ¢ } 7-o Tl 2+ (7 - 1>M%
Continuity:
P2 uq a1M1 Tl Ml
2 _ 71 N Ay = ol G B i
P1 Us agMQ {a v } T2 <M2
Perfect gas:
P2 p2l2
P2 _p— pRT = 22
P1 tp=pRT} p1lh

Total pressure:
Poy _ Po, P2 P1

IO01 p2 pl 1001



One-Dimensional Flow with Friction

Calorically perfect gas:

Ty 24 (y—1M; p2
T1 24+ (’Y — 1)M% P1

p1 My

py My {2+(v—1)/w%]1/2 Poy




One-Dimensional Flow with Friction

Initially subsonic flow (M < 1)

M, will increase as L increases

for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Initially supersonic flow (M7 > 1)

My will decrease as L increases

for a critical length L*, the flow at point 2 will reach sonic conditions, i.e. My =1

Note! The () condition in this context is not the same as the "critical” condition
discussed for isentropic flow



One-Dimensional Flow with Friction

T (a+D p 12+ (¢ —1m)?
T 24 (y—1)M? p* M v+1

p* M

p 1 v+1 1/2 Po 1 [24 (v— 1M CEsy
2+ M2 o5 M

(v—1 v+1

see Table A.4



One-Dimensional Flow with Friction

and

1

A (R S e Y

/L* Af 1 y+1 M?
o D YM? 2y 1+771M2
2

M
where L* is the tube length needed to change current state to sonic conditions

Let f be the average friction coefficient over the length L* =

4fL* 1M +7+11n (v + 1)M?
D M2 27y 2+ (y—1)M?

Turbulent pipe flow — f ~ 0.005 (Re > 1()5, roughness ~ 0.001D)



One-Dimensional Flow with Friction - Choking Length

Note!
Supersonic flow is much more prone to choke than subsonic flow
There is an upper limit for supersonic choking length L*




One-Dimensional Flow with Friction

0.8 |-

0.6
H
0.4
0.2
h C,T T y—1 17"
Ho B Gl T [ 2Ly
ho ~ CoTo  To { Ty ] o
A 1 2\ 5
2 2~
AS= 25y < ) 7 (= g

Fanno curve (y = 1.4)

—M< 1
—M>1
e M = 1 (sonic point)




One-Dimensional Flow with Friction

M < 1: Friction will M > 1: Friction will
increase M decrease M
decrease p increase p
decrease T increase T
decrease p, decrease p,
increase s increase s
increase u decrease u
decrease p increase p

Note! the flow is not isentropic, there will always be losses



The Fanno-flow Process

Just like the Rayleigh flow, Fanno flow has continuous solutions

A small pipe section with length dx will change flow properties slightly

u-+au
p +dp
T+dT
p+dp —
M + dM
S+ds

wT™HTC

ax



The Fanno-flow Process - Subsonic Flow

Note!
Pressure and temperature decreases when friction is added to a subsonic flow

-- - isentrope
—--T=T"
—pP =pP1
—PpP = P2
—Fanno line




The Fanno-flow Process - Subsonic Flow

Note!
The Fanno flow process is adiabatic = T, is constant = p, increases

W --- isentrope
o ---T =T"
—T =T,
_p :pol
_______________________________________________ —P = Po,
—Fanno line
T

S



The Fanno-flow Process - Choked Subsonic Flow

Note!

If the pipe length is increased such that L > L*, the inlet static flow properties will
change (new massflow) such that the new L* is equal to the pipe length

Total flow properties at the inlet remains the same (only work or heat addition can
change the total flow properties)

: Po
| T,
-~
w P
T \ﬂ> Tl’
— [ T
1
D1
P1 !
s s



The Fanno-flow Process - Choked Supersonic

Note!
Choked supersonic flow will lead to the formation of a shock inside the pipe (shock
location depends on flow conditions)

— T - TO
T, | Po Pos - - - isentrope
- — 1 -1 = — isobar

| e T =T
E —Fanno line

' - - - normal shock
2 —— choked Fanno process

. TSI R

I
1
1
I
I
|
I
I
I
___________ L
I
I
1
1
I
I
I
I
I
1

I RN T —




The Fanno-flow Process - Choked Supersonic

Why does the normal shock change the choking condition for Fanno flow but
not for Rayleigh flow?

As for Rayleigh flow, To, T*, p*, etc are not affected by the shock

The momentum equation is not the same as for normal shocks = the
Fanno-flow process does not operate along the same line as the normal-shock
process in pr-space



The Fanno-flow Process - Choked Supersonic

Note!
An internal shock will always increase the choking length L*

—4fL3/D
LT =f(M) —4fL3/D

— (L5~ 15)/D
Ly =f(Ms)

My = F(Mh) } =L =)

Ly =L = f(M1)




Rayleigh flow with shock
2 T T T

' T =T

--- shock

— Rayliegh process

sonic point

0.5

upstream of shock
1

inlet

1
1.2

7%

1 1 ;
04 06 08 1 1.4

1
1.6

1.8

Friction Choking vs Thermal Choking

Fanno flow with shock

1.5~

‘ I

! —=-T=T*

—— Fanno process
--- shock

1.4 1.8

v/v*

Rayleigh flow: a shock does not affect 7] or T, = g will not change over the shock

Fanno flow: L* changes discontinuously over the shock =
L* will always increase over a shock = possible to extend pipe for supersonic flow



Fanno-flow Trends

T T
25H— T/ . 25H—T/Th 4
—p/p1 —p/p1
ol p/p1 | 9l p/p1 a
—u/uy —u/uy
—a/a —a/a
L5 A —po/po, ] L5 H——po/Po, A
— To/To, —To/To,
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Chapter 4
Obligue Shocks and Expansion
Waves



Overview

expansion
shock fans
reflection
shock
expansion

h
theory governing

oblique equations

shocks
2D Flow
friction nozzles

heat

addition Quasi
1D Flow

diffusers

1D Flow Conservation
normal
shocks laws
integral form

isentropic
flow




Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*
e oblique shocks in 2D*
f shock reflection at solid walls*
g contact discontinuities
h Prandtl-Meyer expansion fans in 2D
I detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

why do we get normal shocks in some cases and oblique shocks in other?



Roadmap - Oblique Shocks and Expansion Waves
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Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general
oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper
approach

many practical problems or subsets of problems may be analyzed in
two-dimensions

by going from one to two dimensions we will be able to introduce physical
processes important for compressible flows



Obligue Shocks and Expansion Waves - Assumptions

Supersonic

Steady-state
Two-dimensional

Inviscid flow (no wall friction)

In real flow, viscosity is non-zero = boundary layers

For high-Reynolds-number flows, boundary layers are thin = inviscid theory still
relevant!



Mach Wave

Sound waves emitted from A (speed of sound a)



Mach Waves

A Mach wave is an infinitely weak oblique shock

subsonic sonic supersonic
V<a V =a




Mach Wave

A Mach wave is an infinitely weak oblique shock

Mach wave

No substantial changes of flow properties over a single Mach wave
My > 1.0 and My =~ M,
Isentropic



Oblique Shocks

compression corner

M>1

\
\
\
\
\
\

gradual compression



Obligue Shocks and Mach Waves

Sphere in,,high/l\//iach number flow.

=




Obligue Shocks and Mach Waves

oblique shocks :

. perforated plate
[ N




Obligue Shocks and Mach Waves




Obligue Shocks and Mach Waves
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Chapter 4.3
Obligue Shock Relations



Oblique Shocks

Two-dimensional steady-state flow

y Stationary shock
A

Flow condition

M>1
Flow condition

B>

Significant changes of flow properties from 1 to 2
M1 > 1.0, ﬁ > [, and Ml #MQ
Not isentropic



Oblique Shocks

Stationary oblique shock




Obligue Shock Relations

/ X

Two-dimensional steady-state flow
Control volume aligned with flow stream lines



Obligue Shock Relations

Velocity notations:

u

My, = =L\ MM, sin(3) M
a
) .

Mp, = —= = Mysin(p — 6) My

as

Vi
ai
Vo
as



Obligue Shock Relations

Conservation of mass:
%fjjpd“//+@pv~nd820
Q oQ

Mass conservation for control volume €2:

0 — p1Uu1A + patA =0 =

p1ur = pals



Obligue Shock Relations

Conservation of momentum:
% {[f pvet7 + {f lo(v-m)v+ pn}aS = [[{ ptct7
Q Bl) o

Momentum in shock-normal direction:

0 — (p1Uf +pP1)A + (pau3 + P2)A =0 =

[ p1U; +P1 = paU3 + P2 ]




Obligue Shock Relations

Momentum in shock-tangential direction:

0— [)1U1W1A + PQUQWQA =0=



Obligue Shock Relations

Conservation of energy:
% jjf peod¥ + @ [phov - n] dS = ffj pof-vd¥
Q o0 Q

Energy equation applied to the control volume €:

1 1
0—prurfhr + §(U% +WD)JA + pausfhy + 5(“5 +W3)A=0=

1 1




Obligue Shock Relations

We can use the same equations as for normal shocks if we replace M; with M, and
My with M,

. M+ 12/ 1)
" 2y/(y - 1)ME, -1

Ratios such as pa/p1, p2/p1, and T, /T can be calculated using the relations for
normal shocks with My replaced by M,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,

What about the total pressure?



Obligue Shock Relations

What about ratios involving stagnation flow properties, can we use the ones
previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the
shock = To, = To,

What about the total pressure?

Sy —S1 =Cpln <T02> —RIn (’OOQ> ={To, =To,} = —RIn <p02>

TO1 01 01

entropy is a thermodynamic flow property and sy — s7 is dictated by the shock
strength and thus the total pressure ratio is a function of the shock-normal Mach
number



Obligue Shock Relations

Note! total pressure is always calculated using the flow Mach number, not the
shock-normal Mach number

However, the ratio po, /po, May be calculated using the shock-normal Mach
number

So, be careful when using relations derived for normal shocks for oblique
shocks when it comes to total flow conditions...



Obligue Shock Relations

Poz _ Po; P2 P1

is calculated as:
Poa/Pox Po, P2 P1Po;

where

1002 P2 P1
1. —= =f(My), —= =f(M,,), and — = (M
o, (M) o (Mn,) Do, (M)

or alternatively

IOOQ P2 P1
2. —= =1fM,,), — =f(Mp,), and — =f(M
D2 ( /72) p1 ( f71) p01 ( f71)

Note! in the second case the total pressures are not the true total pressures of
the flow and therefore it is suggested to use the first approach



Deflection Angle (for the interested)




Deflection Angle (for the interested)

00 Us up
ow  w?+uz; w?riuj
Us(W? +U3) —uy(W? +u3) (up —ur)(W? —uqla)
20 2 (W2 2 =0= " A2 Y
(W2 +u3)(w? + uy) (W2 +u3)(W? + uy)

Two solutions:
us = Uy (no deflection)
w? = uyus (Max deflection)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

flow deflection

oblique shock (shock angle 3)

Note!
In the shock polar, Vs, and Vy, are
normalized by a* . ‘ ‘ ‘
. . . . . 1 1.5 2
a* is a constant in a adiabatic flow 0 0-5 y J
2x

a* is not affected by shocks ar



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

1

flow deflection 0.5 7
V2y [0 _]
oblique shock (shock angle ) a*
No deflection cases: _os5l i
normal shock
(reduced shock-normal velocity) -1 ‘ ‘ ‘
0 0.5 1 1.5 2
Vo,
Mach wave e

(unchanged shock-normal velocity)



Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

Ve, + Vs,
M=+ -

—_= a*

Solutions to the left of the sonic line
are subsonic

Recall

M=1&M=1
M <l1eM<1
M>1M>1




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

[t is not possible to deflect the flow
more than Gmax




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle 6 < 0 ax,
there are two solutions

1. strong shock solution
2. weak shock solution

Weak shocks give lower losses and
therefore the preferred solution




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle s for a
given deflection angle ¢




Shock Polar

Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to
calculate the shock angle 3 for a
given deflection angle ¢




Flow Deflection

M>1

weak shock family

sonic line

strong shock family

0 > Omax

strong shock family

sonic line
weak shock family

M>1
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The 0-3-M Relation

[t can be shown that

M3 sin? 3 — 1
tan@chotB( 1sin” /3 >

M2(~ + cos 28) + 2

which is the 0-3-M relation



The 0-3-Mach Relation

A relation between:
1. flow deflection angle 6
2. shock angle g
3. upstream flow Mach number M,

M3 sin?(3) — 1

tan(f) = 2 cot(p) <Mf(v + cos(20)) + 2

)

Note! in general there are two solutions
for a given M (or none)

50




The 0-3-Mach Relation

There is a small region where we may find
weak shock solutions for which My < 1

In most cases weak shock solutions have
My > 1

Strong shock solutions always have My < 1

In practical situations, weak shock
solutions are most common

Strong shock solution may appear in special
situations due to high back pressure, which
forces My < 1

50




The 0-3-M Relation

Note! In Chapter 3 we learned that the Mach number always reduces to subsonic
values behind a shock. This is true for normal shocks (shocks that are normal to the
flow direction). It is also true for oblique shocks if looking in the shock-normal

direction.



The 6-5-M Relation - Wedge Flow

Wedge flow oblique shock analysis:

0-3-M relation = g for given My and 6
B gives M, according to: My, = M; sin(3)

normal shock formula with M,, instead of M; =
M, (instead of Ms)

My given by My = My, / sin(8 — 6)

normal shock formula with M, instead of M; =
p2/p1, P2/pP1, etc

upstream conditions + p2/p1, P2/pP1, €tc =
downstream conditions



Chapter 4.4
Supersonic Flow over Wedges and
Cones



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
>

Similar to wedge flow, we do get a constant-strength shock wave, attached at
the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped



Supersonic Flow over Wedges and Cones

What about cone flows?

M > 1
—_—

The flow condition immediately downstream of the shock is uniform

However, downstream of the shock the streamlines are curved and the flow
varies in a more complex manner (3D relieving effect - as R increases there is
more and more space around cone for the flow)

5 for cone shock is always smaller than that for wedge shock, if My is the same
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Chapter 4.6
Regular Reflection from a Solid
Boundary



Shock Reflection

Regular reflection of oblique shock at solid wall

(see example 4.10)

M3 > 1
My > 1

.

Assumptions:
steady-state inviscid flow
weak shocks



Shock Reflection

[ first shock

second shock ]

upstream condition

M] >1
flow in x-direction

downstream condition

weak shock = My > 1
deflection angle 0
shock angle 31

upstream condition

downstream of first shock

downstream condition

weak shock = M3 > 1
deflection angle 6
shock angle 35



Shock Reflection

Solution:
first shock:
1. B calculated from 6-3-M relation for specified 8 and M (weak solution)

2. flow condition 2 according to formulas for normal shocks (M,, = M; sin(5;) and
Mp, = Masin(B; — 0))

second shock:
1. B9 calculated from 6-3-M relation for specified 8 and My (weak solution)

2. flow condition 3 according to formulas for normal shocks (M, = M sin(3) and
Mp, = M3 sin(f2 — 0))

= complete description of flow and shock waves
(angle between upper wall and second shock: ® = 35 — 6)
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Chapter 4.11
Mach Reflection



Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see 6-3-M
relation)

My > 1




Mach Reflection

normal shock

/

slip line

reflected oblique shock
incident oblique shock

Mach reflection:

appears when regular reflection is not possible
more complex flow than for a regular reflection
no analytic solution - numerical solution necessary



Obligue Shocks and Mach Waves

M1>M2

My > 1.0

01 =1f(My,p1), My =F(My,61,051)



Obligue Shocks and Mach Waves

p1 = 28°
M; =3.1

} =0 =~ 11.2°, My ~ 2.5



Obligue Shocks and Mach Waves

01 =0



Obligue Shocks and Mach Waves

M1 >M2 >M3
Ms > 1.0

B2 > B

Bo =f(Ma,0), M3 =1f(Ms,02,[2)

Note! Shock wave reflection at solid wall is not specular



Obligue Shocks and Mach Waves




Obligue Shocks and Mach Waves

Ps _P2P3 459
P1 P1P2
T Ty T
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Chapter 4.7
Comments on Flow Through Multiple
Shock Systems



Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

My, s1

My, s1




Flow Through Multiple Shock Systems

We may find 6; and 65 (for same M;) which gives the same final Mach number
In such cases, the flow with multiple shocks has smaller losses

Explanation: entropy generation at a shock is a very non-linear function of shock
strength

Note! the system of multiple shocks might
very well result in a larger total flow deflection o
angle than the single-shock case
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Chapter 4.8
Pressure Deflection Diagrams



Pressure Deflection Diagrams

normal shock p2

solution strong shock

solution

= relation between p, and ¢
weak shock

infinitely weak
solution

shock solution ———=

0




Pressure Deflection Diagrams - Shock Reflection




Pressure Deflection Diagrams - Shock Intersection

slip line

A slip line is a contact discontinuity:

discontinuity in p, T, s, v, and M o)

continuous in p and flow angle @

Y
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Chapter 4.12
Detached Shock Wave in Front of a
Blunt Body



Detached Shocks

M>1 M<1

strong shock between c1
and co, weak shock out-
side



Detached Shocks

As we move along the detached shock form the centerline, the shock will
change in nature as

1. right in front of the body we will have a normal shock

2. strong oblique shock

3. weak oblique shock

4. far away from the body it will approach a Mach wave, i.e. an infinitely weak
oblique shock
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Chapter 4.10
Intersection of Shocks of the Same
Family



Mach Waves (Repetition)

Obligue shock, angle 3, flow deflection 6:

g, = Mh TR/ 1)

" [27/( — DIMZ, —

where

Mnl == Ml SIH(B)

and

My, = Mgy sin(f — 0)

Now, let M, — 1 and M, — 1 = infinitely weak shock!

Such very weak shocks are called Mach waves



Mach Waves (Repetition)

Mp, =1 = M;sin(f) =1 = = arcsin(1/M)

Mach wave

My ~ My

0~0

p = arcsin(1/My)




Mach Waves

Oblique shock (weak)

Mach wave

M2
Mach wave




Mach Waves

1. Mach wave at A: sin(p1) = 1/My
2. Mach wave at C: sin(uz) = 1/Ms

3. Oblique shock at B: M, = My sin(5) = sin(5) = Mp, /M
Existence of shock requires M, > 1= > iy
Mach wave intercepts shock!

4. Also, My, = Masin(f8 — 6) = sin(5 — 0) = My, /My
For finite shock strength M, <1 = (8 —0) < 2
Again, Mach wave intercepts shock



Shock Intersection - Same Family

shock

% slip line

reflected shock
. (or expansion fan)




Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4
(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5
(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. P4 =Ps
b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan, depending on
actual conditions

A slip line usually appears, across which there is a discontinuity in all variables
except p and flow angle
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Chapter 4.14
Prandtl-Meyer Expansion Waves



Expansion Waves

M>1

expansion corner gradual expansion



Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called Prandl-Meyer expansion)

expansion fan (Mach waves)

My > M, (the flow accelerates through the expansion fan)
P2 <p1, p2 < p1, T2 < Ty



Prandtl-Meyer Expansion Waves

Continuous expansion region
Infinite number of weak Mach waves
Streamlines through the expansion wave are smooth curved lines

ds = 0 for each Mach wave =- the expansion process is isentropic!



Prandtl-Meyer Expansion Waves

upstream of expansion My > 1, sin(uq) = 1/M;

flow accelerates as it curves through the expansion fan

downstream of expansion My > My, sin(pg) = 1/Ms

flow is isentropic = s, pPo, To, po, @o, ... are constant along streamlines

flow deflection: 6



Prandtl-Meyer Expansion Waves

d
It can be shown that df = \/M? — 17‘/, where v = |v|
(valid for all gases)

Integration gives

05 Mo
do = M
01 M 4

el

av .
the term e needs to be expressed in terms of Mach number

v=Ma=Inv=InM+1lna =

av  dM da
+



Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

fa= VAT, a0 = viAT) = T o (2

a

L]

8V il oM eaza |t
=l+(y-IM sa=a |1+



Prandtl-Meyer Expansion Waves

Differentiation gives:

1 32
da = ao {1 + 5(7 — I)MQ} (—2> (v — 1)MdM
or

da=a [1 - %(7 - 1)/\//2} - <—;> (y — 1)MdM

which gives

dv dM da dM  —5(y-1Mdm 1 dM

oM T a T M I oM Ir L OME M




Prandtl-Meyer Expansion Waves

Thus,

02 M M2—1 dM
df =0, —0 / — =v(My) —v(M
I P T

where

(M) VM2 -1 adM
1% f— —
1+ 10y~ DV2 M

is the so-called Prandtl-Meyer function



Prandtl-Meyer Expansion Waves

Performing the integration gives:

,/L—_Fltr ﬁ(/\ﬁ_ ) —tan~! /M

We can now calculate the deflection angle Ad as:

Af = I/(Mg) - V(Ml)



Prandtl-Meyer Expansion Waves

1
/v+ Lo

v (M)|yy_sae = 130.45°

7+1

(M2 —1) —tan"' /M2 —

140
120

100

40

Prandtl-Meyer function (y = 1.4)




Prandtl-Meyer Expansion Waves

Example:

expansion fan (Mach waves)

0, =0, My > 1is given

0 is given

problem: find My such that s = v(M3) — v(My)
v(M) for v = 1.4 can be found in Table A.5



Prandtl-Meyer Expansion Waves

Since the flow is isentropic, the usual isentropic relations apply:
(oo and T, are constant)

Calorically perfect gas:

Po _ 1L ol
p—_1+2(7 1)M_
T, [, 1 ]
= =[1+=(y—1)M?
+ _+2(7 )_




PL _ oyt
P2 p01 P2
h_To, T
Ty 1o, T2

since Po, = Po, and To, = To,

|
|

Po,
P2

To,
Ty

Prandtl-Meyer Expansion Waves

)/
)/

Poy
P1

Tou
T

>:
>:




Prandtl-Meyer Expansion Waves

Alternative solution:
determine My from 0y = v(Ms) — v(My)
compute po, and Tp, from py, T1, and M, (or use Table A.1)
set Po, = Po, and To, = To,

compute py and T from po,, To,, @and Mz (or use Table A.1)
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Chapter 4.15
Shock Expansion Theory



Diamond-Wedge Airfoil

expansion fan
oblique shock oblique shock

symmetric airfoil
(both in x- and
y-planes



Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle € and upstream
Mach number M,

2-3 Prandtl-Meyer expansion for flow deflection angle 2¢ and upstream Mach
number My

3-4 standard oblique shock calculation for flow deflection angle e and upstream
Mach number M5



Diamond-Wedge Airfoil

symmetric airfoil
zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field
zero lift force on airfoil



Diamond-Wedge Airfoil

Drag force:

D= —@p(n-ex)ds

o0

0Q)  airfoil surface

o) surface pressure

n outward facing unit normal vector
ey unit vector in x-direction




Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions, we obtain:

D = 2 [psL sin(e) — psLsin(e)] = 2(p2 — pg)% = (p2 — p3)t

For supersonic free stream (M > 1), with shocks and expansion fans according to
figure we will always find that po > ps

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)



Flat-Plate Airfoil

expansion fan

oblique shock

slip line

incidenceex: ~ \ T~ ——=—""_"_4___

oblique shock

expansion fan



Flat-Plate Airfoll

It seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!



Flat-Plate Airfoil

It seems that the angle of the flow downstream of the flat plate would be different
than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from
the plate, shock and expansion waves will interact and eventually sort the
missmatch of flow angles out



Flat-Plate Airfoil

1. Flow states 4 and 5 must satisfy:
P4 = Ps
flow direction 4 equals flow direction 5 (®)

2. Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust
themselves to comply with the requirements

3. For calculation of lift and drag only states 2 and 3 are needed

4. States 2 and 3 can be obtained using standard oblique shock formulas and
Prandtl-Meyer expansion



Obligue Shocks and Expansion Waves

compression corner expansion corner

M  decrease M increase
V' decrease V' increase
p increase p  decrease
p increase p  decrease
T increase T  decrease
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Chapter 5
Quasi-One-Dimensional Flow



Overview

expansion
shock fans
reflection

subst
deriv:

noncon-

servation

form
shock

expansion

h
theory governing

oblique equations CONSERVES
shocks tion form

2D Flow governing

friction nozzles equations

heat .
addition Quasi
1D Flow \
diffusers

1D Flow Conservation
normal
shocks laws
integral form

7

N\

isentropic
flow

\



Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases
7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*
b normal shocks*
i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)

what does quasi-1D mean? either the flow is 1D or not, or?



Roadmap - Quasi-One-Dimensional Flow

Basic concepts

.

Governing equations

!

Area-velocity relation

!

Nozzles

!

]<—[ Free boundary reflection ]

Diffusers

1

l

!

Nozzle pressure ratio J

Numerical simulation &

t

)

Nozzle relations




Motivation

By extending the one-dimensional theory to quasi-one-dimensional, we can
study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional
we will be able to establish important relations using the quasi-one-dimensional
approach
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Quasi-One-Dimensional Flow

Chapter 3

overall assumption
one-dimensional flow
steady state

constant cross-section area

applications

normal shock

1D flow with heat addition
1D flow with friction

Chapter 4

overall assumption
two-dimensional flow
steady state

uniform freestream

applications

oblique shocks
expansion fans
shock-expansion theory




Quasi-One-Dimensional Flow

Extension of one-dimensional flow to allow variations in streamtube area
(steady-state flow assumption still applied)

streamtube area A(x)



Quasi-One-Dimensional Flow

Example: tube with variable cross-section area

cross-section area A(x)
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Chapter 5.2
Governing Equations



Governing Equations

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q) control volume

S, left boundary (area Aq)
S, right boundary (area As)
I perimeter boundary

0N =S UT"uUSy




Governing Equations - Assumptions

Inviscid flow (no boundary layers)
Steady-state flow (no unsteady effects)

No flow through I' (control volume aligned with streamlines)
-

N\

>

Sl 82



Governing Equations - Conservation of Mass

% JH pd ¥ + @ pv-ndS =0
Q o)

=0 —p1U1A1+p2u2A2

[ P1UIAL = paUaAsg ]




Governing Equations - Conservation of Momentum

% JH pva? + @ [p(v-n)v +pn]dS =0
{ o0

|
=0
(ﬁﬁ p(v-n)vdS = —plu%Al + [)QU%AQ
Ao

@pno’S = —P1A1 +P2A2 — pPdA
1) A1

Ao

(p1U + p1)Ar +/A PAA = (paUii + P2)As
1




Governing Equations - Conservation of Energy

% Hj PeodY + gﬁﬁ [pho(v - 1)]dS = 0
¢ 1)

—_———
=0

which gives

p1U1A 1N, = pali2A2ho,

from continuity we have that p1u1A; = paloAs =



Governing Equations - Summary

P1UIAL = palaAsg

Ao

(U2 +p1)As + /A POA = (patd + p2)As
v 1

h01 = h02




Governing Equations - Differential Form

Continuity equation:
[)1U1A1 = [)QUQAQ or /)UA =C

where ¢ is a constant =

d(puA) =0



Governing Equations - Differential Form
Momentum equation:
Az

(p1Ui + p1)A1 + PAA = (pau3 + p2)As =

Ay
d [(pu* + p)A] = pdA =
d(puA) + d(pA) = pdA =
ud(puA) +puAdu + Adp + pdA = pdA =
——

=0

pUAAU +Adp = 0 =

[ dp = —pudu ] (Euler’s equation)




Governing Equations - Differential Form

Energy equation:
hol — h02 = dho — 0

1.
ho:h+§u2;s

[ dh +udu =0 ]




Governing Equations - Differential Form

Summary (valid for all gases):

Assumptions:
quasi-one-dimensional flow
inviscid flow
steady-state flow

d(puA) =0

dp = —pudu

dh+udu =0

J
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Chapter 5.3
Area-Velocity Relation



Area-Velocity Relation

d(puA) = 0 = UAdp + pAdu + pudA =0

divide by puA gives

d a dA

S AN

p u A
Euler’s equation:

d
ap = —pudu = d—p = d—’o—p = —uadu
pdpp

Assuming adiabatic, reversible (isentropic) process and the definition of speed of

sound gives

40 _ <8p> 2 =a?? gy 9 e
dp op) s P p u



Area-Velocity Relation

Now, inserting the expression for il in the rewritten continuity equation gives
P

au dA
— 2— _— =
(1 /\/I)U+A 0

or

which is the area-velocity relation



The Area-Velocity Relation

Subsonic M < 1 Supersonic M > 1

supersonic nozzle
du >0
dp < 0

subsonic diffuser
du <0
dp >0

supersonic diffuser
du <0
dp >0

subsonic nozzle
du >0
dp < 0



The Area-Velocity Relation

What happens when M = 17



The Area-Velocity Relation

What happens when M = 17

M =1whendA =0



The Area-Velocity Relation

What happens when M = 17
M=1whendA =0

maximum or minimum area



The Area-Velocity Relation

M<1 M=1 M>1 /—y—\
|
|

subsonic | supersonic subsonic ! subsonic
—_— e e | e
! supersonic | supersonic
|



The Area-Velocity Relation

A converging-diverging nozzle is the only possibility to obtain supersonic flow!

A supersonic flow entering a convergent-divergent nozzle will slow down and, if
the conditions are right, become sonic at the throat - hard to obtain a
shock-free flow in this case



Area-Velocity Relation

M%O:%:—%
A u
At
A u

1
A [UdA +Adu] =0 =

duA)=0=Au=c

where ¢ is a constant



Area-Velocity Relation

Note 1 The area-velocity relation is only valid for isentropic flow
not valid across a compression shock (due to entropy increase)

Note 2 The area-velocity relation is valid for all gases



Area-Velocity Relation Examples - Rocket Engine

v
X@‘ >

combustion —
chamber M>1
M<1

oy
# -
+\

[s)

— high-velocity gas

High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH2/LOx rocket
engine: po ~ 120 [bar], To ~ 3600 [K], exit velocity ~ 4000 [m/s]



Area-Velocity Relation Examples - Wind Tunnel

nozzle test section diffuser
—_—
e
v >
M <1 ' M>1 EE—
M>1 M=1 M<1
EEE——

accelerating flow constant velocity decelerating flow
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Chapter 5.4
Nozzles



Nozzle Flow with Varying Pressure Ratio

time for rocket science!



Nozzle Flow - Relations

Calorically perfect gas assumed:

From Chapter 3:




Nozzle Flow - Relations

Critical conditions:




Nozzle Flow - Relations

2 52 2 52 52
o Yo _uva uad
aza*®  a?ala*’

u 2
2z M
a _[,1 1/\//271 YRV (Ch)
A R T A IR YO TV
2

1
,?225(74‘1)



Nozzle Flow - Relations
For nozzle flow we have

PUA =C
where ¢ is a constant and therefore
P UTA" = pUA
or, since at critical conditions u* = a*

pratA* = puA
which gives

A p*

A" pu popou



Nozzle Flow - Relations




Nozzle Flow - Relations

* 2
A [%(,y + 1)] y—1 M*?
M*Q 2 %(7 + 1)

(&) = e

which is the area-Mach-number relation



The Area-Mach-Number Relation

A 2 1 2+(771)M2 (v+1)/(v=1)
<A*> _/W[ y+1 ]
supersonic
L e
M subsonic
) 3 4 5 6 7 8 910

-1
100123



The Area-Mach-Number Relation

A 2 B L 2+ (,.Y o 1)M2 (v+1)/(v=1)
Ax ) M2 v+1
supersonic
(O

A prur 107
Note! a— subsonic

A* pu M ’

) 3 4 5 6 7 8 910

~1
100123



Area-Mach-Number Relation

Note 1 Ciritical conditions used here are those corresponding to isentropic flow.
Do not confuse these with the conditions in the cases of one-dimensional
flow with heat addition and friction

Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both
total and critical conditions are constant along streamlines unless
shocks are present (then the flow is no longer isentropic)

Note 3 The derived area-Mach-number relation is only valid for calorically
perfect gas and for isentropic flow. It is not valid across a compression
shock



Nozzle Flow

Assumptions:
inviscid
steady-state
quasi-one-dimensional
calorically perfect gas




The Area-Mach-Number Relation

Sub-critical (non-choked) nozzle flow

M < 1 at nozzle throat
Ar > A*
M1 <1
My < 1

1071

supersonic




The Area-Mach-Number Relation

Subcritical nozzle flow (non-choked and subsonic = isentropic):
A* is constant throughout the nozzle (A* < At)

M given by the subsonic solution of

.
Ay 1 2 1 NEE
— 1+ -(y-1
<A*> M2 [7+1( T30 )Ml)]
M given by the subsonic solution of

(ﬁ) AH 4 50 - o]

M is uniquely determined everywhere in the nozzle, with subsonic flow both
upstream and downstream of the throat

2
—



The Area-Mach-Number Relation

Critical (choked) nozzle flow

M =1 at nozzle throat
A = A*
M1 <1
My > 1

1071

supersonic

throat




The Area-Mach-Number Relation

Supercritical nozzle flow (choked flow without shocks = isentropic):
A* is constant throughout the nozzle (A* = At)

M given by the subsonic solution of

() - (3) - [0 30 - vwe)

M given by the supersonic solution of

() - () -yl o

M is uniguely determined everywhere in the nozzle, with subsonic flow upstream
of the throat and supersonic flow downstream of the throat

2
|
-

2
|
-



Nozzle Mass Flow

pUA = p* ALY =

From the area-Mach-number relation

<1
< 1

£
3 <1

if
if
if

AT pu

7=

p*u*

M<1
M=1
M>1

pu
p* u*

0.8

0.6

0.4

0.2

0
1071

The maximum possible massflow through a duct is achieved when its throat reaches

sonic conditions



Nozzle Mass Flow

For a choked nozzle:




Nozzle Mass Flow

oA 7< 2 )
VT VR \y+1

The maximum mass flow that can be sustained through the nozzle

Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically
perfect gas

Note! The massflow formula is valid even if there are shocks present
downstream of throat!



Nozzle Mass Flow

y+1

VT, VR\y+1

How can we increase mass flow through nozzle”?

increase po
decrease T,
increase A

DL ™~

decrease R

(increase molecular weight, without changing )



Roadmap - Quasi-One-Dimensional Flow

Basicw:epts
!

Govemwua’[ions

Area—vew relation

Nozzles ]<—[ Free boundary reflection ]

Diffusers [ Nozzle pressure ratio J

' f

Numerical simulation & ] [ Nozzwtions ]




Nozzle Flow with Varying Pressure Ratio

A(x) area function
Ay min{A(x)}
Po inlet total pressure
Pb outlet static pressure
(ambient pressure)

Po/Pp  pressure ratio




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1 N
1
L[ ]
__/_\
0 > Pb/Po
0 1
T/To A
TGOS\ - - - - - - -
T /To |
throat
p/Po A
® inlet 1
o throat
® exit p*/po
0 > S /0Smax
0 1




Nozzle Flow with Varying Pressure Ratio

m/mchoked
! M A
1 1
/\
0 > Pb/Po
0 1
T/To A
Lt=g-cls--------
T /To |
throat
p/Po 4
® inlet I A S ——
® throat
® exit 0" /o
0 > JS/0dSmax
0 1




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1
L]
0 > Pb/Po
0 1
T/To A
11- s KW it
T /To
® inlet
® throat
® exit
0 > S /0Smax
0

1

p/Po

p* /Po

MA

|
throat

A




Nozzle Flow with Varying Pressure Ratio

m/mchoked
1
L ]
0 > Pb/Po
0 1
T/To A
11- t 77777777777
T /To
® inlet
® throat
® exit
0 > S /0Smax
0

1

p/Po 4
—————
p* /Po

MA

|
throat




Nozzle Flow with Varying Pressure Ratio

m / mchoked

1

T/TO‘

Sy L0 . N\ N
T /To I

® inlet
® throat
® exit

» s /dSmax
0 1

MA
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Varying Pressure Ratio
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Nozzle Flow with Internal Shock

Nozzle flow with shock

- T=T*
—— Nozzle process

The nozzle flow process follows an
isentrope up to the location of the
internal normal shock

*
inlet

p/p

Sonic conditions at the nozzle throat

upstream of shock
1 1 1 1

!
1 1.5 2 2.5 3

v/ Vet



Nozzle Flow with Internal Shock

The normal shock moves the process
line to another isentrope

T, and thus T is not affected by the
shock

po decreases over the shock which
means that p* decreases and v*
increases

0.5

Nozzle flow with shock

\ \ T T I T
I *
o L T=T |
B ! —— Nozzle process
! - - - shock
A\ Y exit !
N\ downstream of shock
A ~
[~ "rew sonic point. X PO
|
- |
I
|
|
‘ : ‘ ‘ upstrean‘v of shock ‘
.5 1 1.5 2 2.5 3

v/ Vet



Nozzle Operation - Pull vs. Push

choked nozzle flow

supercritical nozzle flow (pull)

supercritical nozzle flow (push)

1.05

b Vo L P
- - - isentrope v 1 e 1 & I
H—T=" o “ v
= o h h h
Q—7=T" £ L JE !
—T=T Rt 08F T osf 7 T
095 —T7=T1, S E ! ! !
T/To S-P=EP A 0.6 0.6
094 ""P=P ,I',"/ E il . e ! . ' '
s P=p2 Y ' Priae ! ! !
---p =P " : 4 e -7 N
0.85 |- — R | AT e s I X S e .
0.8 AR | | | 0.2 | 4-"—_\— | | i 0.2 i | | | | i
—-04 -03 -02 -0.1 0 0.1 02 -12 -1 —-08 —-06 —04 -02 0 02 -12 -1 —-08 —-06 —04 -02 0

S/Sref

Nozzle Pressure Ratio NPR = po /pp
Pull - increase NPR by reducing the back pressure (pp)

Push - increase NPR by increasing the inlet total pressure (po)

S / Sref

S / Sref

0.2



Nozzle Operation - Pull vs. Push

choked nozzle flow

supercritical nozzle flow (pull)

supercritical nozzle flow (push)

.
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Nozzle Flow with Varying Pressure Ratio - Downstream Flow

K/—>

normal shock

w

oblique shock

K/—>
pressure matched

_/\—>

expansion fan

-

Po/Pb = (Po/Pp)ne
normal shock at nozzle exit

(Po/Pp)ne < Po/Pp < (Po/Pb)sc
overexpanded nozzle flow

Po /P = (Po/Pp)sc
pressure matched nozzle flow

Po/Pp > (Po/Pb)sc
underexpanded nozzle flow



Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pb) < (Po/Pb)cr
subsonic, isentropic flow throughout the nozzle

the mass flow changes with py, i.e. the flow is not choked

(po/pb) = (po/pb)cr
sonic flow (M = 1.0) at the throat

the flow will flip to the supersonic solution downstream of the throat, for an
infinitesimal increase of (0, /Pp)

(Po/Pb)er < (Po/Pb) < (Po/Pb)ne
the flow is choked (fixed mass flow)

a normal shock will appear downstream of the throat, with strength and position
depending on (pPo/pPb)



Nozzle Flow with Varying Pressure Ratio (Summary)

(Po/Pb) = (Po/Pb)ne
normal shock at the nozzle exit
supersonic, isentropic flow from throat to exit
(Po/Pb)ne < (Po/Pb) < (Po/Pb)sc
overexpanded flow (supersonic, isentropic flow from throat to exit)
oblique shocks formed downstream of the nozzle exit
(Po/Pb) = (Po/Pb)sc
supercritical flow (pressure matched)
supersonic, isentropic flow from the throat and downstream of the nozzle exit
(Po/Pb)sc < (Po/Pb)
underexpanded flow (supersonic, isentropic flow from throat to exit)

expansion fans formed downstream of the nozzle exit



Nozzle Flow with Varying Pressure Ratio - Q1D Limitations

Quasi-one-dimensional theory

When the interior normal shock is "pushed out” through the exit (by increasing
(Po/Pp), i.e. lowering the back pressure), it disappears completely.

The flow through the nozzle is then shock free (and thus also isentropic since
we neglect viscosity).

Three-dimensional nozzle flow

When the interior normal shock is "pushed out” through the exit (by increasing
(po/Pp)), an oblique shock is formed outside of the nozzle exit.

For the exact supercritical value of (p,/pp) this oblique shock disappears.

For (po/pp) above the supercritical value an expansion fan is formed at the
nozzle exit.
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Chapter 5.6
Wave Reflection From a Free
Boundary



Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc



Free-Boundary Reflection - Shock Reflection

reflected expansion

incident shock

No discontinuity in pressure at the free boundary possible
Incident shock reflects as expansion waves at the free boundary
Reflection results in net turning of the flow



Free-Boundary Reflection - Expansion Wave Reflection

free boundary (oo )

incident expansion wave reflected shock

No discontinuity in pressure at the free boundary possible

Incident expansion waves reflects as compression waves at the free
boundary

Finite compression waves coalesces into a shock
Reflection results in net turning of the flow



Free-Boundary Reflection - System of Reflections

overexpanded nozzle flow




Free-Boundary Reflection - System of Reflections

shock reflection at jet centerline




Free-Boundary Reflection - System of Reflections

shock reflection at free boundary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at jet centerline

— \f”‘ee;bouﬂdary




Free-Boundary Reflection - System of Reflections

expansion wave reflection at free boundary




Free-Boundary Reflection - System of Reflections

repeated shock/expansion system




Free-Boundary Reflection - System of Reflections

shock diamonds




Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves

Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves

Expansion waves reflects as compression waves
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Chapter 5.5
Diffusers



Supersonic Wind Tunnel

wind tunnel with supersonic test section

open test section

M>1
\/ =
— Po/Pb = (Po/Pb)sc
Po —% Pb = Pamp
M = 3.0 in test section = po /pp = 36.7 Il

—>
—>
—/\—»

test section
(open)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

normal shock

wsif

\/—:E— M< 1 Po/Pamb = (Po/Pb)(Pb/Pamb) < (Po/Pp)sc

P, P,
o —_< b o M = 3.0 in test section =
amb

— n -~
M Do /Pamp = 36.7/10.33 = 3.55

test section

(closed)



Supersonic Wind Tunnel

wind tunnel with supersonic test section

add subsonic diffuser after normal shock

normal shock

w1/

\/—>—
—>
=

Po —> Pp

— p2 (p02 = pamb)
—

T~ = |

test section
(closed)

M <1

Po/Pamb = (Po/Pp)(Pp/P2)(P2/Pog)

M = 3.0 in test section =~
Po/Pamp = 36.7/10.33/1.17 = 3.04

Note! this corresponds exactly to total pressure
loss across normal shock




Supersonic Wind Tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock

oblique shocks
normal shock

well-designed supersonic + subsonic diffuser =

M>1 /

Po 1. decreased total pressure loss

(DOQ = Damb)
2. decreased po and power to drive wind tunnel
test section

(closed)




Supersonic Wind Tunnel
Main problems:

1. Complex 3D flow in the diffuser section
viscous effects
complex systems of oblique shocks
flow separation
shock/boundary-layer interaction

2. Starting requirements
second throat must be significantly larger than first throat

variable geometry diffuser
second throat larger during startup procedure

decreased second throat to optimum value after supersonic flow is established
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Quasi-One-Dimensional Euler
Equations

CFLOW



Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

Assumptions: inviscid, Q = Q(x, t)

CFLOW



Quasi-One-Dimensional Euler Equations I—8

9 /
AR o7 Q+07[ (X)E] = A"(x)H

where A(x) is the cross section area and

p pu 0
Q=|pu|,EQ=|p>+p|,HQ=|p
PEo phot 0

CFLOW



Numerical Approach I—8

Discretization:
Finite-Volume Method (FVM) - Quasi-1D formulation

Numerical scheme:
third-order characteristic upwind scheme

Time stepping technique:
three-stage second-order Runge-Kutta explicit time marching

Boundary conditions:

left-end boundary:

subsonic inflow

specify: inlet total temperature (T,) and total pressure (0o)
right-end boundary:

subsonic outflow

specify: outlet static pressure (p) CFLOW



Finite-Volume Spatial Discretization I—8

Integration over cellj gives:

I# CFLOW



Finite-Volume Spatial Discretization I—8



Nozzle Simulation - Back Pressure Sweep

Nozzle geometry

0.2

0.4 n




Nozzle Simulation - Back Pressure Sweep

p
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
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Nozzle Simulation - Back Pressure Sweep

( 1\
Po 1.20 [bar]
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Po 1.20 [bar]
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Nozzle Simulation - Back Pressure Sweep
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Po 1.20 [bar]
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Nozzle Simulation - Back Pressure Sweep
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Nozzle Simulation - Back Pressure Sweep
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Po 1.20 [bar]
Pp 0.50 [bar]
po/py 118
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Nozzle Simulation - Back Pressure Sweep

Po
Pb

Po/Pp

Mmax

1.20 [pbar]
1.10 [pbar]
1.09

145.62 [kg/s|

1.31

1.18

-10°

0.5



Nozzle Simulation - Back Pressure Sweep

Po
Pb

Po/Pp

Mmax

1.20 [pbar]
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145.62 [kg/s|
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Chapter 6
Differential Conservation Equations
for Inviscid Flows



Overview

expansion

(T noncon-

servation

hock form
shoc

expansion

L governing

equations conserva-

tion form

2D Flow

nozzles

Quasi
1D Flow

diffusers
Conservation
laws
integral form

substantial
derivative

entropy
equation

governing

equations
Crocco’s
equation

moving
shocks

traveling
waves

shock
reflection




Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

the governing equations for compressible flows on differential form - finally ...



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

—>[ PDE:s on non-conservation form

The entropy equation

'

[ Crocco’s theorem ]




Motivation

The differential form of the conservation equations is needed when analyzing
unsteady problems

The differential form of the conservation equations forms the basis for
multi-dimensional analysis and CFD



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on conservation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

—>[ PDE:s on non-conservation form

The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.2
Differential Equations in Conservation
Form



Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:
Start with control volume formulation
Convert to volume integral via Gauss Theorem
Arbitrary control volume implies that integrand equals to zero everywhere



Continuity Equation - Conservation of Mass

Control volume formulation

%ffjpd“//—&—ﬁpv-nd\s:()
Q Big)

where Q is a fixed control volume and thus — fff pdV = jff 8'Oo’“//

Applying Gauss’ Theorem on the surface integral gives

@pv -ndS = fff V- (pv)d¥
09 Q



Continuity Equation

Therefore

JiJ L )| o =0

Q) is an arbitrary control volume, can be made infinitesimal and thus

ap B
at+v-(pv)—0}

which is the continuity equation on differential form



Momentum Equation - Conservation of Momentum

Control volume formulation

% {[f pvet7 + {f lo(v-m)v + pn}as = [[{ pfct7
Q 0 o

where Q is a fixed control volume and thus % fgf pvd¥ = jgf gt(pv)o’“//

Applying Gauss’ Theorem on the surface integrals gives

@p(v -n)vdS = fff V- (pvv)d¥ ; @,OHO’S = fff Vpdy
of) Q o0 Q



Momentum Equation

Therefore

IJ BAPV) +V - (pvv) + Vp - pf] av =0
Q

Q) is an arbitrary control volume, can be made infinitesimal and thus

{ gt(pVHV-(pVVHVD:pf}

which is the momentum equation on differential form



Momentum Equation

In cartesian form (v = uey + ve, + we):

0 op
a(ﬂu) + V- (puv) + o Pl
0 op
&(PV) + V- (pvv) + y ply
0 op
&(PW) + V- (pwv) + % Pz




Momentum Equation

or expanded:

B, B,
== (puv) + —

ﬁ( uu) +
P By oz

)
—(pu) + X

ot
0
ot

0 9
= (pwv) + —

2( wu) +
£ ay oz

(pw) + X

ot

0 0 0 a
57 PY) + o (ovu) + 87(9\/\/) + 5, (W) +




Energy Equation - Conservation of Energy

Control volume formulation

& JIJ o+ ff ot -mas = f[[ ot 0
L ig) o

. d 0
where 2 is a fixed control volume and thus o fgj peod¥ = L{j &(peo)d”l

Applying Gauss’ Theorem on the surface integral gives

@S pho(v -n)dS = fff V - (phov)d¥
o0 Q



Energy Equation

Therefore

IJ:[ [aat(ﬂeo) + V- (phov) — p(f- v)] dv — o0
Q

Q) is an arbitrary control volume, can be made infinitesimal and thus

{ gt(peo) + V- (phov) = p(f-v) }

which is the energy equation on differential form



Partial Differential Equations in Conservation Form

ap B
E + V- (,OV) =0
0
5 (PV) + V- (pvv) + Vp = pf
d
&(PeO) + V- (phov) = p(f- v)

(. J

These equations are referred to as PDE:s on conservation form since they stem
directly from the integral conservation equations applied to a fixed control volume



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

—>[ PDE:s on non-conservation form
~ =5 tv-V l

The entropy equation

'

[ Crocco’s theorem ]




The Substantial Derivative

Introducing the substantial derivative operator

D 0
E:&+vv

”... the time rate of change of any quantity associated with a particular moving
fluid element is given by the substantial derivative ...”

”... the properties of the fluid element are changing as it moves past a point
in a flow because the flowfield itself may be fluctuating with time (the local
derivative) and because the fluid element is simply on its way to another point
in the flowfield where the properties are different (the convective derivative)

”



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4
D V —>[ PDE:s on non-conservation form ]

ot otV |
The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.4
Differential Equations in
Non-Conservation Form



Non-Conservation Form of the Continuity Equation

Applying the substantial derivative operator to density gives

Dp  0dp
ot o VYV
Continuity equation:

op _Op B
E—i—v-(pv)—§+V-Vp+p(v-v)—0:>




Non-Conservation Form of the Continuity Equation

Dp B
Dt+,0(VV)—O]

”... the mass of a fluid element made up of a fixed set of particles (molecules
or atoms) is constant as the fluid element moves through space ...”



Non-Conservation Form of the Momentum Equation

0
—(pv) + V- (pvv +pI) = pf =

ot
ov 0
P o +Va—[t)+pv Vv +v(V:pv)+ Vp = pf =

ov ap
L%—i—v VV] [at+v pv}—l—Vp—pf

_Dv =0
Dt

Dv
— =f
{DZ‘+ -Vp




Non-Conservation Form of the Energy Equation

9 (peo) +V - (phov) = p(E-¥) + &

ot
ho:eo‘f’B =
p
0 .
§(peo) + V- (peov) + V- (pv) = p(f-v) + pg =
oe 0 :
pa—to +eoa—f+pv'Veo+eoV-(pv)+V-(pv):p(f-v)+pq:>

ot ot

__Deo =0
~— Dt

o [8eo +v-Veo} +€o [6;} +V- (/)V)} +V - (pv) = p(f-v) + pq




Non-Conservation Form of the Energy Equation

De .
pop TV (Ptv)=pf-vpg

1
eo:e+§v-v:>

De Dv .
Por TPV o TV (PY) =pf vt pg

D 1
Using the momentum equation, (D‘t, + -Vp = f), gives
P

e .
Pop —V VP F vV VD+p(V-v) = pf-v 4 pd =

De p .
D,erp(V‘V)CI}




Non-Conservation Form of the Energy Equation

De p
Dr ;(V V) =g
From the continuity equation we get
Dp B ~ 1Dp
Eer(V V) 0=V .v= th
De pDp De 1
ot 2ot 97 bt TPhr <p>
De ., Dv
Dt Dt

where v = 1/p



Non-Conservation Form of the Energy Equation

Compare with first law of thermodynamics: de = §g — 6W




Non-Conservation Form of the Energy Equation

If we instead express the energy equation in terms of enthalpy:

De . D (1y_ De D/(1)\_,
pt 9 thp Dt prp_q

h = = EE——— -
et = ot ~ ot T oot TPor

p p

p _Dh De 1D—'O+ D<1>:S



Non-Conservation Form of the Energy Equation

and total enthalpy ...

1 Dh Dh D
ho=h+=v.-v=—2 = v

VT o T TV o

From the momentum equation we get



Non-Conservation Form of the Energy Equation

Dh, . 1[Dp
zn—q+p[

Dt—v-Vp] +f-v

Now, expanding the substantial derivative % = %lz? + v - Vp gives

Let’'s examine the above relation ...



Non-Conservation Form of the Energy Equation

Dh, 10p .
o _ 290 £
bt ot TATEY

The total enthalpy of a moving fluid element in an inviscid flow can change due to
unsteady flow: dp /ot # 0
heat transfer: g # 0
body forces: f-v # 0



Non-Conservation Form of the Energy Equation

Adiabatic flow without body forces =

Dho _ 10p
Dt pot

Steady-state adiabatic flow without body forces =

Dh,

ot

he is constant along streamlines!



Additional Form of the Energy Equation

Start from
De . D1
ot~ 9P\,

Calorically perfect gas:

R
e:CVT;Cvzﬁ;p:pRT;’y,R:COHSZ‘

De DL/ R Dfipy__1 Dfpy_ 1 D(py_
Dt "Dt  ~—1Dt\pR) ~—1Dt\p v—1Dt\p)



Additional Form of the Energy Equation



Additional Form of the Energy Equation

Continuity:



Additional Form of the Energy Equation

D .
Eﬁ; +0(V-v) = (v —1)pq

Adiabatic flow (no added heat):

[%;er(v'v}—o}

Non-conservation form (calorically perfect gas)



Conservation Form

0oQ OE OF 0G

T ax Ty e =

where Q(x,y,z,t), E(x,y,z,t), ... may be scalar or vector fields

Example: the continuity equation

op 0 ) o
E—F@ix( )4‘@( )+§(PW)—0

If an equation cannot be written in this form, it is said to be in non-conservation
form



Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat)

-

op 0 B
a a(ﬂu) + @(PV) +

0

) ) )
&(pU) + a(puu +p) + afy(pUV) + ;(pUW) =0

(P4) 4 W) + (g +0) + (o) =0

ot 15)4

) B
8t(pW) + a(pWU) + 7(pWV) +

ot

(080) + > (phot) +




Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat), calorically perfect gas

s

ap ap op ap
at Tlax TVay "oz
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Plaox Tay Tz ) T

190 _

)
p OX

10p

2 _y

p Oy
10p
2 _0
p 0z

ou ov  ow
Tt o T o, T ) =0

ox oy 0z

~N




Conservation and Non-Conservation Form

The governing equations on non-conservation form are not, although the name might
give that impression, less physically accurate than the equations on conservation
form. The nomenclature comes from CFD where the equations on conservation form
are preferred.

Using the conservation form as a basis for a Finite-Volume Method (FVM) solver
ensures conservation of mass, momentum and energy.



Conservation and Non-Conservation Form

Conservative equations are equations that directly stems from conservation of
flow quantities over a control volume

The equations on non-conservation form are derived from the corresponding
equations on conservation form using the chain rule for derivatives

Thus the equations on non-conservation form do not stem directly from a
conservation law - but aren’t the two formulations still equivalent?

Only for continuous solutions! The chain rule can only be used for
continuous fields



Conservation and Non-Conservation Form

Conservation forms are useful for:

Numerical methods for compressible flow
Theoretical understanding of non-linear waves (shocks etc)
Provide link between integral forms (control volume formulations) and PDE:s

Non-conservation forms are useful for:
Theoretical understanding of behavior of numerical methods
Theoretical understanding of boundary conditions
Analysis of linear waves (aero-acoustics)



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on c“rvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

5 V —>[ PDE:s on nor\wservation form ]
ot otV |
The entropy equation

'

[ Crocco’s theorem ]




Chapter 6.5
The Entropy Equation



The Entropy Equation

From the first and second law of thermodynamics we have

De . Ds D1
ot~ 't o\

which is called the entropy equation



The Entropy Equation

Compare the entropy equation
e Ds_ D (1
ot~ ot Poi\p
with the energy equation (inviscid flow):
e . D1
bt~ 9P p

we see that



The Entropy Equation

If § = 0 (adiabatic flow) then

Ds_

Efo

i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

Ds_@s

E_EJr(V-V)S:(V-V)S:O

i.e., entropy is constant along streamlines



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on Mrvation form ]
conservation of momentum
conservation of energy

The substantial derivative: 4

5 V —>[ PDE:s on nonwservation form ]

[ The ent equation ]

'

[ Crocco’s theorem ]




Chapter 6.6
Crocco’s Theorem



Crocco’s Theorem

”

.. a relation between gradients of total enthalpy, gradients of entropy, and
flow rotation ...”



Crocco’s Theorem

Momentum equation (no body forces)

Dv
Por = —Vp
Writing out the substantial derivative gives
+ v-Vv=-YV :>a—+v Vv = _,v
Pot TP P= o =P

First and second law of thermodynamics (energy equation)
1
dh =Tds+ —dp
P
Replace differentials with a gradient operator

1 1
Vh=TVs+ ;Vp = TVs=Vh-— ;Vp



Crocco’s Theorem

With pressure derivative from the momentum equation inserted in the energy
equation we get

TVS:Vh—l-%—I-V'VV

h:ho—%v‘v:Vh:Vho—V(%v-v)

V(%v-v):vx(va)—l—v~Vv

V(A-B)=(A-V)B+ (B-V)A+A X (VxB)+Bx (VxA)

A=B=v=V(v-v)=2[v-Vv+4+vx(Vxv)]




Crocco’s Theorem

TVS:VhO—vx(va)—v-Vv—l—%—l—v-Vv

at—vx(va)

Note! V x v is the vorticity of the fluid

1
the rotational motion of the fluid is described by the angular velocity w = 5 (V xv)



Crocco’s Theorem

TVSVhO—i—gj—vx(va)

i

. When a steady flow field has gradients of total enthalpy and/or entropy
Crocco’s theorem dramatically shows that it is rotational ...”



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

1. s is constant upstream of shock
2. jumpin s across shock depends on local shock angle

3. s will vary from streamline to streamline downstream of shock
4. Vs # 0 downstream of shock



Crocco’s Theorem - Example

Curved stationary shock (steady-state flow)

Moo  constant shock

ho constant
s constant

Total enthalpy upstream of shock

ho is constant along streamlines
ho is uniform

Total enthalpy downstream of shock
ho is uniform

Vhozo



Crocco’s Theorem - Example

Crocco’s equation for steady-state flow:

TVs =Vhy —v x (V xv)

v x (V x v) # 0 downstream of a curved shock
the rotation V x v # 0 downstream of a curved shock

Explains why it is difficult to solve such problems by analytic means!



Roadmap - Differential Equations for Inviscid Flows

Control volume formulations:

conservation of mass —>[ PDE:s on Mrvation form ]
conservation of momentum
conservation of energy
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[ The ent equation ]
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[ Crocheorem ]




Chapter 7
Unsteady \Wave Motion
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Learning Outcomes

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

a 1D isentropic flow*

b normal shocks*

| unsteady waves and discontinuities in 1D
k basic acoustics

Solve engineering problems involving the above-mentioned phenomena (8a-8Kk)
Explain how the equations for aero-acoustics and classical acoustics are
derived as limiting cases of the compressible flow equations

moving normal shocks - frame of reference seems to be the key here?!



Roadmap - Unsteady Wave Motion

[ Basic concepts ]

‘ Moving normal shocks ]4—0—»[ Elements of acoustic theory ]

' '

[ Shock reflection ] [ Finite non-linear waves ]
[ Shock tube ]—»(i)<—{ Expansion waves ]
[ Shock tube relations ]—>[ Shock tunnel

|

Riemann problem & ’




Motivation

Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic
within compressible flows

We wiill study unsteady flows in one dimension in order to reduce complexity
and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube,
which is a rather rare application but it lets us study unsteady waves in one
dimension and it includes all physical principles introduced in chapter 7
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Unsteady Wave Motion

inertial frames!
Physical laws are the same for both frame of references
Shock characteristics are the same for both observers (shape, strength, etc)

Recall - the Hugonoit relation does not include velocities, only static
thermodynamic quantities that are independent of reference frame



Unsteady Wave Motion

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a moving frame of reference, the shock may be viewed as a
stationary normal shock
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Chapter 7.2
Moving Normal Shock Waves



Moving Normal Shock Waves

Chapter 3: stationary normal shock

® 0]
usg uy
B B

T
stationary normal shock

uy > a;
Ug < @
P2 > P1
So > 8§71

supersonic flow)
subsonic flow)
sudden compression)
shock 10ss)

o~~~ —~




Moving Normal Shock Waves

w
<+——@ observer

® 0]
usg uy
-+ e

T
stationary normal shock

Introduce observer moving to the left with speed W

if W is constant the observer is still in an inertial system
(all physical laws are unchanged)

The observer sees a normal shock moving to the right with speed W

gas velocity ahead of shock: v} = W — uy
gas velocity behind shock: vy = W — uy



Moving Normal Shock Waves

Now, let W = uy =

UIZO
Uy =up — Uy >0

The observer now sees the shock traveling to the right with speed W = u; into a
stagnant gas, leaving a compressed gas (02 > p1) with velocity v, > 0 behind it

Introducing up:

Up = Uy = Uy — Us



Moving Normal Shock Waves

@ stationary observer

©) O]
uh =up >0 Uy =0
Analogy: i
moving normal shock
Case 1

stationary normal shock

observer moving with velocity W

Case 2
normal shock moving with velocity W

stationary observer



Moving Normal Shock Waves - Governing Equations

@ stationary observer

©) O,
uh =up >0 Uy =0
. .
moving normal shock X
For stationary normal shocks we have: With (up = W) and (ug = W — up) we
get:
p1U1 = paus p1W = pa(W — Up)
p1UT + P1 = paU3 + P2 p1W? + py :p2<W_Up>2+p2
1 1 1 1
h1+§U%:h2+§u% h1+§W2:h2+§(W—UD)2



Moving Normal Shock Waves - Relations

Starting from the governing equations

piW = po(W —up)
p1W? +p1 = po(W — Up)? + pa
hi + %WQ =hy + %(W — Up)?

and usingh =e + P
P

it is possible to show that

+ 1 1
ezfelzpl P2 <+>
P P2



Moving Normal Shock Waves - Relations

p1+p2 (1 1
€ — €] = — + =
o 2 <P’1+pz>

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, i.e. same discontinuities in
density, velocity, pressure, etc



Moving Normal Shock Waves - Relations

Starting from the Hugoniot equation one can show that

1+7+1<P2>
P2 _ -1 \p1

,01_ LH_|_@
y—1 P

and




Moving Normal Shock Waves - Relations

For calorically perfect gas and stationary normal shock:

2
P21y 2 m2 -1

P1 v+1
same as eq. (3.57) in Anderson with M1 = Ms
where
4%
MS = —
a

Ms is simply the speed of the shock, traveling into the stagnant gas, normalized by
the speed of sound in the gas ahead of the shock

Note!
Mg > 1, otherwise there is no shock!
shocks always moves faster than sound - no warning before it hits you ©®



Moving Normal Shock Waves - Relations

2
P21y 22

P1 v+l Incident shock Mach number (v = 1.4)

5 T T T

Re-arrange =

7+1<,02 >
Ms= (|22 (P2 1) 41 I
° \/2’7 p1 Ms 3

shock speed directly linked to pressure ratio 2+

10 15
P2/p1

(S g

W 1
MS::W:eleS:al\/7Jr (’021>+1
2y \pP1



Moving Normal Shock Waves - Induced Flow Velocity

From the continuity equation we get:

P2

After some derivation we obtain:

2y

P2 71

ale_1> v+1
p1 v+1

1/2



Moving Normal Shock Waves - Induced Flow Mach Number

/\//_uﬁ_uﬁﬂ_ h
=2 = -
ax apa Ty

inserting up/a; and T, /T, from relations on previous slides we get:

1/2

1/2
1 (P2 v+1 v—1) \p1
Mp = = s =1 05, 2
v \P1 Y +@ <7+1> <p>+<pg>
v+1 p1 vy o} P1



Moving Normal Shock Waves - Induced Flow Mach Number

Note!

lim My — | ——
P2 o vy —1)

p1
for air (y = 1.4)

lim M, — 1.89

P2
1 — 00

Induced Mach number (v = 1.4)
2 T T T

My = 1.89

P2/P1



Moving Normal Shock Waves - Example

Moving normal shock with ps/p1 = 10

(o1 =1.0bar, T =300 K, v = 1.4)

= Ms =2.95and W = 1024.2m/s

The shock is advancing with almost three times the speed of sound!

Behind the shock the induced velocity is up, = 756.2 m/s = supersonic flow
(@2 = 562.1 m/s)

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock (u1 = W, uz = W — up)



Moving Normal Shock Waves - Total Enthalpy

Note! h,, # ho,

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p2/p1

-

up =20

1 .
hol :hl+§U%:hl

1 .
ho, = ha + §u§

hy > hy = ho, > ho,

N

h2/h1 = T2/T1 (constant Cp)

2

1.8

1.6




Moving Normal Shock Waves - Total Enthalpy

Gas/Vapor Ratio of specific heats Gas constant
") R

Acetylene 1.23 319
Air (standard) 1.40 287
Ammonia 1.31 530
Argon 1.67 208
Benzene 1.12 100
Butane 1.09 143
Carbon Dioxide 1.29 189
Carbon Disulphide 1.21 120
Carbon Monoxide 1.40 297
Chlorine 1.34 120
Ethane 1.19 276
Ethylene 1.24 296
Helium 1.67 2080
Hydrogen 1.41 4120
Hydrogen chloride 1.41 230
Methane 1.30 518
Natural Gas (Methane) 1.27 500
Nitric oxide 1.39 277
Nitrogen 1.40 297
Nitrous oxide 1.27 180
Oxygen 1.40 260
Propane 1.13 189
Steam (water) 1.32 462
Sulphur dioxide 1.29 130
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Chapter 7.3
Reflected Shock Wave



One-Dimensional Flow with Friction

what happens when a moving shock approaches a wall?



Shock Reflection

ax
contact surface, — = 0
dt

N\

ax
contact surface, — = up
dt

solid wall

/

S~

ax
initial moving shock, =
dt

ax
reflected shock, i —Wr



Shock Reflection - Particle Path

A fluid particle located at x( at time t; (a location ahead of the shock) will be affected
by the moving shock and follow the blue path

|
|
time location  velocity ] I O o
|
to X0 0 :
t Xo Up S I~ ~
tQ X1 Up : :
|
ts X1 0 [ [
| |
| |

X0 X1 X



Shock Reflection Relations

In the frame of reference of the reflected shock we have

velocity ahead of shock: W, + up

velocity behind shock: W,

where W, is the velocity of the reflected shock and v, is the induced flow velocity
behind the incident shock



Shock Reflection Relations

Continuity:
p2(Wr +Up) = psW;
Momentum:
P2 + p2(W; + Up)® = ps + psW7?
Energy:

1 1
ha + 5 (Wr +Up)? =hs + §Wr2



Shock Reflection Relations

Reflected shock is determined such that us = 0

M, Ms 2y — 1) 1
= 1 Mz —1 —
ME—1 M§—1¢ B CESIE AR v

where



Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction
between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible,
thus prolonging the duration of condition 5



Tailored v.s. Non-Tailored Shock Reflection

shock wave
contact surface
expansion wave

®

under-tailored

®
®

wall

®

Under-tailored conditions:

Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions

tailored

wall

over-tailored

wall




Shock Reflection - Example

Shock reflection in shock tube (y = 1.4)

(Example 7.1 in Anderson)

Given data

p2/p1 100
To/T1 2.623
DP1 1.0 bar
T1 300.0 K

Calculated data

Ms  2.95

M, 2.09

ps/p2  4.978

Ts/To 1.77




Shock Reflection - Shock Tube

Very high pressure and temperature conditions in a specified location with very
high precision (o5, T5)

measurements of thermodynamic properties of various gases at extreme
conditions, e.g. dissociation energies, molecular relaxation times, etc.

measurements of chemical reaction properties of various gas mixtures at extreme
conditions
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The Shock Tube



Shock Tube

diaphragm

l

| ® | ®

P4

P1

T

diaphragm location

tube with closed ends

diaphragm inside, separating two differ-
ent constant states

(could also be two different gases)

if diaphragm is removed suddenly (by
inducing a breakdown) the two states
come into contact and a flow develops

assume that py > p1:
state 4 is "driver” section
state 1 is "driven” section



Shock Tube

expansion fan contact discontinuity moving normal shock

\ | |/|

(o ][[] & | @

Up w flow at some time after diaphragm
breakdown

T :

diaphragm location



Shock Tube

expansion fan contact discontinuity moving normal shock

\ e

(o[l ] o | @ |

—> o
Up w flow at some time after diaphragm
breakdown
P A
P4
N P3 P2 (p3 = p2)
P1

: :

diaphragm location



Shock Tube - Basic Principles

As the diaphragm is removed, a pressure discontinuity is generated

The only process that can generate a pressure discontinuity in the gas is a
shock

In chapter 3 we learned that the velocity upstream of the shock must be
supersonic

Since the gas is standing still when the shock tube is started, the shock must
move in order to establish the required relative velocity

The shock must move in to the gas with the lower pressure



Shock Tube - Basic Principles

By using light gases for the driver section (e.9. He) and heavier gases for the
driven section (e.g. air) the pressure p,4 required for a specific ps/p; ratio is
significantly reduced

If T4/ T is increased, the pressure p,4 required for a specific p2/p; is also
reduced
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Chapter 7.5
Elements of Acoustic Theory



Sound Waves - Sound Pressure Level

sound wave L, [dB] Ap [Pa]
Weakest audible sound wave 0 2.83x107°
Loud sound wave 91 1.00 x 10°
Amplified music 120 2.80 x 10!
Jet engine @ 30 m 130 9.00 x 10*
Threshold of pain 140 2.83 x 102
Military jet @ 30 m 150 8.90 x 10?

Example (Loud sound wave):

Ap ~ 1 Pa (91 dB) gives Ap ~ 8.5 x 1075 kg/m* and Au ~ 2.4 x 10~% m/s



Elements of Acoustic Theory

PDE:s for conservation of mass and momentum derived in Chapter 6:

conservation form non-conservation form
% v (v =0 8 p(vv =0

mass — . (pv) = _ V) =
ot v Dt r

15} v
momentum o (pv) + V - (pvww+pI) =0 p— +Vp=0
C




Elements of Acoustic Theory

For adiabatic inviscid flow we also have the entropy equation as

Assume one-dimensional flow

T <D

I

Ds
i = 0
o dp op ou
continuity i + u& + pa =0
ou ou  op
momentum pﬁ + pua—x + x 0

s=constant




Elements of Acoustic Theory

- dp ap ou
continuit — =0
Yo o Yok TPax
ou ou op
t — — 4+ —=0
momentum pat + puax + 3
s=constant

More unknowns than equations = the equation system can not be solved

Can g—i be expressed in terms of density?

Leading question; it is possible so let’s do just that ...



Elements of Acoustic Theory

From Chapter 1: any thermodynamic state variable is uniquely defined by any two
other state variables

) () 4 (P
b =p(p.s) = db = <ap)sd”+ <8s>pds

s=constant gives



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P = poo + Ap P =Poc + AP T =Tc + AT U=Uso + AU = {Uss =0} = Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

6] el o
—(Ap) + Au— (Ap) + + Ap)—(Au) =0
at( p) Bx( p) + (P p) 6X( )

15} o 15}
(Pos + Ap) —(AU) + (poo + Ap)Au— (AU) +8° — (Ap) =0
ot ox Ox



Elements of Acoustic Theory

Assume small perturbations around stagnant reference condition:

P = poo + Ap P =Poc + AP T =Tc + AT U=Uso + AU = {Uss =0} = Au
where poo, Poo, and T, are constant

Now, insert p = (pso + Ap) and u = Au in the continuity and momentum equations
(derivatives of p, are zero)

) 2 )
—(Ap) + Au— (Ap) + + Ap)—(Au) = 0
at( p) Bx( p) + (P p)aX( )

=
2] 2] 2 0
(oo + Ap) — (AU) + (poo + Ap)Au— (A +a% —(Ap) =0
ot ox ox



Elements of Acoustic Theory

Speed of sound is a thermodynamic state variable = a? = a*(p, s). With entropy
constant = a* = a*(p)

Taylor expansion around a», With (Ap = p — pso) gives

2= a2 + (;p(a%)w Aoty <§;(32))m () + ...

fo] Iol o
— (A Au— (A Ap)—(Au) =0
{ o5 (80) + AU (2p) + (poo + Ap) = ()
=

( +A)3<Au)+( +A)Au3(Au)+ a> +(i(a2)> Ap+ 2(A):o
Poo 2 Poo pIAUZ s % ~ Pt (B



Elements of Acoustic Theory - Acoustic Equations
Since Ap and Au are assumed to be small (Ap < poo, AU <K Q)

1. products of perturbations can be neglected
2. higher-order terms in the Taylor expansion can be neglected

O (Au) =

0
57 (AP) + poo

0

9 (a0 =0

8
Au +a

Poo bt

Note! The assumption is only valid for small perturbations (sound waves)

This type of derivation is based on linearization, i.e. the acoustic equations are linear



Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

”... describe the motion of gas induced by the passage of a sound wave ...”



Elements of Acoustic Theory - Wave Equation

Combining linearized continuity and the momentum equations we get

(combine the time derivative of the continuity egn. and the divergence of the momentum eqn.)
General solution:

Ap(X,t) = F(X — acot) + G(X + acol)

wave traveling in wave traveling in
positive x-direction negative x-direction
with speed aoo with speed aoo

F and G may be arbitrary functions
Wave shape is determined by functions F and G



Elements of Acoustic Theory - Wave Equation

Spatial and temporal derivatives of F are obtained according to

oF oF O(X — anol)
ot (X — axt) ot

oF oF O(X —ast)
Ox  O(x —ast)  Ox

spatial and temporal derivatives of G can of course be obtained in the same way...



Elements of Acoustic Theory - Wave Equation

F(x —axt) + G(x + axt) and the derivatives of F and G we get

with Ap(x,t) =
02
8t2(Ap) aZOF” +a§OG”
and
82
@(Ap) — F// + G//
which gives
0? 0?2
22 (Ap) —as a 5 (Ap) =

i.e., the proposed solution fulfils the wave equation



Elements of Acoustic Theory - Wave Equation

F and G may be arbitrary functions, assume G = 0

Ap(x,t) = F(X — anot)

If Ap is constant (constant wave amplitude), (x — at) must be a constant which
implies
X =asl+cC

where ¢ is a constant

*_,
a



Elements of Acoustic Theory - Wave Equation

Let’s try to find a relation between Ap and Au

Ap(x,t) = F(x — ant) (wave in positive x direction) gives:

) 0
~(Ap) = —axF’ o (Ap) =F
8t and 8)(
B, )
—— ——
—aooF’ F’
or
) 10
“Z(Ap) = ——
8x( p) Q. at( p)



Elements of Acoustic Theory - Wave Equation

Linearized momentum equation:

o) )
o= (A —a’, —(A
poo g (AU) = —a5 - (Ap) =

2
(a0 === 2 an) = { 2ap) = - San | = 2= 2 )

Poo OX oo O Poo OF
9 (A — Ap) =0= Au— aioAp = const

In undisturbed gas Au = Ap = 0 which implies that the constant must be zero and
thus

a
Au=">Ap
Poc




Elements of Acoustic Theory - Wave Equation

Similarly, for Ap(x,t) = G(x + ast) (wave in negative x direction) we obtain:

Au=—22n,
Poo
Also, since Ap = a2 Ap we get:
. , , . Ao 1

Right going wave (+x direction) Au=—Ap= o Ap

Poo oo Poo
. . . oo 1
Left going wave (-x direction) Au=-——Ap=— Ap

Poo Ao Poo



Elements of Acoustic Theory - Wave Equation

Au denotes induced mass motion and is positive in the positive x-direction

Au = iaooAp =

A
+ Qo
Poo Ao Poo

condensation (the part of the sound wave where Ap > 0):
Au is always in the same direction as the wave motion

rarefaction (the part of the sound wave where Ap < 0):
Au is always in the direction opposite to the wave motion



Elements of Acoustic Theory - Wave Equation Summary

Combining linearized continuity and the momentum equations we get

Due to the assumptions made, the equation is not exact
More and more accurate as the perturbations becomes smaller and smaller

So, how should we describe waves with larger amplitudes”?
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Chapter 7.6
Finite (Non-Linear) Waves



Finite (Non-Linear) Waves

When Ap, Au, Ap, ... Become large, the linearized acoustic equations become
poor approximations

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations:

dp 8p ou
ot Yok TPax 0

ou ou 10p

E—i_uax—i_pax




Finite (Non-Linear) Waves

We still assume isentropic flow, ds = 0

Op _(9p) b _ 10p o _
ot \op/), ot aot ox
Inserted in the continuity equation this gives:
op ap 50U
ou_ ou 10p
ot ox  pox

(

dp
op

)

o _1ap
S Ox  azox



Finite (Non-Linear) Waves

Add 1/(pa) times the continuity equation to the momentum equation:

ou ou 1 [odp op|
[at (u+a )ax:|+|:8t+( +a)8x}o

If we instead subtract 1/(pa) times the continuity equation from the momentum
equation, we get:

o -] e

e Rk SR B



Finite (Non-Linear) Waves

Since u = u(x,t), we have:

8u au 8u ou dx

ax )
Let P =Uu+agives
ou ou

. . adx
Interpretation: change of u in the direction of line i u+a



Finite (Non-Linear) Waves

In the same way we get:

_Op op dx

dp = Edt + aadt
and thus
_|op op
ap = {81‘ + (u+a)ax] dt

. . L . ax
Interpretation: change of p in the direction of line g u-+a



Finite (Non-Linear) Waves

Now, if we combine

ou +turad
ot ox
dU - |:af
ap
dp = {81‘

we get




Characteristic Lines

Thus, along a line dx = (u + a)dt we have

{dqudpo}
pa

In the same way we get along a line where dx = (u — a)dt




Characteristic Lines

We have found a path through a point (x, t) along which the governing partial
differential equations reduces to ordinary differential equations

These paths or lines are called characteristic lines

The Ct and C~ characteristic lines are physically the paths of right- and
left-running acoustic waves in the xt-plane



Characteristic Lines

_ o ax
C™ characteristic line: — =u-—a
dt
- ) dp
t compatibility equation: du— — =0
pa

/

+ - ax
C™ characteristic line: a =u+a
. dp
compatibility equation: du+ — =0
pa
VX

X1



Characteristic Lines - Summary

au 1 dp .
—+——=0 a + characterist
Ot + oa df along C™ characteristic
du 1d -
g pao’ﬁt) =0 along C~ characteristic
dp n _
au + p—a =0 along C" characteristic
o/
au — —Z =0 along C~ characteristic
P




Riemann Invariants

Integration gives:

a -
JT=u+ / —5 = constant along C* characteristic
P

a .
J =u-— / —Z = constant along C™~ characteristic
p

We need to rewrite do to be able to perform the integrations

pa



Riemann Invariants

For an isentropic processes the isentropic relations give:

p =c TV = cyg27/(v=1)
where ¢ and ¢y are constants and thus

ap =co < 271> al2v/(v=1)-1] 44

Assume calorically perfect gas: a*> = _® =p= Zg
P

with p = 282"/~ we get p = coyal2/ (=12



Riemann Invariants

2y

27 ) 512v/(v=1)-1]
C2(5-1)4 20
J+:u+/d§:u+/ (7 1) da:u+/ a
12

coyal2y/(v=1)-1] v —1




Riemann Invariants

If JT and J~ are known at some point (x, t), then

Jt 4 =au b= U d)

4a

+ g = -1
J J —7_1 a:L(J-&-_J—)

With the Riemann invariants known, the flow state is uniquely defined!



Method of Characteristics

t

1
tn

transfer J™ along C™ characteristics, and vice versa

flow state may be
computed here

flow state known
here




Summary

Acoustic waves

. Ap, Au, etc - very small

. All parts of the wave propagate with
the same velocity a.,

. The wave shape stays the same

. The flow is governed by linear
relations

Finite (non-linear) waves

. Ap, Au, etc - can be large

. Each local part of the wave

propagates at the local velocity
u+a)

. The wave shape changes with

time

. The flow is governed by non-linear

relations



Summary

the method of characteristics is a central element in classic compressible flow theory
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Chapter 7.7
Incident and Reflected Expansion
Waves



Expansion Waves

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

L ® | ®

driver section driven section

Y



Expansion Waves

Properties of a left-running expansion wave
1. All flow properties are constant along C— characteristics
2. The wave head is propagating into region 4 (high pressure)
3. The wave tail defines the limit of region 3 (lower pressure)
4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

Vs

is constant along C™ lines

is constant along C™ lines




Expansion Waves




Expansion Waves

(ON @ ct
o=
c= ct
o
o+
@
ct ct ct




Expansion Waves

ct

ct

ct

o
o=
o=
C~ f
d
b A a
ot ct

constant flow properties in region 4: J; = J;r

J7T invariants constant along C™t characteristics:
=0 =uF
g =ud =4t

since J;r = J;r this also implies J;r = J;r

J™ invariants constant along C™ characteristics:



Expansion Waves

constant flow properties in region 4: J; = J;r

J7T invariants constant along C™t characteristics:

o
o= B ot =0 =uF
(o f g =ud =4t
. . B N since J;m = J;r this also implies J;~ = J;r

J™ invariants constant along C™ characteristics:

Jo =,
ot of o X ¢ =Y
Jo =1f
1 1L
bo = LUF I = S I v =
y—1 4 — y—1 4 —
e = 1 (e —Je )iar = 1 (Jf —Jr ), = ae = a



Expansion Waves

Along each C™ line u and a are constants which means that

ax = U —a = const
at -

C™ characteristics are straight lines in xt-space



Expansion Waves - Shock Tube

(" N\
ps/P1 10.0
TJyTi 1.0
p2/p1 2.8
Mg 1.6
M, 0.7




Expansion Waves - Shock Tube

pa/P1
Ty/T1
p2/p1
Ms
Mp

10.0
1.0
2.8
1.6
0.7

fay _
Lref

INNNERRNN]




Expansion Waves - Shock Tube

(" N\
ps/P1 10.0 A
TJyTi 1.0
p2/p1 2.8
Mg 1.6
M, 0.7

[ [T I I ]




Expansion Waves - Shock Tube

(" N\
ps/P1 10.0
TJyTi 1.0 .
p2/p1 2.8
Mg 1.6
M, 0.7

[ I I ]

Y




Expansion Waves - Shock Tube

(" N\
ps/P1 10.0
TJyTi 1.0
p2/p1 2.8 A
Mg 1.6
M, 0.7

[ N O I ]




Expansion Waves - Shock Tube

4 A
pi/p1 10.0
T.Ti 1.0
p2/p1 2.8
Ms 1.6
Mp 0.7 1

[ I I N I I ]




Shock Tube Expansion Waves - Summary

The start and end conditions are the same for all C* lines
JT invariants have the same value for all C™ characteristics
C™ characteristics are straight lines in xt-space

Simple expansion waves centered at (x,t) = (0,0)




Expansion Waves

In a left-running expansion fan:

JT is constant throughout expansion fan, which implies:

2a 2a 2a
4 2B 3

J~ is constant along C™ lines, but varies from one line to the next, which means
that

is constant along each C™ line



Expansion Waves

Since u4 = 0 we obtain:

Ut a Ug & 2ay 2ay
y=1 a1 -1
a u
21— v —1)—=
a (v=1g;

with a = \/yRT we get



Expansion Wave Relations

Isentropic flow = we can use the isentropic relations

complete description in terms of u/ay = =

- 50-2
1— %(7 - 1);-
12 -n2]




Expansion Wave Relations

Since C™ characteristics are straight lines, we have:

ax

— —u—a=x=(Uu-at

o ( )
a 1 u 1
—=1l—-Z(v=1)—=a=a,—-(v—1u=
o 2(7 )a4 4 2(7 )

X = u—a4+;(7—1)u]t— [(V—l)u—a4}t:>



Expansion Wave Relations

- /‘

' expansion wave | «

expansion wave ' ¥

Expansion wave head is advancing to the left with
speed a4 into the stagnant gas

Expansion wave tail is advancing with speed
us — as, which may be positive or negative,
depending on the initial states
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Chapter 7.8
Shock Tube Relations



Shock Tube Relations

2m 1/2
ar (P2 v +1
Up=Upg = — [= 1) | —F——
oo V<D1 >,02 n—1
p1 m+1

p3 - [1_ -1 (L@))rm/(m—l)
P4 2 ay

solving for us gives

b 24, - (,Og) (ya=1)/(2v4)
va—1 P4



Shock Tube Relations

But, p3 = p2 and us = us (No change in velocity and pressure over contact
discontinuity)

(va—1)/(2v4)
= Ug = 284 1-— (,O2>
va— 1 Pa

We have now two expressions for us which gives us

2m 1/2

2 ([32 — 1> _m+l _ 2ay 1_ <pz>(74_1)/(2’¥4)
7 AP P2 + n-1 ya—1 D4

p1 m+1




Shock Tube Relations

Rearranging gives:

Pa_P2 )y (n—D@/a)(p2/p1 — 1) ~2u/be1)
P11 P1 \/2’71 271 + (71 + 1)(p2/p1 — 1)]

p2/p1 as implicit function of p4/p1

for a given p4/p1, p2/p1 will increase with decreased a; /ay

a= /AT = \/v(Ru/M)T

the speed of sound in a light gas is higher than in a heavy gas

driver gas: low molecular weight, high temperature
driven gas: high molecular weight, low temperature
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Shock Tunnel

Addition of a convergent-divergent nozzle to a shock tube configuration

Capable of producing flow conditions which are close to those during the
reentry of a space vehicles into the earth’s atmosphere

high-enthalpy, hypersonic flows (short time)
real gas effects

Example - Aachen TH2:

velocities up to 4 km/s
stagnation temperatures of several thousand degrees



Shock Tunnel

test object
diaphragm 1 diaphragm 2

\

test section
reflected shock

dump tank

High pressure in region 4 (driver section)
diaphragm 1 burst
primary shock generated

Primary shock reaches end of shock tube
shock reflection

High pressure in region 5

diaphragm 2 burst
nozzle flow initiated
hypersonic flow in test section



Shock Tunnel

A diaphragm location wall

reflected expansion fan

contact surface

reflected shock wave

®

O]

incident shock wave

Y

L ® | ®

driver section driven section




Shock Tunnel

By adding a compression tube to the shock tube a very high p, and T4 may be
achieved for any gas in a fairly simple manner

heavy piston compression tube diaphragm

pressurized air driver gas driven gas
p, T p1, T1

IrcssuTEEs Ell driver gas driven gas
P4, Ta P1, T1
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Riemann Problem ]s

The shock tube problem is a special case of the general Riemann Problem

”... A Riemann problem, named after Bernhard Riemann, consists of an initial
value problem composed by a conservation equation together with piece-
wise constant data having a single discontinuity ...”

Wikipedia



Riemann Problem 13

May show that solutions to the shock tube problem have the general form:

p =p(x/t) where x = 0 denotes the position of the
p=p(x/t) initial jump between states 1 and 4
u=u(x/t)

T=Tx/1)

a=a(x/t)



Riemann Problem - Shock Tube Simulation I—8

Numerical method: Left side conditions (state 4):
Finite-Volume Method (FVM) solver p=24kg/m?
u=0.0m/s
three-stage Runge-Kutta time stepping p = 2.0 bar
third-order characteristic upwindin ) ) »
SsBeme P d Right side conditions (state 1):
local artificial damping p=12kg/m’
u=0.0m/s

p = 1.0 bar
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Riemann Problem - Shock Tube Simulation I—8

-10°
25F —— r — ‘ E—
? —0.0010s 100 ——0.0010s 9l —0.0010s ||
—0.0025 s 0 p —0.0025 s —0.0025's
18 F 1
9l 1 L J
60 1.6 - 1
u | P
10 141 1
L5+ 1 20 - 1 12F 1
0 1 1k J
Il Il Il I Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
~15 -1 —05 0 05 1 15 -15 -1 —05 0 05 1 15 -15 -1 —05 0 05 1 15
(x/t) x 107% (x/t) x 107% (x/t) x 1073

The solution can be made self similar by plotting the flow field variables as function of
x/t
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Chapter 12
The Time-Marching Technique



method finite
of char- non-linear

acteristics WEMES

Boundary
conditions

Shock
handling

Spatial
dis-
cretization

Time

High tem- S integration

perature Numerical
effects schemes




Learning Outcomes

12 Explain the main principles behind a modern Finite Volume CFD code and such
concepts as explicit/implicit time stepping, CFL number, conservation, handling
of compression shocks, and boundary conditions

14 Analyze and verify the quality of the numerical solution
15 Explain the limitations in fluid flow simulation software

time for CFD!
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Motivation

Computational Fluid Dynamics (CFD) is the backbone of all practical engineering
compressible flow analysis

As an engineer doing numerical compressible flow analyzes it is extremely
important to have knowledge about the fundamental numerical principles and
their limitations

Going through the material covered in this section will not make you understand
all the details but you will get a feeling, which is a good start
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The Time-Marching Technique

The problems that we like to investigate numerically within the field of compressible
flows can be categorized as

The Time-marching technique is a solver framework that addresses both problem
categories

Niklas An - Chalmers 628/841




The Time-Marching Technique

Steady-state problems:

define simple initial solution
apply specified boundary conditions
march in time until steady-state solution is reached

Unsteady problems:
apply specified initial solution
apply specified boundary conditions
march in time for specified total time to reach a desired unsteady solution

establish fully developed flow before initiating data sampling



The Time-Marching Technique

The time-marching approach is a good alternative for simulating flows where there
are both supersonic and subsonic regions

supersonic/hyperbolic:

perturbations propagate in preferred directions
zone of influence/zone of dependence
PDEs can be transformed into ODEs

subsonic/elliptic:

perturbations propagate in all directions



Zone of Influence and Zone of Dependence

Moo > 1.0

A, B and C at the same axial position in the flow

D and E are located upstream of A, B and C

Mach waves generated at D will affect the flow in B but notin A and C
Mach waves generated at E will affect the flow in C but not in A and B
The flow in A is unaffected by the both D and E



Zone of Influence and Zone of Dependence

O
i

80UBNUI JO BUOZ

Moo > 1.0

zone of dependence
9

The zone of dependence for point A and the zone of influence of point A are
defined by C™ and C~ characteristic lines



Characterization of CFD Methods

Niklas Andersson - Chalmers 633/841



Characterization of CFD Methods

Approach taken in this presentation

( )

(. J

Niklas Andersson - Chalmers 633/841



Characterization of CFD Methods - Equations

solve for density in the continuity equation

suitable for transonic/supersonic flows

the continuity and momentum equations are combined to form a pressure
correction equation

suitable for subsonic/transonic flows

Niklas / - Chalmers 634/841




Characterization of CFD Methods - Solver Approach

all equations (continuity, momentum, energy, ...) are solved simultaneously

suitable for transonic/supersonic flows

the governing equations are solved in sequence
suitable for subsonic flows

Niklas n - Chalmers




Characterization of CFD Methods - Time Stepping

- short time steps
+ very stable

+ longer time steps possible

Niklas Andersson - Chalmers 636/841



Characterization of CFD Methods - Time Stepping

In general implicit solvers are more efficient than explicit solvers

For high-supersonic flows, explicit solvers may very well outperform implicit
solvers

Niklas Andersson - Chalmers 637/841
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Governing Equations



Quasi-One-Dimensional Flow - Conceptual Idea CFLOW

Introduce cross-section-averaged flow quantities =
all quantities depend on x only

Q) control volume

\ S1  left boundary (area Aq)
Sy right boundary (area As)
I'  perimeter boundary

Q

Sl 82

0N =S, Ul'USy



Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

%.[de(y/‘*‘ .@PV ndS =0
« )
% IU pudy + ﬁ [p(v-m)u+p(n-e)]dS =0
@ o0

% JJJ peod”” + @pho(v 'n)dS =0
Q 50

CFLOW



Quasi-One-Dimensional Flow - Example: Nozzle Flow CFLOW

s N\
Po 1.20 [bar]
140
Pp 0.50 [bar]
120 H
po/op 118 i
m 145.6 [kg/s] 100
Mmax 2.26 sof
L ) 1 12 14 16 18 2 22 24
Po/Pb
1
0.8
0.6
P/Po
0.4
0.2
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Spatial Discretization



Spatial Discretization CFLOW

Discretization in space and time:

Method of Lines (a very common approach):

discretize in space = system of ordinary differential equations (ODEs)

discretize in time = time-stepping scheme for system of ODEs

Spatial discretization techniques:

Finite-Difference Method
Finite-Volume Method
Finite-Element Method



Quasi-One-Dimensional Flow - Spatial Discretization CFLOW

Let’s look at a small tube segment with length Ax

Streamtube with area A(x)

\ Ay = A1)
A/’-i-% = A(XH-%)
o g AXi=X,1—X
B v\ x ! /+% /7%
i— 1 ip L
2
€ - control volume enclosed by A, 1,
X/—,i > X/ : ’
2 Ax *2 A/+1,andF,
2

= spatial discretization



Quasi-One-Dimensional Flow - Spatial Discretization

|

ol
¥

ke

mlil / f+lm\r—rm
WHERE
X,

3 X1 X5
5 +3 !

Integer indices: control volumes or cells

CFLOW

Fractional indices: interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum, energy to control

volume €,



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity

Conservation of mass: et
% {J;f pdV +ij pv - ndS —i—Xjf pv - ndS + Jj pv-ndS =0
i i1 i+1 Ly
UG Ga 4Ay, A !
where
VOL; = jﬂ dv ()1 = A,l_l [f pudS
Q; 2 Xf_%
S 1
= o JJf o0 Py = JJ o
i 2



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

Conservation of momentum: e
d
& [ our + [] [otv-wu +p(n- e]as +
Q/‘ X/_ 1

| — 2
90
VOL; 4 (pu);

_(pu2+p)/‘,lA,'7 1
2 2

+ JJ [p(v -n)u+p(n-e)dS+ JJ [p(v-n)u+pn-e)]dS=0
T

X 1

i+ 5 i

— — [~ pdA
(pu2 +p),‘+ lA,‘+ 1 JJF/ "

|
|

CFLOW



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity

Conservation of energy:

A7 Ay -
VOL; g (peo); —(puho),_1A 1
2

+ {[ pho(v - mdS+ [[ pho(v - m)aS =0
T

X,,+%
—_———

0
(puho), 1A, 1

CFLOW



Quasi-One-Dimensional Flow - Spatial Discretization

Lower order term due to varying stream tube area:

JF" pdA ~ b, (A/% —A,_%>

where p; is calculated from cell-averaged quantities (DOFs) { o, (pu), (peo)}/ as

1= (=) (o)~ ot ) o= 2

CFLOW



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

CFLOW

d
VoL (o

o), — (P2 + D) 1A 1+ (2 ),

q—

Application of these equations to all cells i € {1,2,
domain results in a system of ODEs

......



Spatial Discretization - Summary CFLOW

Steps to achieve spatial discretization:
Choose primary variables (degrees of freedom)
Approximate all other quantities in terms of the primary variables

= System of ordinary differential equations (ODEs)

Degrees of freedom:

Choose {ﬁ, (pu), (peo)}‘ in all control volumes €, i € {1,2,...,N} as degrees of
/

freedom, or primary variables

Note that these are cell-averaged quantities

What about the face values?
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Numerical Schemes



Flux Term Approximation CFLOW

(pu) p P
(pu? +p) =T (pu) ¢ .9 (pu)
(pUhO) /'+% (peo) i (peo) i+1
cell face values cell-averaged values

Simple example:




Flux Term Approximation

More complex approximations usually needed

High-order schemes:

increased accuracy
more cell values involved (wider flux molecule)
boundary conditions more difficult to implement

Optimized numerical dissipation:
upwind type of flux scheme

Shock handling:

non-linear treatment needed (e.g. TVD schemes)
artificial damping

CFLOW



Flux Term Approximation CFLOW

Q(x) = A+ Bx + Cx* + Dx?

Assume constant area: A(x) = 1.0



Flux Term Approximation CFLOW

1

- —1
Q] = VOL1 /2 Q(X)C/X

VOL, = AAx; = {A; = 1.0, Ax; = 1.0} = 1.0

-1
= 61 = / Q(X)dX
J =2



Flux Term Approximation CFLOW

~ ! 1 1 . 1"
Q= / Q(x)dx = |Ax + =Bx*> + ~Cx3 + Dx4]
. 2 3 TRt I

_ 0 1 1, 1_4°
Q= / Q(x)dx = |Ax + =Bx? + ~Cx3 + Dx4]
. 2 3 Tl I

1 1
Qs = / Q(x)dx = |Ax + Lo Lo 4 Lpe
> 2 3 7,

_ ? 1 1.5 1_,]°
Qs = / Q(x)dx = |Ax + =Bx* + -Cx> + Dxﬂ
/i 2 3 17,



Flux Term Approximation CFLOW

7

— 3 15

— 1 1 1
_A-‘ipyic-ip
Qo 5 —i—SC 1

2 1. 1. 1
A+ _-B+-C+-D
@ B30+,

7

= 3 15



Flux Term Approximation CFLOW

A== |01+ 70 +70s - Q4
= = [@r 15 + 1505 - Q4]
C=:[@-0-a+al

D= [-Qi+30, 30, + Qi



Flux Term Approximation

Qo = Q(0) +5Q"(0) = Qp = A + 66D

0 = 0 = fourth-order central scheme
d = 1/12 = third-order upwind scheme

d = 1/96 = third-order low-dissipation upwind scheme

CFLOW



Flux Term Approximation

1=~ 5= 1=
Qy=A+60D={6=1/12} = _601 =+ EQQ + §Q3

1~ D= 1~
Qo = —6Q1 + 6@2 + 3Q3
1~ =
Qo,,gm = _604 + 6@3 + QQ

method of characteristics used in order to decide whether left- or
right-upwinded flow quantities should be used

CFLOW



Flux Term Approximation CFLOW

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)



Conservative Scheme

T

mass conservation:
) e -
cell (i): VoL 2o+ ot 1A 1 — (o), Ay =0

d — _
VOLi 41 Sl T (/>U),+%A,+% - (/JU)H_%A,JF%

cell (i + 1):

(similarly for momentum and energy conservation)

CFLOW



Conservative Scheme

Xn—% i+ % Xy 3
mass conservation:
d —
cell (i): VOL; — p, — (pu). 1A 1 =0
Tt (Pu); 7 =3
) ) d —
cell (i + 1): VOL,JF[E/),JH +(;)U)/+%A/+% =0

(similarly for momentum and energy conservation)

CFLOW



Conservative Scheme CFLOW

Conservative scheme
"The flux leaving one control volume equals the flux entering neighbouring
control volume”

Conservation of for mass, momentum and energy is crucial for the correct
prediction of shocks*

*correct prediction of shocks:
strength
position
velocity




Shock Capturing CFLOW

Jameson shock detector:

Vit = max{v, vy}

where v is a scaled pressure derivative

o Pir1 — 20i + Pi-1]
Pi+1 + 20; + Pi-1

For a smooth pressure field v O(Ax?) and near a shock v O(1)

Artificial damping term (« is a user-defined constant):

a(jul+C)y 1 v 1A (Qia — Q)



Density Discontinuities CFLOW

Jameson-type detector:
Vit = max{v, vy}

where v; is a scaled density derivative

L 1P = 2pi + pia]
=
piv1 + 20 + pia

For a smooth density field v O(Ax?) and near a density discontinuity v O(1)

Artificial damping term (5 is a user-defined constant):

Bluliprvip 1A Qi = Q)
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Time Stepping



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

CFLOW

d
VoL (o

o), — (P2 + D) 1A 1+ (2 ),

q—

Application of these equations to all cells i € {1,2,
domain results in a system of ODEs

......



Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity
face-averaged quantity
source term

CFLOW

-

VOLi—pi = (pu);- A1 = (pU) 1A
d 3 2
VOL;— (pu); = (pu? +p)i_1Ai_1 — (pU* + D) 1AL L + D (A/+




Quasi-One-Dimensional Flow - Spatial Discretization CFLOW

cell-averaged quantity
face-averaged quantity
source term

-

= vor [
at” = vor; Vi3

qd_ S I
a(/)U)/ VOL |:(pU2 +p) 1A 1 (pu2 _|_p)/+1AH_1 + D (A +1 _A/*é>:|

d
E(Peo)/ VOL |:<pUhO) 1A/—é - (pUhO)/_A,_%A/_;,_é}

d

EQ = F(Q;) where Q; = [p, pU, péol;, | € {1 : NCells}



Time Stepping CFLOW

The system of ODEs obtained from the spatial discretization in vector notation

d
&Q - F(Q)

Q is a vector containing all DOFs in all cells

F(Q) is the time derivative of Q resulting from above mentioned flux
approximations - non-linear vector-valued function



Time Stepping CFLOW

Three-stage Runge-Kutta - one example of many:

Explicit time-marching scheme

Second-order accurate



Time Stepping - Three-stage Runge-Kutta CFLOW
d
&Q - F(Q)

Let Q" = Q(ty) and Q""" = Q(tn11)

t, is the current time level and t,. 1 is the next time level
At = th41 — ty is the solver time step

Algorithm:
1. Q* =Q"+ AtF(Q")
2. Q" =Q"+ %AtF(Q”) + %AtF(Q*)

3. Q" =Q" + %AtF(Q”) + %Az‘F(Q**)



Time Stepping - Three-stage Runge-Kutta

0N oA WN =

11
12
13
14
15
16
17
18
19
20
21
22
23

void RungeKutta::fwd(Domain xdom) {
G3DCopy (dom—>cons, cons0) ;

/+ Runge-Kutta step 1 =/

dom—>update () ;

if (! G3DMode :: constdt) {LocalTimeStep (dom) ;}
dcons->evaluate (dom) ;

G3DWAXPY (dom—>cons ,1.0,dcons, consO0) ;
G3DAXPBY (cons0,0.5,0.5,dom—>cons) ;

/% Runge-Kutta step 2 x/
dom->update () ;

dcons—>evaluate (dom) ;

G3DWAXPY (dom—>cons,0.5,dcons, consO0) ;
/x Runge-Kutta step 3 =/
dom—>update () ;

dcons->evaluate (dom) ;
G3DWAXPY (dom—>cons ,0.5,dcons, consO0) ;

CFLOW



Time Stepping - Explicit Schemes CFLOW

Properties of explicit time-stepping schemes:

Easy to implement in computer codes
Efficient execution on most computers

Easy to adapt for parallel execution on distributed memory systems (e.g.
Linux clusters)

Time step limitation (CFL number)
Convergence to steady-state often slow (there are, however, some remedies
for this)



Time Stepping - Explicit Schemes CFLOW

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

Interpretation: The fastest characteristic (C* or C~) must not travel longer than Ax
during one time step



Time Stepping - Explicit Schemes CFLOW

ta ax ax

— =u-—a — =u-+a

at at max(|u — al, [u+a|)At = (ju| +a)At < Ax =

u a)At
% =CrL <1
| X
4 c~ cH
> VX

Ax Ax



Time Stepping - Explicit Schemes CFLOW

Steady-state problems:

local time stepping

each cell has an individual time step

At; maximum allowed value based on CFL criteria
Unsteady problems:

time accurate

all cells have the same time step
At/ = min {Atl, ceey At/\/}
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Boundary Conditions



Boundary Conditions CFLOW

Boundary conditions are very important for numerical simulation of compressible
flows

Main reason: both flow and acoustics involved!

Example 1:
Finite-volume CFD code for Quasi-1D compressible flow (Time-marching procedure)

What boundary conditions should be applied at the left and right ends?

left boundary right boundary

XN+1/2
S
—>

T T T
X172 X3/2 X5/2 XN—1/2

computational domain



Boundary Conditions

CFLOW

three characteristics:

C+
advection
by

ax ax ax ax ax ax

— =u-—a — — =u+a — =u-—a — — =u+a

at at d at at at

S\ ct c~ ct

1 i >
left boundary right boundary X

computational domain



Boundary Conditions CFLOW

C™ and C~ characteristics describe the transport of isentropic pressure
waves (often referred to as acoustics)

The advection characteristic simply describes the transport of certain quantities
with the fluid itself (for example entropy)

In one space dimension and time, these three characteristics, together with the
quantities that are known to be constant along them, give a complete
description of the time evolution of the flow

We can use the characteristics as a guide to tell us what information that should
be specifed at the boundaries



Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

Subsonic inflow: 0 < u < a c- advection

u—a<o ct
u>0
u+a>>o0

O+

one outgoing characteristic
two ingoing characteristics

Two variables should be specified at the boundary
The third variable must be left free

CFLOW



Left Boundary - Subsonic Outflow CFLOW

we have three PDEs, and are solving for three unknowns

Subsonic outflow: —a < u < 0 advection

u—a<ao
u<ao
u+a>>o0

two outgoing characteristics
one ingoing characteristic

One variable should be specified at the boundary
The second and third variables must be left free



Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

- c

Supersonic inflow: v > a
advection

u—a>0 ct
u>0
u+a>»0 o
no outgoing characteristics
three ingoing characteristics

All three variables should be specified at the boundary
No variables must be left free

CFLOW



Left Boundary - Supersonic Outflow CFLOW

we have three PDEs, and are solving for three unknowns

Supersonic outflow: v < —a

u—a<ao
u<ao
u+a<o

three outgoing characteristics
no ingoing characteristics

No variables should be specified at the boundary
All variables must be left free



Right Boundary - Subsonic Inflow CFLOW

we have three PDEs, and are solving for three unknowns

Subsonic inflow: —a <u <0 aavection ot

u—a<ao ¢
u<ao
u+a>>o0

two ingoing characteristics
one outgoing characteristic

Two variables should be specified at the boundary
The third variables must be left free



Right Boundary - Subsonic Outflow CFLOW

we have three PDEs, and are solving for three unknowns

Subsonic outflow: 0 < u < a advection

u—a<ao
u>0
u+a>>o0

one ingoing characteristic
two outgoing characteristics

One variable should be specified at the boundary
The second and third variables must be left free



Right Boundary - Supersonic Inflow CFLOW

we have three PDEs, and are solving for three unknowns

. . +
Supersonic inflow: v < —a c

advection

u—a<ao ¢
u<ao
u+a<o

three ingoing characteristics
no outgoing characteristics

All three variables should be specified at the boundary
No variables must be left free



Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

Supersonic outflow: v > a

u—a>»
u>0
u+a>>o0

no ingoing characteristics
three outgoing characteristics

No variables should be specified at the boundary
All three variables must be left free

CFLOW




1D Boundary Conditions (Summary) CFLOW

Characteristic 1D subsonic inflow (left) 1D subsonic inflow (right)
advection v-n (u,0,0)-(—1,0,0) = —-u<0 (—=u,0,0)-(1,0,0) = —-u<0
c™ v.-n—a —u—a<o —u—a<o
ct v.n+a —u+a>0 —u+a>o0

Characteristic 1D subsonic outflow (left) 1D subsonic outflow (right)
advection v-on (=u,0,0) - (—1,0,0) =u>0 (u,0,0)-(1,0,0) =u>0
c™ v.n—a u—a<o u—a<o
ct v.n+a u4+a>o0 u4a>o0

Characteristic 1D supersonic inflow (left) 1D supersonic inflow (right)
advection v-.n (u,0,0) - (=1,0,0) = —-u<0 (=u,0,0)-(1,0,0) = —-u<o0
c™ v-n—a —u—a<?o —u—-a<ao
ct v.on+a —u4+a<o0 —u+a<o0

Characteristic 1D supersonic outflow (left) 1D supersonic outflow (right)
aadvection v-n (-u,0,0)-(—1,0,0) =u>0 (u,0,0)-(1,0,0) =u>0
(o v.n—a u—a>ao0 u—a>ao0

ct ven+a u4+a>o0 u4+a>o0



Subsonic Inflow (Left Boundary) - Example CFLOW

Subsonic inflow: we should specify two variables

Alt  specified  specified well-posed non-reflective
variable 1 variable 2

1 Do To X
pu To X
S Jt X X

well posed:
the problem has a solution
the solution is unique
the solution’s behaviour changes continuously with initial conditions



Subsonic Outflow (Left Boundary) - Example CFLOW

Subsonic outflow: we should specify one variable

Alt  specified well-posed non-reflective

variable
1 p X
pu X

JT X X




Subsonic Inflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

]

Subsonic inflow

Assumption:
—a<v-n<0

Four ingoing characteristics
One outgoing characteristic

Specify four variables at the boundary:
Po, To, and flow direction (two angles)



Subsonic Outflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

Subsonic outflow

Assumption:
O<v-n<a

One ingoing characteristics
Four outgoing characteristic

Specify one variables at the boundary:
static pressure



Supersonic Inflow 2D/3D

exterior

interior

[

n
v

unit normal vector
fluid velocity at boundary

)

Supersonic inflow

Assumption:
v-n< —a

Five ingoing characteristics
No outgoing characteristics

Specify five variables at the boundary:
solver variables



Supersonic Outflow 2D/3D

exterior Supersonic outflow
Assumption:
Y v-n>a

interior

i rommal veotor No ingoing characteristics
v fluid velocity at boundary . . R
Five outgoing characteristics

No variables specified at the boundary
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Explicit Finite-Volume Method - Summary CFLOW

The described numerical approach can be categorized as

with the following features

Niklas Andersson - Chalmers 702/841



Explicit Finite-Volume Method - Summary CFLOW

Spatial discretization:
Control volume formulations of conservation equations are applied to the cells of
the discretized domain

Cell-averaged flow quantities (p, pU, pe,) are chosen as degrees of freedom

Flux terms are approximated in terms of the chosen degrees of freedom
high-order, upwind type of flux approximation is used for optimum results

A fully conservative scheme is obtained
the flux leaving one cell is identical to the flux entering the neighboring cell

The result of the spatial discretization is a system of ODEs



Explicit Finite-Volume Method - Summary CFLOW

Time marching:

Three-stage, second-order accurate Runge-Kutta scheme
Explicit time-stepping

Time step length limited by the CFL condition (CFL < 1)
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Available CFD Codes



CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly documented

Commercial codes are often claimed to be suitable for all types of flows
The reality is that the user must make sure of this!


http://www.cfd-online.com/Wiki/Codes

CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options
otherwise you may obtain completely wrong solution!

coupled solver
equation of state
energy equation included

Use a high-quality grid

a poor grid will either not give you any solution at all (no convergence)
or at best a very inaccurate solution!



ANSYS-FLUENT®/STAR-CCM+® - Typical Experiences

Very robust solvers - will almost always give you a solution
Accuracy of solution depends a lot on grid quality

Shocks are generally smeared more than in specialized codes
Solver is generally very efficient for steady-state problems

Solver is less efficient for truly unsteady problems, where both flow and
acoustics must be resolved accurately
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Chapter 16
Properties of High-Temperature
Gases



Overview

flow
regimes

Com-

speed of pressibility
sound

Basic
Concepts

thermally
perfect
gas
Thermo-
dynamics High tem-
calorically perature

i effects
¢]

1:st and
2:nd law molecular
motion

entropy

internal
energy

Spatial
dis-
cretization

equilibrium
gas

Boltzmann
distribution




Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases

A deep dive into the theory behind the definitions of calorically perfect gas,
thermally perfect gas, and other models



Roadmap - High-Temperature Gases

‘ Microscopic description of gases

'

[ Boltzmann distribution

'

Thermodynamic properties

.

Calorically perfect gas

.

Thermally perfect gas —>[ Gas models

.

Equilibrium gas

i J




Motivation

Explosions and combustion are two examples of cases where high-temperature
effects must be taken into account

The temperature does not have to be extremely high in order for temperature
effects to appear, 600 K is enough

In this section you will learn what happens in a gas on a molecular level when
the temperature increases and what implications that has on applicability of
physical models
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Chapter 16.2
Microscopic Description of Gases



Microscopic Description of Gases

Hard to make measurements
Accurate, reliable theoretical models needed

Available models do work quite well



Molecular Energy

Translation
vy
Vx
Vz
Translational kinetic energy
thermal degrees of freedom: 3
e}

COa

linear polyatomic molecule

Rotation

Rotational kinetic energy
thermal degrees of freedom:

0 for monoatomic gases

2 for diatomic gases

2 for linear polyatomic gases

3 for non-linear polyatomic gases

H20

Vibration

Vibrational energy
(kinetic energy + potential enerqy)
thermal degrees of freedom

N

non-linear polyatomic molecule

Electronic energy

O

Electronic energy of electrons in orbit
(kinetic energy + potential energy)



Molecular Energy

The energy for one molecule can be described by

r / ’ /
€ = Etrans T Erot T Eyip T Egl

Results of quantum mechanics have shown that energy is quantized /.e.
energy can exist only at specific discrete values

Energy is not continuous! Might seem unintuitive



Molecular Energy

The lowest quantum numbers defines the zero-point energy for each mode
5f;rol - O
> 0 (very small but finite)

/
EOtrems

At absolute zero, molecules still moves but not much. The rotational energy is,
however, exactly zero.

. o o
[ E/ffans o E/%rans EOtrems ] [ 6/V/b - 8/v/ Eovrb ]
o VA
kot — 6krot Eme = Emel Eoe/




Molecular Energy

Thus the total energy of a specific molecule may be expressed as

I /
€ = Ejans + Ekrot + Elyip + Emg + €o

Note! since &/ is the sum of individually quantized energy levels, ¢ itself is also
quantized



Energy States - Example

R

three cases with the same rotational energy
different direction of angular momentum
guantum mechanics = different distinguishable states

a finite number of possible degenerate states g; at each energy level /



Macrostates and Microstates

Macrostate:

molecules collide and exchange energy = the number of molecules at each
energy levelj (the macrostate or the N; distribution) will change over time

some macrostates are more probable than other

most probable macrostates (energy distributions) = thermodynamic equilibrium

Microstate:

different microstates constitute the same number of molecules in each energy level
(same macrostate) but molecules are in different degenerate states

the most probable macrostate is the one with the most possible microstates
= possible to find the most probable macrostate by counting microstates



Macrostates and Microstates olecular eneray At eneroy el

lil/} the number of molecules at energy level j
9 the number of possible degenerate states at energy level j
Macrostate | Microstate |
A ° ° o o o (No = 2,90 = 5)
€]t ° ° ° o ° ° (N1 =5,91 =6)
g ° ° ° o o (N2 = 3,92 = 5)

& ¢ o ° ° (N; =2,9/=3)



Macrostates and Microstates o molecular energy at energy levl

N; the number of molecules at energy level j

9 the number of possible degenerate states at energy level j
Macrostate | Microstate ||
A o ° o o [ ] (No = 2,90 = 5)
€]t ° o} ° ° ° ° (N1 =5,91 =6)
g o o ° ° ° (N2 = 3,92 = 5)

g 0) [ ° (N =2,g9; =3)



Macrostates and Microstates olecular eneray At eneroy el

lil/} the number of molecules at energy level j
9 the number of possible degenerate states at energy level j
Macrostate Il Microstate |
A o ° o o o (No = 1,90 = 5)
€]t ° o} ° ° ° ° (N1 =5,91 =6)
g ° o ° ° ° (N2 = 4,92 = 5)

& ¢ o O ° Ny =1,9/=3)



Macrostates and Microstates

/\/:ZN,

J

N is the total number of molecules and N is the number of molecules at energy level j

E:Zsj{/\/j
J

E is the total energy and 5; is the energy per molecule at energy level j



Roadmap - High-Temperature Gases

‘ Microscopic thion of gases

'

Thermodynamic properties

.

Calorically perfect gas

.

[ Boltzmann distribution ]

Thermally perfect gas j—»Q—»[ Gas models

.

Equilibrium gas




Chapter 16.5
The Limiting Case: Boltzmann
Distribution



Boltzmann Distribution

The Boltzmann distribution:
—¢j /KT

* gje
=N

where Q = f(T, V) is the state sum defined as

Q=) ge 9
j

g is the number of degenerate states, ¢, is the energy above zero-level

(¢/ = &/ — €0), and k is the Boltzmann constant



Boltzmann Distribution

The Boltzmann distribution:

. gje—é‘j/kT
N =N —
fFor molecules or atoms of a given species, quantum mechanics says that a
set of well-defined energy levels ¢; exists, over which the molecules or atoms
can be distributed at any given instant, and that each energy level has a
certain number of energy states, g;.

For a system of N molecules or atoms at a given T and V, /\/j* are the number
of molecules or atoms in each energy level ; when the system is in thermo-
dynamic equilibrium.



Boltzmann Distribution

Boltzmann distribution for a specific temperature

Boltzmann distribution: describes the probability (P) of population of an
energy level with the energy (E)

At temperatures above ~ 5K, molecules are distributed over many energy
levels, and therefore the states are generally sparsely populated (N, < g;)

Higher energy levels become more populated as temperature increases
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Chapter 16.6 - 16.8
Evaluation of Gas Thermodynamic
Properties



Internal Energy

The internal energy is calculated as

£ = 2 (91mQ

The internal energy per unit mass is obtained as

E  NKT? [9InQ k , /0nQ
T M Nm ( ar >\/_{m_R}_RT ( or >\/

k is the Boltzmann constant, m is the molecular weight, R is the gas constant, and Q
is the state sum




Internal Energy

0lnQ
P2
e=RT < T )\/

Q= Z Q/C_af/kT
J

In order to be able to calculate the internal energy of a gas at a given temperature,
we need an estimate of the state sum Q



Internal Energy - Translation

Vi

/ —ﬁ rﬁ+’ﬁ+’ﬁ vz
Strans = gy a? ' al ' al

ny —ns quantum numbers (1,2,3,...)

a; —as linear dimensions that describes the size of the system
h Planck’s constant
m mass of the individual molecule
= - =
3/2
2rmkT \ ¥/
Qtrans - 7})2 %



Internal Energy - Translation

2rmkT\ %2
Qtrans - (h2> 1%

2mmk
h2

811’thrans _31
(2), -3

Oln Qtrans
oT v

3 3
antran3:§lnT+§ln +h’l\/:>

— A2~ 2RT

Ctrans = RT? < oT — 9



Internal Energy - Rotation

2

h
Efot = @J(J +1)

J
/
h

rotational quantum number (0,1,2,...)
moment of inertia (tabulated for common molecules)
Planck’s constant

8m2IkT
Qrot = —5—

y



Internal Energy - Rotation

8m2IkT
QI’OT - h72
2k
anrot — 11’1T+11’l 87;)72 =

aanrot 71
< aT )VT:s

01ln Qo 51
=RT°= =RT
oT >V T

€rot = RT? (



Internal Energy - Vibration

1
Ef\l/l‘b = hv <I’) + 2>

vibrational quantum number (0,1,2,...)
v fundamental vibrational frequency (tabulated for common molecules)
Planck’s constant




Internal Energy - Vibration

1 [ SVAViAVAVAV,VaVau ]

Quip = 1 — e—hv/kT

InQyp = —In(1 —e /KTy =

OlnQyup\ hv /KT?
oT v - /KT 1

, (0InQy, , hu/KT? hv /KT
- 2 vib o 2 o
evb = RT <8T>V - hv/kT _ 1~ hw/kT _ 1RT

hv /kT
lim v/

A oy = LT e AT



Specific Heat

Ctrans €rot Evib Eel

hv /KT

3
= SRT +RT + 2o

———RT +¢ €el

From before, we know that the specific heat is defined as follows:

[ oe
o= (5),



Specific Heat

hv /KT

ohv/KT—1 RT + €

3
€ = Ctrans + Crot + Eyip + B¢ = §RT +RT +

For molecules with only translational and rotational energy

3 5 oe )
e—§RT+RT—§RT:>CV: <3T>\/_2R



Specific Heat

hv /KT

3
€ = Ctrans t+ Erot + Eyjp + Eo) = §RT +AT + W

For mono-atomic gases with only translational and (rotational) energy

3 oe 3
e_iF?T+O:>CV: <8T>V_QR

RT + ¢/
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Calorically Perfect Gas
hv /KT

3
€ = €trans + €rot + Eyip + E¢) = §RT +RT + th/kT—lRT + B¢
In general, only translational and rotational modes of molecular excitation

Translational and rotational energy levels are sparsely populated, according to
Boltzmann distribution (the Boltzmann limit)

Vibrational energy levels are practically unpopulated (except for the zero level)



Calorically Perfect Gas

hv /KT

3
€ = Ctrans t+ Erot + Eyjp + Eo) = §RT +AT + W

RT + ¢/

Characteristic values of ~ for each type of molecule, e.g. mono-atomic gas,
di-atomic gas, tri-atomic gas, etc

He, Ar, Ne, ... - mono-atomic gases (y = 5/3)
Ha, Oa, N, ... - di-atomic gases (y = 7/5)

H-0 (gaseous), COo, ... - tri-atomic gases (y < 7/5)
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Thermally Perfect Gas

3 hv /KT
0 = Grams + 6o + & + €0 = AT +AT + AT 4o

In general, only translational, rotational and vibrational modes of molecular
excitation

Translational and rotational energy levels are sparsely populated, according to
Boltzmann distribution (the Boltzmann limit)

The population of the vibrational energy levels approaches the Boltzmann
limit as temperature increases

Temperature dependent values of ~ for all types of molecules except
mono-atomic (no vibrational modes possible)



High-Temperature Effects

Example: properties of air

A
2000 K ==fmmmmmmmmmmmm oo -
region of variable v thermally perfect gas
[ G i
region of constant v (y = 1.4) calorically perfect gas
Lo B -

Thermally perfect gas:
e and h are non-linear functions of T

the temperature range represents standard atmospheric
pressure (lower pressure gives lower temperatures)



High-Temperature Effects

hv /KT

3
€ = Ctrans t+ Erot + Eyjp + Eo) = §RT +AT + W

RT + Eel

For cases where the vibrational energy is not negligible (at high temperatures)
. 7
lim ey, =RT = C, = =R
T—o0 2

However, chemical reactions and ionization will take place long before that ...

Translational and rotational energy fully excited above ~5 K
Vibrational energy is non-negligible above 600 K

Chemical reactions begin to occur above ~2000 K



High-Temperature Effects

As temperature increase further vibrational energy becomes less important

Why is that so?



High-Temperature Effects

Example: properties of air (continued)

T
9000 K 0 — 0T + e~ (start of ionization)
4000 K No — 2N (start of dissociation)
2500 K ==f=mmmmmmmm e e e s Oo — 20 (start of dissociation)
no reactions

With increasing temperature, the gas becomes more and more mono-atomic which
means that vibrational modes becomes less important
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Equilibrium Gas

For temperatures T > 2500K

Air may be described as being in thermodynamic and chemical equilibrium
(Equilibrium Gas)

reaction rates (time scales) low compared to flow time scales

reactions in both directions (example: Oy = 20)

Tables must be used (Equilibrium Air Data) or special functions which have been
made to fit the tabulated data
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Chapter 17
High-Temperature Flows: Basic
Examples



Overview

flow
regimes

Com-

speed of pressibility
sound

Basic
Concepts

thermally
perfect
gas
Thermo-
dynamics High tem-
calorically perature

i effects
¢]

1:st and
2:nd law molecular
motion

entropy

internal
energy

Spatial
dis-
cretization

equilibrium
gas

Boltzmann
distribution




Learning Outcomes

6 Define the special cases of calorically perfect gas, thermally perfect gas and
real gas and explain the implication of each of these special cases

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*
i detached blunt body shocks, nozzle flows

How does increased temperature affect a compressible flow?
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Motivation

High-temperature effects can be rather dramatic

We will examine a couple of flow situations where the temperature is high
enough to effect the flow properties significantly in order to get e feeling for
high-temperature flows



Properties of High - Temperature Gases

Applications:
Rocket nozzle flows
Reentry vehicles
Shock tubes / Shock tunnels
Internal combustion engines

Gasturbines




Properties of High - Temperature Gases

Example: Reentry vehicle

Mach number: 32.5

Gas: air

Temperature: T, = 283




Properties of High - Temperature Gases
Example: Reentry vehicle

Assume calorically perfect gas

Normal shock relations gives
T/T =206

Too =283 =T =58 300 K




Properties of High - Temperature Gases
Example: Reentry vehicle

Assume calorically perfect gas

Normal shock relations gives
T/T =206

Too =283 =T =58 300 K

A more correct valueis T = 11 600 K

Something is fishy here!
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Chapter 17.1
Thermodynamic and Chemical
Equilibrium



Thermodynamic Equilibrium

Molecules are distributed among their possible energy states according to the
Boltzmann distribution (which is a statistical equilibrium) for the given
temperature of the gas

extremely fast process (time and length scales of the molecular processes)

much faster than flow time scales in general (not true inside shocks)



Thermodynamic Equilibrium

Global thermodynamic equilibrium:

"true thermodynamic equilibrium”

there are no gradients of p, T, p (or flow velocity, species concentrations, ...

Local thermodynamic equilibrium:

gradients can be neglected locally

this requirement is fulfilled in most cases (hard not to get)



Chemical Equilibrium

Composition of gas (species concentrations) is fixed in time
forward and backward rates of all chemical reactions are equal
zero net reaction rates

chemical reactions may be either slow or fast in comparison to flow time scale
depending on the case studied



Chemical Equilibrium

Global chemical equilibrium:

there are no gradients of species concentrations

together with global thermodynamic equilibrium =
all gradients are zero

Local chemical equilibrium

gradients of species concentrations can be neglected locally

not always true - depends on reaction rates and flow time scales



Thermodynamic and Chemical Equilibrium

Most common cases:

Thermodynamic Equilibrium

Chemical Equilibrium

Gas Model

1 | local thermodynamic equilibrium
2 | local thermodynamic equilibrium
3 | local thermodynamic equilibrium

4 | thermodynamic non-equilibrium

local chemical equilibrium
chemical non-equilibrium
frozen composition

frozen composition

equilibrium gas
finite rate chemistry
frozen flow

vibrationally frozen flow

length and time scales of flow decreases from 1 to 4
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Chapter 17.2
Equilibrium Normal Shock Wave
Flows



Equilibrium Normal Shock Wave Flows

Question:
Is the equilibrium gas assumption OK for normal shocks?
Answer:

for hypersonic flows with very little ionization in the shock region, it is a fair
approximation

not perfect, since the assumption of local thermodynamic and chemical
equilibrium is not really true around the shock

however, it gives a significant improvement compared to the calorically perfect gas
assumption



Equilibrium Normal Shock Wave Flows

Basic relations (for all gases), stationary normal shock:
piu1L = paUz

p1UT + P1 = paU3 + P2

1 1
hy + éu% =hy + §U%

For equilibrium gas we have:
p=p(p,h)
T'=T(p,h)

(we are free to choose any two states as independent variables)



Equilibrium Normal Shock Wave Flows
Assume that p1, Uy, p1, 71, and hy are known
p1U1 P1 ’
Uy = — = p1U} +P1 = pa <U1> +P2 =
P2 P2

P2 = p1+ prUi (1 - '01)
P2

Also

1 1/p \?
h —u h =
1+21 2+2<p2 1)

hs = by + ~0? 1_<p1>2
2 1 2 1 2



Equilibrium Normal Shock Wave Flows

@ when converged:
initial guess —
P2

O p2 = p(p2,h2)
=
Ty = T(p2,h2)

calculate
p2 and ho

P1
[ update } [ p2 = p(p2,hz2)
P2

llp2 = p2yyll < e

P2, Uz, P2, Ta, ha known

-/




Equilibrium Air - Normal Shock

Tables of thermodynamic properties for different conditions are available

For a very strong shock case (M, = 32), the table below shows results for equilibrium
air

calorically perfect gas | equilibrium air

(y=14)
p2/pP1 1233 1387
p2/p1 5.97 15.19
ha/h1 206.35 212.80

To/ Ty 206.35 41.64




Equilibrium Air - Normal Shock

Analysis:

Pressure ratio is comparable
Density ratio differs by factor of 2.5

Temperature ratio differs by factor of 5



Equilibrium Air - Normal Shock

Explanation:

Using equilibrium gas means that vibration, dissociation and chemical reactions
are accounted for

The chemical reactions taking place in the shock region lead to an absorption
of energy into chemical energy

drastically reducing the temperature downstream of the shock

this also explains the difference in density after the shock



Equilibrium Air - Normal Shock

Additional notes:

1. For a normal shock in an equilibrium gas, the pressure ratio, density ratio,
enthalpy ratio, temperature ratio, etc all depend on three upstream variables,

e.g. uy, p1, I

2. For anormal shock in a thermally perfect gas, the pressure ratio, density
ratio, enthalpy ratio, temperature ratio, etc all depend on two upstream
variables, e.g. M, T,

3. For a normal shock in a calorically perfect gas, the pressure ratio, density
ratio, enthalpy ratio, temperature ratio, etc all depend on one upstream
variable, e.g. M,



Equilibrium Gas - Detached Shock

calorically perfect gas equilibrium gas
M =20 M =20
—_—  —

shock moves closer to body

What's the reason for the difference in predicted shock position?



Equilibrium Gas - Detached Shock

Calorically perfect gas:
all energy ends up in translation and rotation = increased temperature
Equilibrium gas:

energy is absorbed by reactions = does not contribute to the increase of gas
temperature
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Chapter 17.3
Equilibrium Quasi-One-Dimensional
Nozzle Flows



Equilibrium Quasi-1D Nozzle Flows

For a chemically reacting gas at high temperature:

Assuming inviscid and adiabatic flow, is the flow isentropic?
Can we use the area-velocity relation?

Is the area-Mach-number relation valid?



Equilibrium Quasi-1D Nozzle Flows - Isentropic Flow

First question:

Is a flow of a chemically reacting gas isentropic (assuming inviscid and adiabatic
flow)?

entropy equation: Tds = dh — vdp
momentum equation: dp = —pudu
energy equation: dh +udu =10

Note! The momentum and energy equations are the inviscid adiabatic quasi-1D
equations on differential form (valid for all gases).



Equilibrium Quasi-1D Nozzle Flows - Isentropic Flow
. dp
momentum equation: dp = —pudu = udu = —— = —vdp
P
energy equation: dh + udu = 0 = dh = —udu
entropy equation: Tds =dh — vdp = —udu +udu =0 = ds =0

Isentropic flow!



Equilibrium Quasi-1D Nozzle Flows - Area-Velocity Relation

Second question:
Can we use the area-velocity relation for a chemically reacting gas”?

The area-velocity relation was derived from the quasi-1D formulation of the governing
equations assuming isentropic flow

continuity equation: d(puA) =0
momentum equation: dp = —pudu

energy equation: dh +udu =10



Equilibrium Quasi-1D Nozzle Flows - The Area-Velocity Relation

No assumption about the gas is made in the derivation, which means that we can
use the area-velocity relation for a flow a of chemically reacting gas

dA 9 au
R —1)=
A (M )u

M = 1 at nozzle throat still holds



Equilibrium Quasi-1D Nozzle Flows - The Area-Mach Relation

Third question:
Is the area-Mach number relation valid for a chemically reacting gas?

In the derivation of the area-Mach number relation, calorically perfect gas is
assumed and thus the relation is not valid for a chemically reacting gas



Equilibrium Quasi-1D Nozzle Flows

For general gas mixture in thermodynamic and chemical equilibrium, we may find
tables or graphs describing relations between state variables.

Example: Mollier diagram

hA

p = constant

T = constant

\

for any point (h, s), we may findp, T, p, a, ...




Equilibrium Quasi-1D Nozzle Flows

hﬂ

The energy equation for steady-state
inviscid adiabatic nozzle flow:

assume ho is known

ho P1
N dho =0=
, 1 1
/ 072 hl + §U% == hQ + §U% == ho
5 where hy is the reservoir enthalpy.

<—— isentropic process




Equilibrium Quasi-1D Nozzle Flows

hﬂ

Po
To
The velocity at point 1 can be obtained as:
assume hg is known B 1 5
ho lT iul :ho_h1:>U1: 2(ho_h1)
P2
T2

2

<—— isentropic process




Equilibrium Quasi-1D Nozzle Flows

h

ho

A

assume ho is known

2

<—— isentropic process

At any point along the isentropic line
1
U =ho—h=u=+/2(ho —h)

T, p, p, a are given by the diagram



Equilibrium Quasi-1D Nozzle Flows

ho

h

A

assume ho is known

2

<—— isentropic process

The continuity equation gives puA = const

A pra*
UA = p*a*A* = — =
p p el

Thus, A/A* may be computed for any point
along isentropic line



Equilibrium Quasi-1D Nozzle Flows

Equilibrium gas gives higher T and more thrust than calorically perfect gas

During the expansion chemical energy is released due to shifts in the
equilibrium composition

equilibrium gas

calorically perfect gas

] AJA*



Equilibrium Quasi-1D Nozzle Flows

Equilibrium gas gives higher T and more thrust than calorically perfect gas

During the expansion chemical energy is released due to shifts in the
equilibrium composition

equilibrium gas

calorically perfect gas

] AJA*

Chemical and vibrational energy transferred to translation and rotation =
increased temperature



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

equilibrium gas
real case
calorically perfect gas

] AJAF



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:

Space nozzle applications: ug &~ 4000 m/s

Required prediction accuracy 5 m/s

equilibrium gas
real case
calorically perfect gas

] AJAF



Large Nozzles

High T,, high po, high reactivity
very fast chemical reactions

local thermodynamic and chemical equilibrium



Large Nozzles

Real case is close to equilibrium gas results
Example: Ariane 5 launcher, main engine (Vulcain 2)

Chemical reactions: Hy + Oy — H5O (in principle),
but many different radicals and reactions involved
(at least 10 species and 20 reactions)

Nozzle inlet conditions:

To ~ 3600 K
Po ~ 120 bar

Length scale ~ a few meters

Gas mixture is quite close to equilibrium
conditions all the way through the expansion




Small Nozzles

Low Ty, low po, lower reactivity
Real case is close to frozen flow results
Example:

Small rockets on satellites (for maneuvering, orbital adjustments, etc)



Small Nozzle With High-Speed Flow

High-speed flows (short flow time scales) = thermodynamic non-equilibrium
Very slow (or no) chemical reactions = frozen composition

The residence time is to short for the vibrational energy of the molecules to
change = Vibrationally frozen flow

Only translational and rotational energy = Calorically perfect gas!
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Aircraft Aerodynamics



Control Surfaces

Vertical stabilizer
(vertical tail)

Horizontal stabilizer
(horizontal tail)

Right
wing

Engine
Fuselage nacelle

wing



Control Surfaces

_— Rudder

Elevator



Control Surfaces




Lift and Drag

F
CL — 17L
§PUgcAP

F
Cp = 179
5PUE2>OAD

where A, is the planform area

Separated flow

T T

'%5




Lift and Drag

Stall duc to
flow separation

_de
ap = — = Lift slope|
= e slope

5 ]
/‘,L " Angle for
maximum ¢,
stalling angle
of attack

Figure 5.6 Sketch of a typical lift curve.

Cambered airfoil Symmetric airfoil

N ——————

o ul/\
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Oy wp




Lift and Drag - Pressure Coefficient

G

_z,ois-

-1.5F

—35r

Upper surface

0.5

1L.OF

Lower surface

xfe



Lift and Drag - Fuselage Lift

About the same as the lift on the
wing of planform area S, which

Lift on wing-body
combination :
includes that part of the wing
masked by the fuselage
b

(@)



Lift and Drag

D= DDfeSSUfe + Driction + Dwave



Friction Drag

laminar flow: Cr = ———
inar flow: Ct o,

. f2(Mos)

turbulent flow: Cr = W

Cfc

€, dine

02




Wave Drag - The Supercritical Airfoil

Relatively
strong shock

Relatively
weak shock

(@)
[o%
©) =
FEem e Crrer
// N
T N\
// \‘X
(€]
@)

)
NACA 64,-A215 airfoil
M., =0.69

Supercritical airfoil (13.5% thick)
M,=0.79



Wave Drag - The Supercritical Airfoil

Cq
0.016 -
NACA 64,-A215
0.012 -
Supercritical airfoil
0.008 — (13.5% thick)
0.004 -
_\/\ | | | | | |
0 060 0.64 0.68 072 0.76 0.80

M.



Critical Mach Number

Ml;o; Mpeas = 0.435
(a)
The critical Mach number is the My 0572
lowest freestream Mach number for .
which the flow will accelerate to @)
sonic conditions over the wing . m——l Myean = 1.0 sonic flow frst encountered on sirfoil

T ——

Critical Mach number
for the airfoil

(cy



Critical Pressure Coefficient

Cp at point of maximum velocity

{minimum pressure) on the airfoil

|
-

Here the Mow goes
sonic at the minimum
pressure point on

the airfoil
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Critical Pressure Coefficient

Thick C>

L ——

C, at minimum pressure point on the airfoil
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Finite Wing Span

G
Infinite
wing
ay
/T Ot =X — &
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Induced Drag

The higher pressure on the lower
side of the wing leads to a flow
leakage over the wing tip

The flow below the wing has a
velocity component towards the
wing tip

The flow over the wing has a
velocity component towards the
fuselage

Streamline over
the top surface

1,,

l}
} p
e Streamline over the bottom surface

1
]
1
!

Top view

(planform) Wing area=S§

-

I* Wing span b

Low pressure

Front

view e —
High pressure



Induced Drag

Vortex
Low pressure
@
High pressure
The flow from high pressure regions Front view of wing

to low pressure regions forms a “
vortex at the wing tip

A net downwash flow is induced

Wing-tip
vortices

leading to a reduction of lift



Induced Drag - Downwash




Induced Drag

AR =b%/S

b

High AR (low
induced drag)

=

]

Low AR (high
induced drag)



Induced Drag - Winglets




High-Lift Devices

A: Cruise configuration

g "
C: Landing configuration



High-Lift Devices - Flaps

(@)

3=0°
a=0°




High-Lift Devices - Slats

a=10°

a=30°(-)

il

a=25°

a=30°(+)







Swept Wings - Subsonic Aircraft

Voo | Mo
Assume that M., for
wing =0.7.
T
» The wing profile "sees” a flow with L(i_fmrrm. section
with Mg = 0.7
the Mach number normal to the 5
|eading edge Now sweep the same wing by 30°.
(a)
> Increases the critical freestream M for swept wing = —2T_

Mach number

» Possible to operate at higher Mach
number with lower drag

0.
= =0.808
0.866 2
Airfoil “sees” only
this component
of velocity,

Airfoil section
with Mg = 0.7

» Comes with the price of lower lift

(b)



Swept Wings - Supersonic Aircraft

If the wing is within the Mach angle
cone, the trailing-edge-normal flow
is subsonic




Swept Wings

A swept wing leads to a longer coord in the flow direction
With a swept wing, a streamline effectively sees a thinner airfoil

A

1
C_IL= 0.15 Segment of

straight wing




Swept Wings

20
16 |-
. 2
Wing swgep reduces drag 2 |
but there is also a 2
significant reduction of lift ¥ sl
£
4
| | | | | 1
0 20 40 60 80 100 120

Wing sweepback angle, deg



The Delta Wing

Secondary vortex

z el
T/'\ \/ e Primary vortex core
a

Secondary attachment line (A2)

Attachment streamline
Primary attachment line (A,)

Primary separation line (S; )/
Secondary separation line (5,)

leakage of flow from high-pressure regions to low-pressure regions leads to the
formation of vortices on the upper side of the wing



The Delta Wing

+)

Secondary vortex

z el
T/'\ \/ e Primary vortex core
a

Secondary attachment line (A2)

Attachment streamline
Primary attachment line (A,)

Primary separation line (S; )/
Secondary separation line (5,)

The vortical structures on the upper side of the wing reduces the pressure
and increases lift



The Delta Wing

Visualization of vortex structures over a delta wing in a water tunnel experiment



The Delta Wing
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The Sound Barrier
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Area Rule
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Area Rule

Designing the whole aircraft such
that the variation in cross-section
area is smooth reduces the peak in
drag near Mach 1

Planview
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Area distribution T~

(schematic only)
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Blended Wing Body




Blended Wing Body
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