Compressible Flow - TME085 Lecture Notes

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se

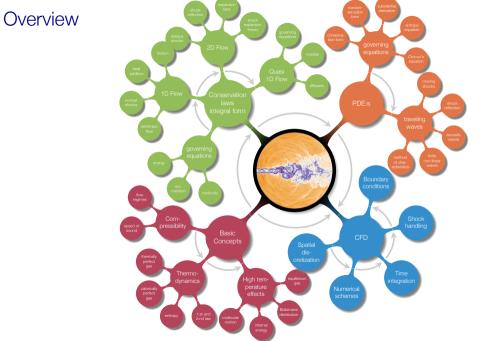
"Compressible flow (gas dynamics) is a branch of fluid mechanics that deals with flows having significant changes in fluid density"

Wikipedia

Gas Dynamics

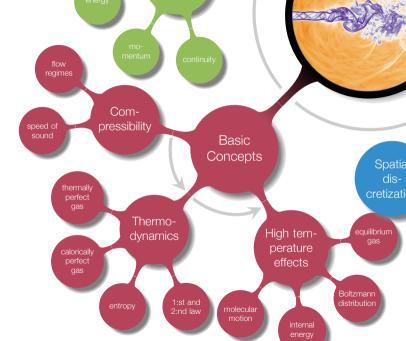
- "... the study of motion of gases and its effects on physical systems ..."
- "... based on the principles of fluid mechanics and thermodynamics ..."
- "... gases flowing around or within physical objects at speeds comparable to the speed of sound ..."

Wikipedia



Chapter 1 Introduction

Overview

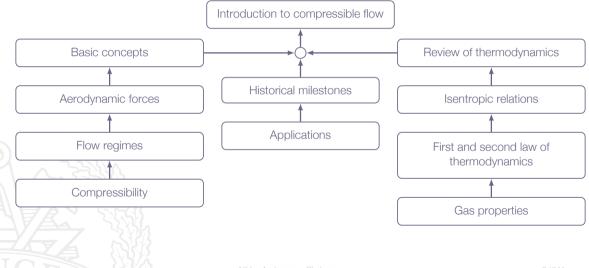


Learning Outcomes

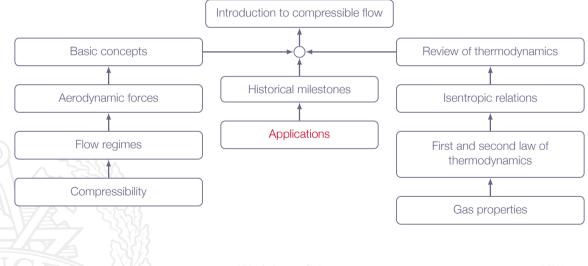
- **Define** the concept of compressibility for flows
- **Explain** how to find out if a given flow is subject to significant compressibility effects
- **Describe** typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
- **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases

in this lecture we will find out what compressibility means and do a brief review of thermodynamics

Roadmap - Introduction to Compressible Flow



Roadmap - Introduction to Compressible Flow



Treatment of calorically perfect gas

Exact solutions of inviscid flow in 1D

Shock-expansion theory for steady-state 2D flow

Approximate closed form solutions to linearized equations in 2D and 3D Method of Characteristics (MOC) in 2D and axi-symmetric inviscid supersonic flows

Applications - Modern

Computational Fluid Dynamics (CFD)

Complex geometries (including moving boundaries)

Complex flow features (compression shocks, expansion waves, contact discontinuities)

Viscous effects

Turbulence modeling

High temperature effects (molecular vibration, dissociation, ionization) Chemically reacting flow (equilibrium & non-equilibrium reactions)

Applications - Examples

Turbo-machinery flows:

Gas turbines, steam turbines, compressors Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:

Flow induced noise (jets, wakes, moving surfaces) Sound propagation in high speed flows

External flows:

Aircraft (airplanes, helicopters) Space launchers (rockets, re-entry vehicles)

Internall flows:

Nozzle flows Inlet flows, diffusers Gas pipelines (natural gas, bio gas)

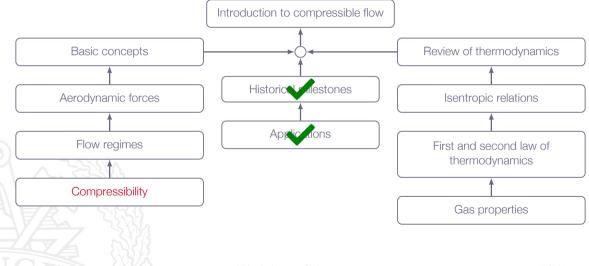
Free-shear flows:

High speed jets

Combustion:

Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow, mufflers) Combustion induced noise (turbulent combustion) Combustion instabilities

Roadmap - Introduction to Compressible Flow

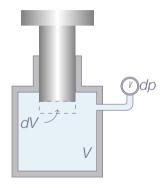


Chapter 1.2 Compressibility

$$\tau = -\frac{1}{\nu}\frac{\partial\nu}{\partial\rho}, \ (\nu = \frac{1}{\rho})$$

Not really precise!

Is T held constant during the compression or not?



Two fundamental cases:

Constant temperature

Heat is cooled off to keep T constant inside the cylinder

Adiabatic process

Thermal insulation prevents heat exchange

Isothermal process:

$$\tau_{T} = -\frac{1}{\nu} \left(\frac{\partial \nu}{\partial \rho} \right)_{T}$$

Adiabatic reversible (isentropic) process:

$$\tau_{\rm S} = -\frac{1}{\nu} \left(\frac{\partial \nu}{\partial \rho} \right)_{\rm S}$$

Air at normal conditions: Water at normal conditions:

$$\tau_{\mathcal{T}} \approx 1.0 \times 10^{-5} \quad [m^2/N]$$

$$\tau_{\mathcal{T}} \approx 5.0 \times 10^{-10} \quad [m^2/N]$$

$$\tau = -\frac{1}{\nu}\frac{\partial\nu}{\partial\rho}$$
 where $\nu = \frac{1}{\rho}$ and thus

$$\tau = -\rho \frac{\partial}{\partial \rho} \left(\frac{1}{\rho}\right) = -\rho \left(-\frac{1}{\rho^2}\right) \frac{\partial \rho}{\partial \rho} = \frac{1}{\rho} \frac{\partial \rho}{\partial \rho}$$

$$\tau_{T} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{T}$$

$$\tau_{\rm S} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{\rm S}$$

Definition of compressible flow:

If ρ changes with amount $\Delta \rho$ over a characteristic length scale of the flow, such that the corresponding change in density, given by $\Delta \rho \sim \rho \tau \Delta$ p, is **too large to be neglected**, the flow is compressible (*typically* $\Delta \rho / \rho > 0.05$)

Note! Bernoulli's equation is restricted to incompressible flow, *i.e.* it is **not valid** for compressible flow!

Compressibility - Mach Number

The freestream Mach number is defined as

$$M_{\infty} = rac{U_{\infty}}{a_{\infty}}$$

where U_∞ is the freestream flow speed and a_∞ is the speed of sound at freestream conditions

Assume incompressible flow and estimate the maximum pressure difference using

$$\Delta
ho pprox rac{1}{2}
ho_\infty U_\infty^2$$

For air at normal conditions we have

$$\tau = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{T} = \left\{ \rho = \rho RT \Rightarrow \left(\frac{\partial \rho}{\partial \rho} \right)_{T} = \frac{1}{RT} \right\} = \frac{1}{\rho RT} = \frac{1}{\rho}$$

(ideal gas law for perfect gas $p = \rho RT$)

Using the relations on previous slide we get

$$\frac{\Delta\rho}{\rho} \approx \tau_{T} \Delta\rho \approx \frac{1}{\rho_{\infty}} \frac{1}{2} \rho_{\infty} U_{\infty}^{2} = \frac{\frac{1}{2} \rho_{\infty} U_{\infty}^{2}}{\frac{1}{\rho_{\infty} R T_{\infty}}}$$

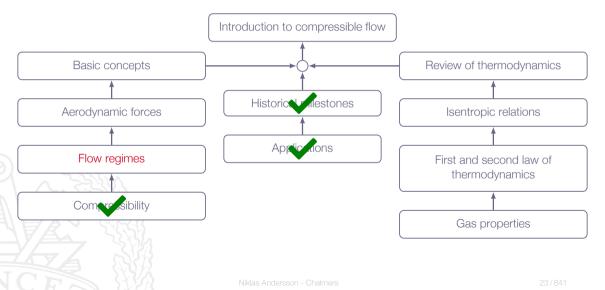
for a calorically perfect gas we have $a = \sqrt{\gamma RT}$

which gives us
$$\frac{\Delta \rho}{\rho} pprox \frac{\gamma U_{\infty}^2}{2a_{\infty}^2}$$

now, using the definition of Mach number we get:

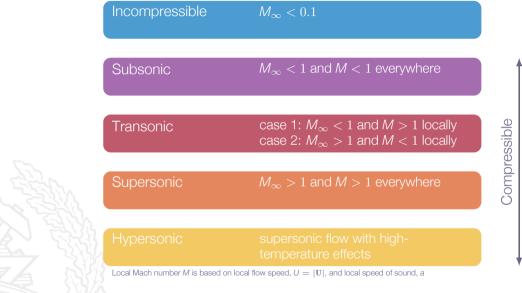
$$\frac{\Delta\rho}{\rho}\approx\frac{\gamma}{2}M_{\infty}^{2}$$

Roadmap - Introduction to Compressible Flow

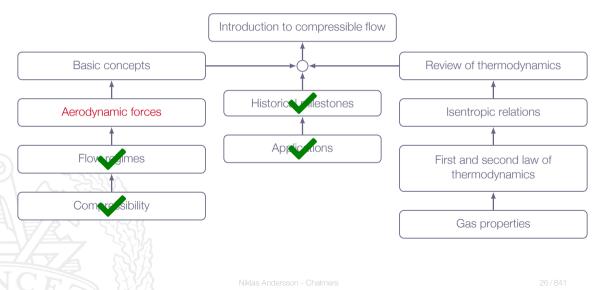


Chapter 1.3 Flow Regimes

Flow Regimes

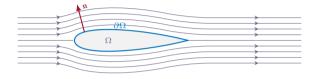


Roadmap - Introduction to Compressible Flow



Chapter 1.5 Aerodynamic Forces

Aerodynamic Forces



- Ω region occupied by body
- $\partial \Omega$ surface of body
- n outward facing unit normal vector

Overall forces on the body du to the flow

$$\mathbf{F} = \oint (-\rho \mathbf{n} + \tau \cdot \mathbf{n}) dS$$

where p is static pressure and τ is a stress tensor

Aerodynamic Forces

Drag is the component of \mathbf{F} which is **parallel** with the freestream direction:

 $D = D_p + D_f$

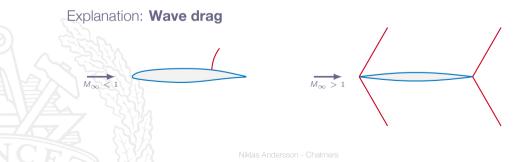
where D_p is drag due to pressure and D_f is drag due to friction

Lift is the component of \mathbf{F} which is **normal** to the free stream direction:

 $L = L_p + L_f$

(L_f is usually negligible)

Inviscid flow around slender body (attached flow) subsonic flow: D = 0transonic or supersonic flow: D > 0



Aerodynamic Forces

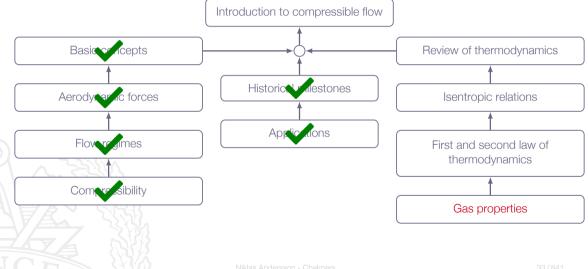
Wave drag is an **inviscid phenomena**, connected to the formation of compression shocks and entropy increase

Viscous effects are present in all Mach regimes

At transonic and supersonic conditions a particular phenomena named **shock/boundary-layer interaction** may appear

shocks trigger flow separation usually leads to unsteady flow

Roadmap - Introduction to Compressible Flow



Chapter 1.4 Review of Thermodynamics

Thermodynamic Review

Compressible flow:

" strong interaction between flow and thermodynamics ... "

Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules

$$p\nu = RT$$
 or $\frac{p}{\rho} = RT$

where R is the gas constant [R] = J/kgK

Also, $R = R_{univ}/M$ where M is the molecular weight of gas molecules (in kg/kmol) and $R_{univ} = 8314 J/kmol K$

Internal Energy and Enthalpy

Internal energy e([e] = J/kg)

Enthalpy h([h] = J/kg)

$$h = e + p\nu = e + \frac{p}{\rho}$$
 (valid for all gases)

For any gas in thermodynamic equilibrium, e and h are functions of only two thermodynamic variables (*any two variables may be selected*) *e.g.*

 $e = e(T, \rho)$ or h = h(T, p)

Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e = e(T) and h = h(T)

OK assumption for air at near atmospheric conditions and 100K < T < 2500K

Calorically perfect gas:

 $e = C_v T$ and $h = C_\rho T$ (C_v and C_ρ are constants)

OK assumption for air at near atmospheric pressure and 100K < T < 1000K

For thermally perfect (and calorically perfect) gas

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}, \quad C_{v} = \left(\frac{\partial e}{\partial T}\right)_{v}$$

since $h = e + p/\rho = e + RT$ we obtain:

$$C_{p} = C_{v} + R$$

The ratio of specific heats, γ , is defined as:

$$\gamma \equiv \frac{C_{p}}{C_{v}}$$

Important!

calorically perfect gas:

 $C_{\nu}, C_{\rho}, \text{ and } \gamma \text{ are constants}$

thermally perfect gas:

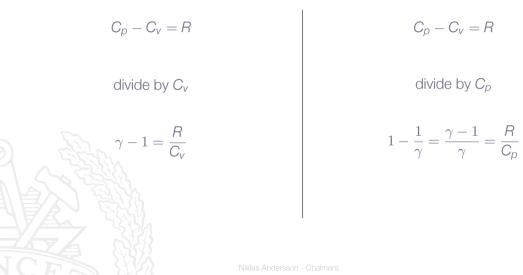
 C_{ν} , C_{ρ} , and γ will depend on temperature

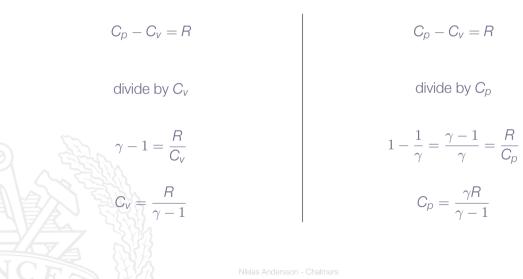
$$C_p - C_v = R$$

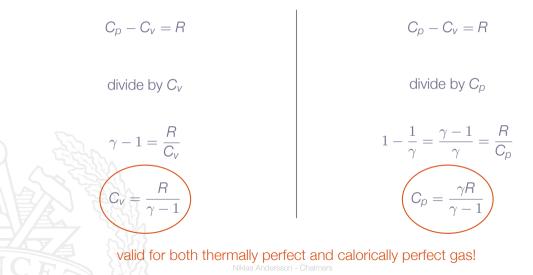
$$C_p - C_v = R$$

$$C_p - C_v = R$$

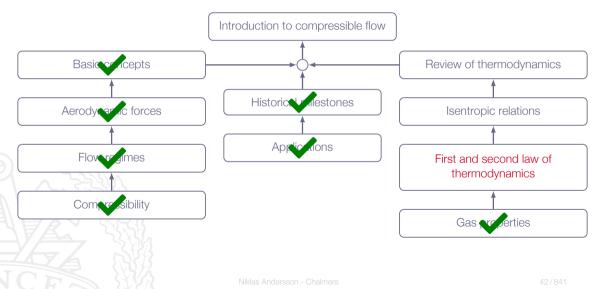
divide by C_p







Roadmap - Introduction to Compressible Flow



First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an imaginary flexible boundary, is defined as a **system**. This system obeys the relation

$$de = \delta q - \delta w$$

where

de is a change in internal energy of system δq is heat added to the system δw is work done by the system (on its surroundings)

Note! *de* only depends on starting point and end point of the process while δq and δw depend on the actual process also

First Law of Thermodynamics

Examples:

Adiabatic process: $\delta q = 0.$

Reversible process:

no dissipative phenomena (no flow losses)

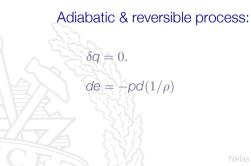
Isentropic process:

a process which is both adiabatic and reversible

First Law of Thermodynamics

Reversible process:

 $\delta w = pd\nu = pd(1/\rho)$ $de = \delta q - pd(1/\rho)$



Entropy *s* is a property of all gases, uniquely defined by any two thermodynamic variables, *e.g.*

$$s = s(\rho, T)$$
 or $s = s(\rho, T)$ or $s = s(\rho, \rho)$ or $s = s(e, h)$ or ...

Second Law of Thermodynamics

Concept of entropy s:

$$ds = rac{\delta q_{rev}}{T} = rac{\delta q}{T} + ds_{ir}$$
 where $ds_{ir} > 0$. and thus

$$ds \ge rac{\delta q}{T}$$

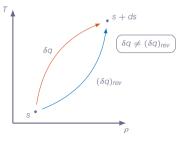
Niklas Andersson - Chalmers

Second Law of Thermodynamics

Concept of entropy s:

$$ds=rac{\delta q_{
m rev}}{T}=rac{\delta q}{T}+ds_{
m ir}$$
 where $ds_{
m ir}>0.$ and thus

$$ds \ge \frac{\delta q}{T}$$



Second Law of Thermodynamics

In general:

$$ds \ge \frac{\delta c}{T}$$

For adiabatic processes:

 $ds \ge 0.$

Calculation of Entropy

For reversible processes ($\delta w = pd(1/\rho)$ and $\delta q = Tds$):

$$de = Tds - pd\left(\frac{1}{\rho}\right) \Leftrightarrow Tds = de + pd\left(\frac{1}{\rho}\right)$$

from before we have $h = e + p/\rho \Rightarrow$

$$dh = de + pd\left(\frac{1}{\rho}\right) + \left(\frac{1}{\rho}\right)dp \Leftrightarrow de = dh - pd\left(\frac{1}{\rho}\right) - \left(\frac{1}{\rho}\right)dp$$

Calculation of Entropy

For thermally perfect gases, $p = \rho RT$ and $dh = C_{\rho}dT \Rightarrow ds = C_{\rho}\frac{dT}{T} - R\frac{d\rho}{\rho}$

Integration from starting point (1) to end point (2) gives:

$$S_2 - S_1 = \int_1^2 C_p \frac{dT}{T} - R \ln\left(\frac{p_2}{p_1}\right)$$

and for calorically perfect gases

$$s_2 - s_1 = C_{\rho} \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right)$$

Calculation of Entropy

If we instead use $de = C_v dT$ we get

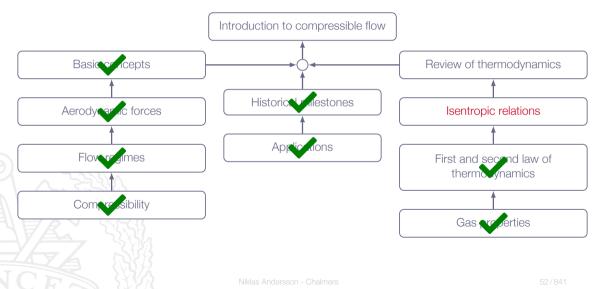
for thermally perfect gases

$$S_2 - S_1 = \int_1^2 C_v \frac{dT}{T} - R \ln\left(\frac{\rho_2}{\rho_1}\right)$$

and for calorically perfect gases

$$s_2 - s_1 = C_V \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{\rho_2}{\rho_1}\right)$$

Roadmap - Introduction to Compressible Flow



Isentropic Relations

For calorically perfect gases, we have

$$s_2 - s_1 = C_{\rho} \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right)$$

For adiabatic reversible processes:

$$ds = 0. \Rightarrow S_1 = S_2 \Rightarrow C_{\rho} \ln\left(\frac{T_2}{T_1}\right) - R \ln\left(\frac{\rho_2}{\rho_1}\right) = 0 \Rightarrow$$
$$\ln\left(\frac{\rho_2}{\rho_1}\right) = \frac{C_{\rho}}{R} \ln\left(\frac{T_2}{T_1}\right)$$

Isentropic Relations

with
$$\frac{C_{\rho}}{R} = \frac{C_{\rho}}{C_{\rho} - C_{\nu}} = \frac{\gamma}{\gamma - 1} \Rightarrow$$

$$\boxed{\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}$$

Isentropic Relations

Alternatively, using
$$s_2 - s_1 = 0 = C_v \ln \left(\frac{T_2}{T_1}\right) - R \ln \left(\frac{\rho_2}{\rho_1}\right) \Rightarrow$$

$$\boxed{\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\gamma-1}}}$$

Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

$$\boxed{\frac{\rho_2}{\rho_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}}$$

A.K.A. the isentropic relations

Thermodynamic Relations and Process Diagrams

Many times it's process diagrams makes it easier to understand physics

Examples of process diagrams: Ts-diagram and $p\nu$ -diagram

We will use process diagrams in the following chapters to give insights into physical processes such as shocks, heat addition and friction

Thermodynamic Relations and Process Diagrams

From before:

$$ds = C_{\nu} \frac{dT}{T} + R \frac{d\nu}{\nu}$$

$$ds = C_p \frac{dT}{T} - R \frac{dp}{p}$$

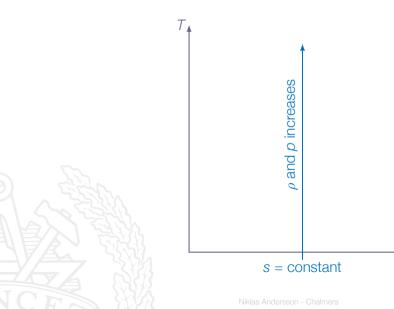
Ts-diagram

$$ds = C_{v} \frac{dT}{T} + R \frac{d\nu}{\nu}$$
$$d\nu = \frac{\nu}{R} ds - C_{v} \frac{\nu}{RT} dT$$
$$d\nu = \frac{\nu}{R} ds - \frac{C_{v}}{\rho} dT$$
$$ds = 0 \Rightarrow d\nu < 0 \text{ for positive } dT$$

$$ds = C_p \frac{dT}{T} - R \frac{dp}{p}$$
$$dp = -\frac{p}{R} ds + C_p \frac{p}{RT} dT$$
$$dp = -\frac{p}{R} ds + C_p \rho dT$$

 $ds = 0 \Rightarrow dp > 0$ for positive dT

Ts-diagram



S

Ts-diagram - Isochoric process

$$d\nu = \frac{\nu}{R}ds - \frac{C_{\nu}}{p}dT$$

From before: ν decreases with *T* and *p* increases with *T* and thus for a given *dT*, $d\nu$ will be greater at lower *T* than at higher *T*

 $\nu{=}{\rm constant}$ lines will be closely spaced at low T and more sparse at high T

 ν =constant $\Rightarrow d\nu = 0$:

$$0 = \frac{\nu}{R} \left(ds - C_{\nu} \frac{dT}{T} \right) \Rightarrow \frac{dT}{ds} = \frac{T}{C_{\nu}}$$

slope is positive and increases with temperature

Niklas Andersson - Chalmers

Ts-diagram - Isobaric process

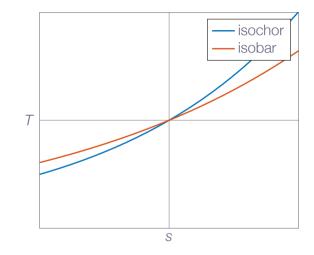
$$ds = C_p \frac{dT}{T} - R \frac{dp}{p}$$

p=constant $\Rightarrow dp = 0$:

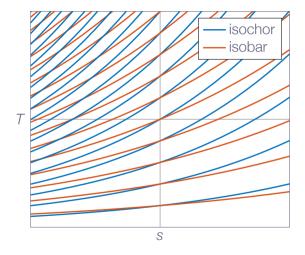
$$0 = \frac{p}{R} \left(C_{\rho} \frac{dT}{T} - ds \right) \Rightarrow \frac{dT}{ds} = \frac{T}{C_{\rho}}$$

slope is positive and increases with temperature $C_{\rho} > C_{\nu} \Rightarrow$ isobars are less steep than isochors

Ts-diagrams



Ts-diagrams



 $p\nu$ -diagrams

subtract

from

$$C_{p} \left[ds = C_{v} \frac{dT}{T} + R \frac{d\nu}{\nu} \right]$$
gives

$$ds \left(C_{p} - C_{v} \right) = RC_{p} \frac{d\nu}{\nu} + RC_{v} \frac{dp}{p} \Rightarrow ds = C_{p} \frac{d\nu}{\nu} + C_{v} \frac{dp}{p}$$
Nikas Andersson - Chalmers

65/841

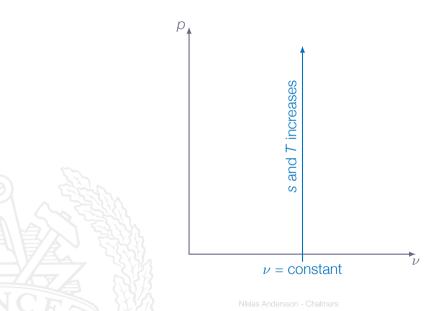
 $p\nu$ -diagrams

$$ds = C_{p} \frac{d\nu}{\nu} + C_{v} \frac{dp}{p}$$
$$d\nu = 0 \text{ (isochoric process)} \Rightarrow ds = C_{v} \frac{dp}{p}$$

entropy increases with increasing pressure

from before: temperature increases with increasing pressure

$p\nu$ -diagrams



$p\nu$ -diagrams - isentropic process

$$ds = C_{\rho} \frac{d\nu}{\nu} + C_{\nu} \frac{d\rho}{\rho}$$

s=constant (ds = 0):

$$C_{\rho}\frac{d\nu}{\nu} + C_{\nu}\frac{d\rho}{\rho} = 0 \Rightarrow \frac{d\rho}{d\nu} = -\gamma\frac{\rho}{\nu}$$

negative slope

slope becomes steeper with increased pressure and decreased u

$p\nu$ -diagrams - isothermal process

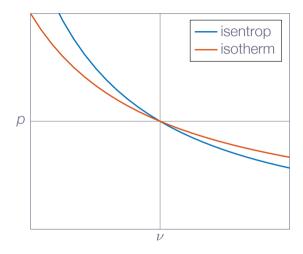
$$ds = C_{\nu} \frac{dT}{T} + R \frac{d\nu}{\nu} = C_{\rho} \frac{dT}{T} - R \frac{d\rho}{\rho}$$

T = constant (dT = 0):

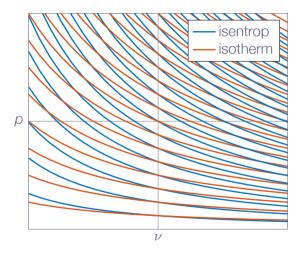
$$\frac{d\nu}{\nu} = -\frac{dp}{p} \Rightarrow \frac{dp}{d\nu} = -\frac{p}{\nu}$$

 $\gamma > 0 \Rightarrow$ isentropes are steeper than isotherms

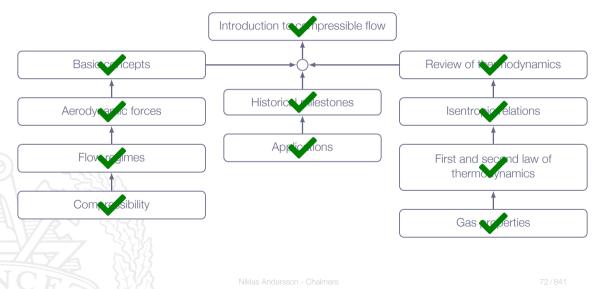
 $p\nu$ -diagrams - isothermal process



 $p\nu$ -diagrams - isothermal process

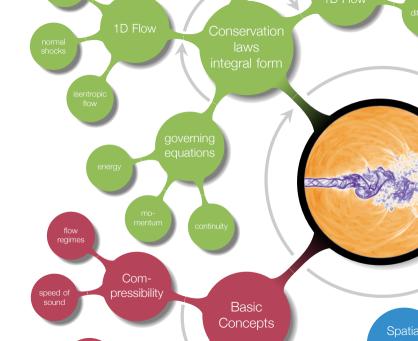


Roadmap - Introduction to Compressible Flow



Chapter 2 Integral Forms of the Conservation Equations for Inviscid Flows

Overview

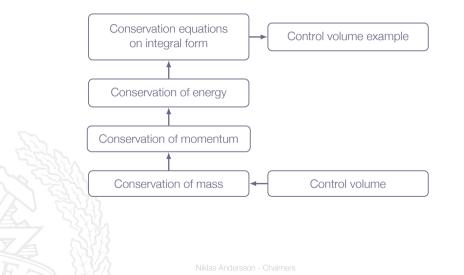


Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 5 Explain how thermodynamic relations enter into the flow equations
- 7 **Explain** why entropy is important for flow discontinuities

equations, equations and more equations

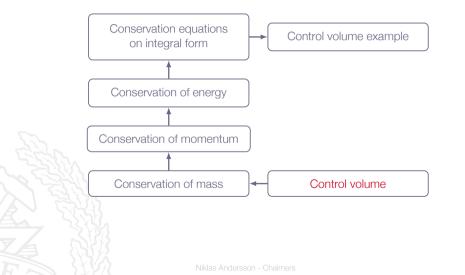
Roadmap - Integral Relations



Motivation

We need to formulate the basic form of the governing equations for compressible flow before we get to the applications

Roadmap - Integral Relations

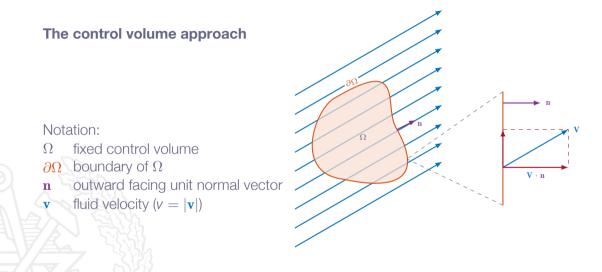


Integral Forms of the Conservation Equations

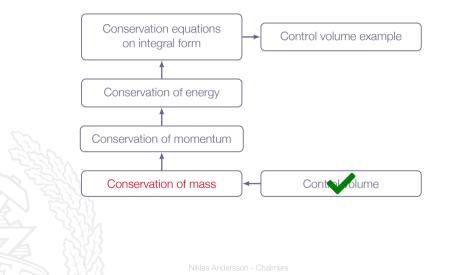
Conservation principles:

- 1. conservation of mass
- 2. conservation of momentum (Newton's second law)
- 3 conservation of energy (first law of thermodynamics)

Integral Forms of the Conservation Equations



Roadmap - Integral Relations



Chapter 2.3 Continuity Equation

Continuity Equation

Conservation of mass:

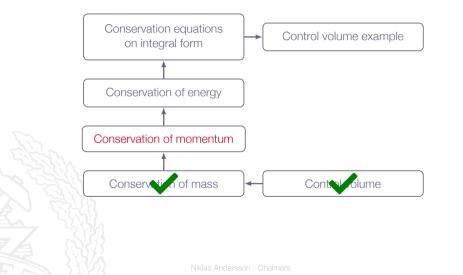
 $\frac{d}{dt}\iiint \rho d\mathcal{V} + \oiint \rho \mathbf{v} \cdot \mathbf{n} dS = 0$

rate of change of total mass in $\boldsymbol{\Omega}$

net mass flow out from $\boldsymbol{\Omega}$

Note! notation in the text book $\mathbf{n} \cdot d\mathbf{S} = d\mathbf{S}$

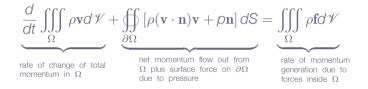
Roadmap - Integral Relations



Chapter 2.4 Momentum Equation

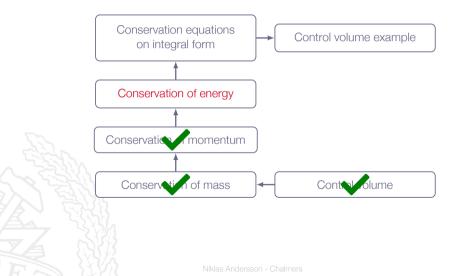
Momentum Equation

Conservation of momentum:



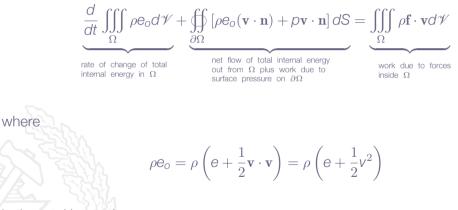
Note! friction forces due to viscosity are not included here. To account for these forces, the term $-(\tau \cdot \mathbf{n})$ must be added to the surface integral term. The body force, *f*, is force per unit mass.

Roadmap - Integral Relations



Chapter 2.5 Energy Equation

Conservation of energy:



is the total internal energy

The surface integral term may be rewritten as follows:

$$\oint_{\partial\Omega} \left[\rho \left(e + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) + \rho \mathbf{v} \cdot \mathbf{n} \right] dS$$

 \Leftrightarrow

$$\oint_{\partial\Omega} \left[\rho \left(e + \frac{\rho}{\rho} + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) \right] dS$$

 \Leftrightarrow

 $\oint_{\partial\Omega} \left[\rho \left(h + \frac{1}{2} v^2 \right) \left(\mathbf{v} \cdot \mathbf{n} \right) \right] d\mathbf{S}$

Niklas Andersson - Chalmers

Introducing total enthalpy

$$h_o = h + \frac{1}{2}v^2$$

$$\frac{d}{dt} \iiint_{\Omega} \rho \Theta_0 d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_0 \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$
Niklas Andersson - Chalmers

Note 1: to include friction work on $\partial \Omega$, the energy equation is extended as

$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \oiint \rho_o \mathbf{v} \cdot \mathbf{n} - (\boldsymbol{\tau} \cdot \mathbf{n}) \cdot \mathbf{v}] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Note 2: to include heat transfer on $\partial \Omega$, the energy equation is further extended

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} - (\tau \cdot \mathbf{n}) \cdot \mathbf{v} + \mathbf{q} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

where ${\bf q}$ is the heat flux vector

Note 3: the force ${\bf f}$ inside Ω may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference

Note 4: there may be objects inside Ω which we choose to represent as sources of momentum and energy.

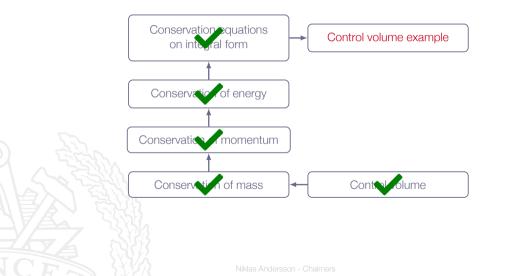
For example, there may be a solid object inside Ω which acts on the fluid with a force **F** and performs work \dot{W} on the fluid

Momentum equation:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} d\mathcal{V} + \mathbf{F}$$

Energy equation:
$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V} + \dot{\mathcal{W}}$$

Roadmap - Integral Relations

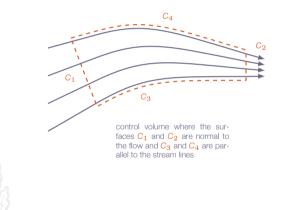


How can we use control volume formulations of conservation laws?

Let $\Omega \rightarrow 0$: In the limit of vanishing volume the control volume formulations give the **P**artial **D**ifferential **E**quations (**PDE**:s) for mass, momentum and energy conservation (see Chapter 6)

Apply in a "smart" way \Rightarrow Analysis tool for many practical problems involving compressible flow (see Chapter 2, Section 2.8)

Example: Steady-state adiabatic inviscid flow



Conservation of mass:

$$\underbrace{\frac{d}{dt}\iiint \rho d\mathcal{V}}_{=0} + \underbrace{\bigoplus}_{\partial\Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

Conservation of energy:

$$\underbrace{\frac{d}{dt} \iiint \rho e_o d \mathscr{V}}_{= 0} + \underbrace{\bigoplus}_{\partial \Omega} [\rho h_o \mathbf{v} \cdot \mathbf{n}] dS = 0}_{-\rho_1 h_{o_1} v_1 A_1 + \rho_2 h_{o_2} v_2 A_2}$$

Conservation of mass:

 $\rho_1 \mathsf{v}_1 \mathsf{A}_1 = \rho_2 \mathsf{v}_2 \mathsf{A}_2$

Conservation of energy:

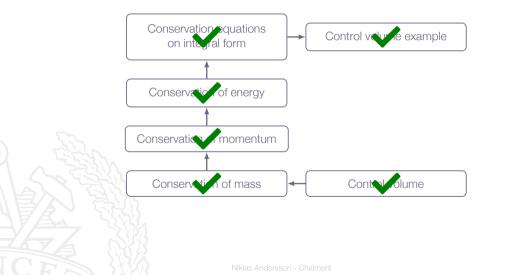
 $\rho_1 h_{o_1} v_1 A_1 = \rho_2 h_{o_2} v_2 A_2$

 \Leftrightarrow

 $h_{o_1} = h_{o_2}$

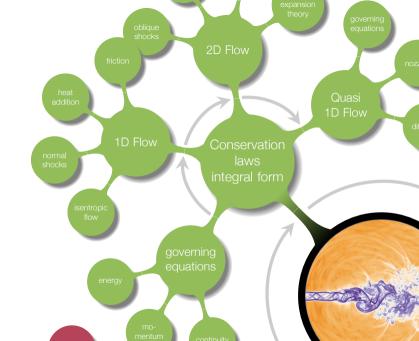
Total enthalpy h_o is conserved along streamlines in steady-state adiabatic inviscid flow

Roadmap - Integral Relations



Chapter 3 One-Dimensional Flow

Overview

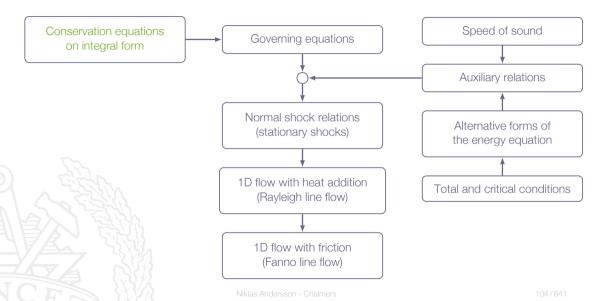


Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 5 Explain how thermodynamic relations enter into the flow equations
- 6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - c 1D flow with heat addition*
 - d 1D flow with friction*

one-dimensional flows - isentropic and non-isentropic

Roadmap - One-dimensional Flow



Motivation

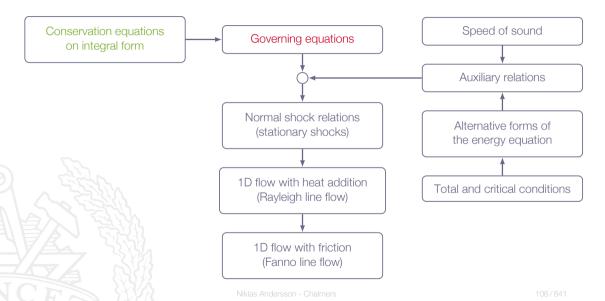
Why one-dimensional flow?

many practical problems can be analyzed using a one-dimensional flow approach

a one-dimensional approach addresses the physical principles without adding the complexity of a full three-dimensional problem

the one-dimensional approach is a subset of the full three-dimensional counterpart

Roadmap - One-dimensional Flow



Chapter 3.2 One-Dimensional Flow Equations

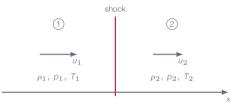
Problems analyzed using the one-dimensional flow equations can be divided in to two categories:

1. problems with **wave solutions** (discontinuous)

acoustic wave normal shock

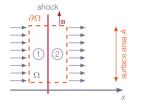
2. problems with **continuous solutions** flow with heat addition

flow with friction



Assumptions:

all flow variables only depend on *x* velocity aligned with *x*-axis



Control volume approach:

Define a rectangular control volume around shock, with upstream conditions denoted by 1 and downstream conditions by 2

Conservation of mass:

$$\underbrace{\frac{d}{dt}\iiint}_{=0}\rho d\mathscr{V} + \underbrace{\bigoplus}_{\frac{\partial\Omega}{\rho_2 u_2 A - \rho_1 u_1 A}}\rho \mathbf{v} \cdot \mathbf{n} dS = 0 \Rightarrow \rho_1 u_1 = \rho_2 u_2$$

Conservation of momentum:

$$\underbrace{\frac{d}{dt} \iiint \rho \mathbf{v} d\mathcal{V}}_{=0} + \underbrace{\bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS}_{(\rho_2 u_2^2 + \rho_2) A - (\rho_1 u_1^2 + \rho_1) A} = 0 \Rightarrow \rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

Conservation of energy:

$$\underbrace{\frac{d}{dt}\iiint}_{=0}\rho \mathbf{e}_{o}d\mathcal{V} + \underbrace{\bigoplus}_{\frac{\partial\Omega}{\rho_{2}h_{o_{2}}u_{2}A - \rho_{1}h_{o_{1}}u_{1}A}} [\rho h_{o}\mathbf{v}\cdot\mathbf{n}] dS = 0 \Rightarrow \rho_{1}u_{1}h_{o_{1}} = \rho_{2}u_{2}h_{o_{2}}$$

Using the continuity equation this reduces to

$$h_{o_1} = h_{o_2}$$

or, if written out

$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

Summary:

$$\rho_1 u_1 = \rho_2 u_2$$
$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$
$$h_1 + \frac{1}{2} u_1^2 = h_2 + \frac{1}{2} u_2^2$$

Note! These equations are valid regardless of whether or not there is a shock inside the control volume

Summary:

$$\rho_1 U_1 = \rho_2 U_2$$

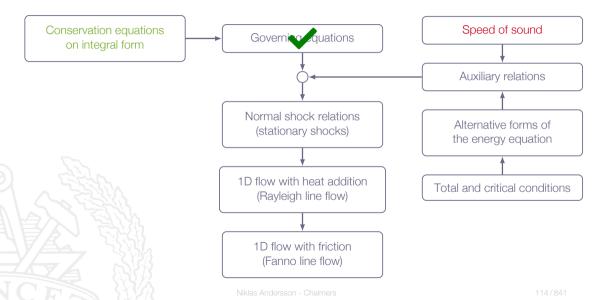
$$\rho_1 U_1^2 + \rho_1 = \rho_2 U_2^2 + \rho_2$$

$$h_1 + \frac{1}{2} U_1^2 = h_2 + \frac{1}{2} U_2^2$$

Valid for all gases!

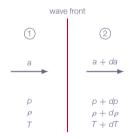
General gas \Rightarrow Numerical solution necessary Calorically perfect gas \Rightarrow Can be solved analytically

Roadmap - One-dimensional Flow



Chapter 3.3 Speed of Sound and Mach Number

Sound wave / acoustic perturbation



Conservation of mass gives

$$\rho a = (\rho + d\rho)(a + da) = \rho a + \rho da + d\rho a + d\rho da$$

products of infinitesimal quantities are removed \Rightarrow

$$\rho da + d\rho a = 0$$

$$da = -a \frac{d\rho}{\rho}$$

The momentum equation evaluated over the wave front gives

$$p + \rho a^2 = (p + dp) + (\rho + d\rho)(a + da)^2$$

Again, removing products of infinitesimal quantities gives

$$d\rho = -2a\rho da - a^2 d\rho$$

$$da = \frac{d\rho + a^2 d\rho}{-2a\rho}$$

Continuity equation:

$$da = -a \frac{d\rho}{\rho}$$

Momentum equation:

$$da = \frac{d\rho + a^2 d\rho}{-2a\rho}$$

$$-arac{d
ho}{
ho}=rac{d
ho+a^2d
ho}{-2a
ho}\Rightarrow a^2=rac{d
ho}{d
ho}$$

Sound waves are **small perturbations** in ρ , **v**, ρ , T (with constant entropy *s*) propagating through gas with speed *a*

$$a^2 = \left(\frac{\partial \rho}{\partial \rho}\right)_{\rm s}$$

Compressibility and speed of sound:

from before we have

$$\tau_{\rm s} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{\rm s}$$

insert in relation for speed of sound

$$a^{2} = \left(\frac{\partial \rho}{\partial \rho}\right)_{s} = \frac{1}{\rho \tau_{s}} \Rightarrow a = \sqrt{\frac{1}{\rho \tau_{s}}}$$

(valid for all gases)

Calorically perfect gas:

Isentropic process $\Rightarrow \rho = C \rho^{\gamma}$ (where *C* is a constant)

$$a^{2} = \left(\frac{\partial \rho}{\partial \rho}\right)_{s} = \gamma C \rho^{\gamma - 1} = \frac{\gamma \rho}{\rho}$$

which implies

$$a = \sqrt{\frac{\gamma p}{\rho}} \Rightarrow a = \sqrt{\gamma RT}$$

Sound wave / acoustic perturbation:

a weak wave

propagating through gas at speed of sound

small perturbations in velocity and thermodynamic properties

isentropic process

Mach Number

The mach number, M, is a local variable

$$M = \frac{v}{a}$$

where

 $v = |\mathbf{v}|$

and a is the local speed of sound

In the free stream, far away from solid objects, the flow is undisturbed and denoted by subscript ∞

$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}}$$

For a fluid element moving along a streamline, the kinetic energy per unit mass and internal energy per unit mass are $V^2/2$ and *e*, respectively

$$\frac{V^2/2}{e} = \frac{V^2/2}{C_v T} = \frac{V^2/2}{RT/(\gamma - 1)} = \frac{(\gamma/2)V^2}{a^2/(\gamma - 1)} = \frac{\gamma(\gamma - 1)}{2}M^2$$

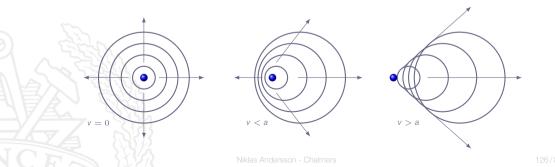
i.e. the Mach number is a measure of the ratio of the **fluid motion** (kinetic energy) and the **random thermal motion** of the molecules (internal energy)

Physical Consequences of Speed of Sound

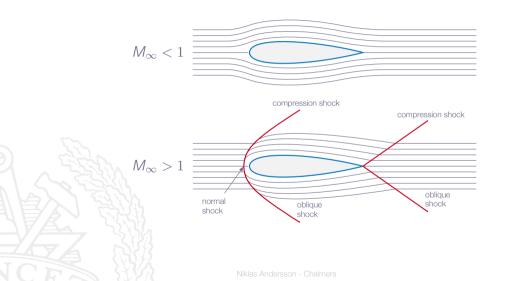
Sound waves is the way gas molecules convey information about what is happening in the flow

In subsonic flow, sound waves are able to travel upstream, since v < a

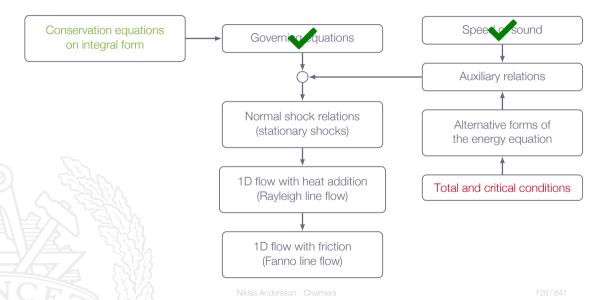
In supersonic flow, sound waves are unable to travel upstream, since v > a



Physical Consequences of Speed of Sound



Roadmap - One-dimensional Flow



Chapter 3.4 Some Conveniently Defined Flow Parameters

Stagnation Flow Properties

Assumption: Steady inviscid flow

If the flow is slowed down **isentropically** (without flow losses) to **zero velocity** we get the so-called **total conditions** (or stagnation flow properties)

(e.g. total pressure p_o , total temperature T_o , total density ρ_o , and total speed of sound a_o)

Since the process is isentropic, we have (for calorically perfect gas)

$$\frac{\rho_o}{\rho} = \left(\frac{\rho_o}{\rho}\right)^{\gamma} = \left(\frac{T_o}{T}\right)^{\frac{\gamma}{\gamma-1}}$$

Note! T_o and a_o only requires an adiabatic deceleration process

Critical Conditions

If the flow is accelerated/decelerated **isentropically** to the **sonic point**, where v = a, we obtain the so-called **critical conditions**, *e.g.* ρ^* , T^* , ρ^* , a^*

where, by definition, $v^* = a^*$

As for the total conditions, if the process is also reversible (entropy is preserved) we obtain the relations (for calorically perfect gas)

$$\frac{p^*}{\rho_o} = \left(\frac{\rho^*}{\rho_o}\right)^{\gamma} = \left(\frac{T^*}{T_o}\right)^{\frac{\gamma}{\gamma-1}}$$

Note! T^* and a^* only requires an adiabatic acceleration/deceleration process

Total and Critical Conditions

For any given steady-state flow and location, we may think of an **imaginary** isentropic/adiabatic stagnation process or sonic flow process and thus

We can obtain total and critical conditions at any point in a flow

The total/critical conditions represent conditions realizable under an isentropic/adiabatic deceleration or acceleration of the flow

In an adiabatic flow, T_o is conserved along streamlines

Conservation of p_o along streamlines requires that the flow is isentropic (no viscous losses or shocks)

Note! The actual flow does not have to be adiabatic or isentropic from point to point, the total and critical conditions are results of an imaginary isentropic/adiabatic process at one point in the flow.

However, with isentropic flow T_o , p_o , ρ_o , etc are constants

In order for T_o to be constant it is only required that the flow is adiabatic.

Total and Critical Conditions

If A and B are two locations in a flow

1. Isentropic flow:

$$T_{o_A} = T_{o_B}$$
 and $p_{o_A} = p_{o_B}$

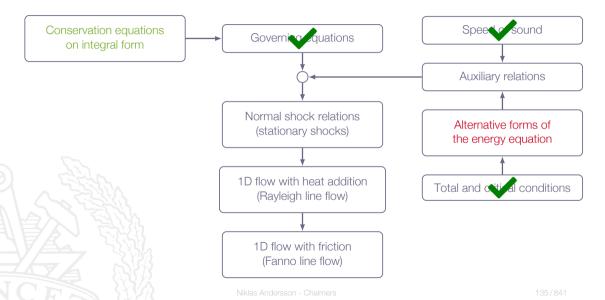
2. Adiabatic flow (not isentropic):

$$T_{o_{A}}=T_{o_{B}}$$
 and $p_{o_{A}}
eq p_{o_{B}}$

The flow is not isentropic nor adiabatic:

 $T_{o_A} \neq T_{o_B}$ and $p_{o_A} \neq p_{o_B}$

Roadmap - One-dimensional Flow



Chapter 3.5 Alternative Forms of the Energy Equation

Alternative Forms of the Energy Equation

For steady-state adiabatic flow, we have already shown that conservation of energy gives that total enthalpy, h_o , is constant along streamlines

For a calorically perfect gas we have $h = C_{\rho}T$ which implies

$$C_{\rho}T + \frac{1}{2}v^{2} = C_{\rho}T_{o}$$

$$\frac{T_{o}}{T} = 1 + \frac{v^{2}}{2C_{\rho}T}$$
Inserting $C_{\rho} = \frac{\gamma R}{\gamma - 1}$ and $a^{2} = \gamma RT$ we get
$$\boxed{\frac{T_{o}}{T} = 1 + \frac{1}{2}(\gamma - 1)M^{2}}$$

Alternative Forms of the Energy Equation

For calorically perfect gas (1D/2D/3D flows):

$$\frac{T_o}{T} = 1 + \frac{1}{2}(\gamma - 1)M^2$$
$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{1}{\gamma - 1}}$$
$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\left(\frac{a^*}{a_o}\right)^2 = \frac{T^*}{T_o} = \frac{2}{\gamma+1}$$
$$\frac{\rho^*}{\rho_o} = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}}$$
$$\frac{\rho^*}{\rho_o} = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$

Note! tabulated values for these relations can be found in Appendix A.1

The Characteristic Mach Number

$$M^* \equiv \frac{v}{a^*}$$

For a calorically perfect gas (1D/2D/3D flows)

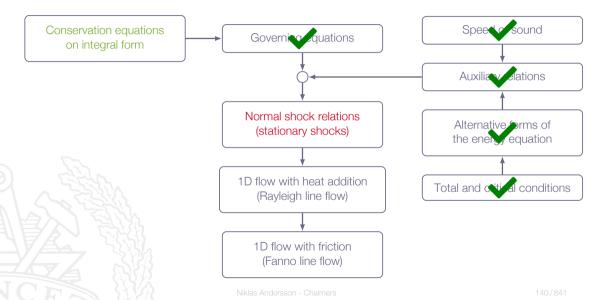
$$M^2 = rac{2}{\left[(\gamma+1)/M^{*2}\right] - (\gamma-1)}$$

This relation between M and M^* gives:

 $M^* = 0 \Leftrightarrow M = 0$ $M^* = 1 \Leftrightarrow M = 1$ $M^* < 1 \Leftrightarrow M < 1$ $M^* > 1 \Leftrightarrow M > 1$

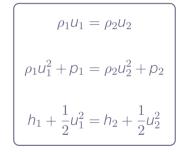
$$M^* o \sqrt{rac{\gamma+1}{\gamma-1}}$$
 when $M o \infty$

Roadmap - One-dimensional Flow



Chapter 3.6 Normal Shock Relations

One-Dimensional Flow Equations



Calorically perfect gas

$$h = C_{p}T, \quad p = \rho RT$$

with constant C_p

Assuming that state 1 is known and state 2 is unknown 5 unknown variables: ρ_2 , u_2 , p_2 , h_2 , T_2 5 equations \Rightarrow solution can be found

Divide the momentum equation by $\rho_1 u_1$

$$\frac{1}{\rho_1 u_1} \left(\rho_1 + \rho_1 u_1^2 \right) = \frac{1}{\rho_1 u_1} \left(\rho_2 + \rho_2 u_2^2 \right)$$
$$\{ \rho_1 u_1 = \rho_2 u_2 \} \Rightarrow$$
$$\frac{1}{\rho_1 u_1} \left(\rho_1 + \rho_1 u_1^2 \right) = \frac{1}{\rho_2 u_2} \left(\rho_2 + \rho_2 u_2^2 \right)$$
$$\frac{\rho_1}{\rho_1 u_1} - \frac{\rho_2}{\rho_2 u_2} = u_2 - u_1$$

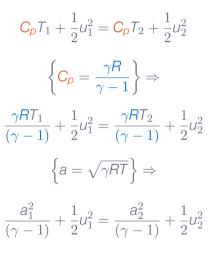
$$\frac{\rho_1}{\rho_1 u_1} - \frac{\rho_2}{\rho_2 u_2} = u_2 - u_1$$

Recall that
$$\mathbf{a} = \sqrt{\frac{\gamma \rho}{\rho}}$$
, which gives

$$\frac{a_1^2}{\gamma u_1} - \frac{a_2^2}{\gamma u_2} = u_2 - u_1$$

Now, we will make use of the fact that the flow is adiabatic and thus a* is constant

Energy equation:



In any position in the flow we can get a relation between the local speed of sound *a*, the local velocity *u*, and the speed of sound at sonic conditions a^* by inserting in the equation on the previous slide. $u_1 = u$, $a_1 = a$, $u_2 = a_2 = a^* \Rightarrow$

$$\frac{a^2}{(\gamma - 1)} + \frac{1}{2}u^2 = \frac{a^{*2}}{(\gamma - 1)} + \frac{1}{2}a^{*2}$$
$$a^2 = \frac{\gamma + 1}{2}a^{*2} - \frac{\gamma - 1}{2}u^2$$

Evaluated in station 1 and 2, this gives

 $a_1^2 = \frac{\gamma+1}{2}a^{*2} - \frac{\gamma-1}{2}u_1^2$ $a_2^2 = \frac{\gamma+1}{2}a^{*2} - \frac{\gamma-1}{2}u_2^2$

Now, inserting
$$\left\{a_{1}^{2} = \frac{\gamma+1}{2}a^{*2} - \frac{\gamma-1}{2}u_{1}^{2}\right\}$$
 and $\left\{a_{2}^{2} = \frac{\gamma+1}{2}a^{*2} - \frac{\gamma-1}{2}u_{2}^{2}\right\}$
in $\left\{\frac{a_{1}^{2}}{(\gamma-1)} + \frac{1}{2}u_{1}^{2} = \frac{a_{2}^{2}}{(\gamma-1)} + \frac{1}{2}u_{2}^{2}\right\}$ and solve for a^{*} gives
 $a^{*2} = u_{1}u_{2}$

$$a^{*2} = U_1 U_2$$

A.K.A. the Prandtl relation. Divide by a^{*2} on both sides \Rightarrow

$$1 = \frac{U_1}{a^*} \frac{U_2}{a^*} = M_1^* M_2^*$$

Together with the relation between M and M^* , this gives

$$M_2^2 = \frac{1 + \frac{1}{2}(\gamma - 1)M_1^2}{\gamma M_1^2 - \frac{1}{2}(\gamma - 1)}$$

Continuity equation and $a^{*2} = u_1 u_2$

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{u_1^2}{u_1 u_2} = \frac{u_1^2}{a^{*2}} = M_1^{*2}$$

$$\boxed{\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{(\gamma+1)M_1^2}{2 + (\gamma-1)M_1^2}}$$

Now, once again back to the momentum equation

$$\rho_2 - \rho_1 = \rho_1 u_1^2 - \rho_2 u_2^2 = \{\rho_1 u_1 = \rho_2 u_2\} = \rho_1 u_1 (u_1 - u_2)$$

$$\frac{\rho_2}{\rho_1} - 1 = \frac{\rho_1 u_1^2}{\rho_1} \left(1 - \frac{u_2}{u_1} \right) = \left\{ a = \sqrt{\frac{\gamma \rho}{\rho}}, \ M^2 = \frac{u^2}{a^2} \right\} = \gamma M_1^2 \left(1 - \frac{u_2}{u_1} \right)$$

with the expression for u_2/u_1 derived previously, this gives

$$p_2 = 1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1)$$

Are the normal shock relations valid for $M_1 < 1.0$?

Mathematically - yes!

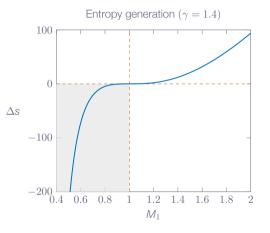
Let's have a look at the 2^{nd} law of thermodynamics

$$s_2 - s_1 = C_{\rho} \ln \frac{T_2}{T_1} - R \ln \frac{\rho_2}{\rho_1}$$

We get the ratios (T_2/T_1) and (p_2/p_1) from the normal shock relations

$$s_{2} - s_{1} = C_{\rho} \ln \left[\left(1 + \frac{2\gamma}{\gamma+1} (M_{1}^{2} - 1) \right) \left(\frac{2 + (\gamma - 1)M_{1}^{2}}{(\gamma + 1)M_{1}^{2}} \right) \right] + R \ln \left(1 + \frac{2\gamma}{\gamma+1} (M_{1}^{2} - 1) \right)$$

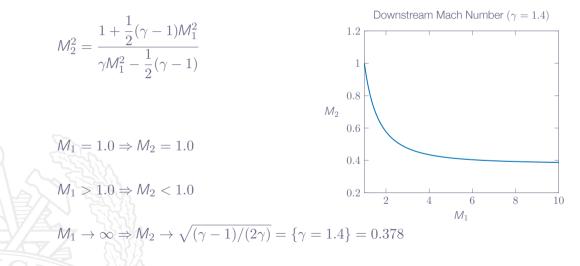
 $M_1 = 1 \Rightarrow \Delta s = 0$ (Mach wave) $M_1 < 1 \Rightarrow \Delta s < 0$ (not physical) $M_1 > 1 \Rightarrow \Delta s > 0$

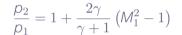


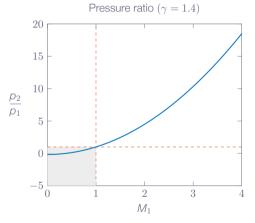
Normal shock $\Rightarrow M_1 > 1$

 $M_1^*M_2^* = 1$ $M_1 > 1 \Rightarrow M_1^* > 1$ $M_2^* = \frac{1}{M_1^*} \Rightarrow M_2^* < 1$ $M_2^* < 1 \Rightarrow M_2 < 1$

After a normal shock the Mach number must be lower than 1.0







Note! from before we know that M_1 must be greater than 1.0, which means that p_2/p_1 must be greater than 1.0

 $M_1 > 1.0$ gives $M_2 < 1.0$, $\rho_2 > \rho_1$, $\rho_2 > \rho_1$, and $T_2 > T_1$

What about T_o and p_o ?

Energy equation:
$$C_{\rho}T_1 + \frac{u_1^2}{2} = C_{\rho}T_2 + \frac{u_2^2}{2} \Rightarrow C_{\rho}T_{o_1} = C_{\rho}T_{o_2}$$

calorically perfect gas $\Rightarrow T_{o_1} = T_{o_2}$

or more general (as long as the shock is stationary): $h_{o_1} = h_{o_2}$

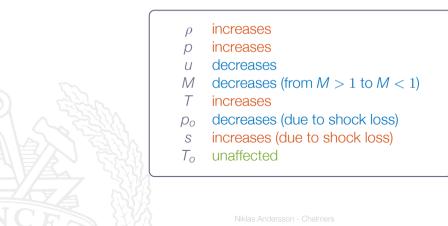
 2^{nd} law of thermodynamics and isentropic deceleration to zero velocity (Δs unchanged since isentropic) gives

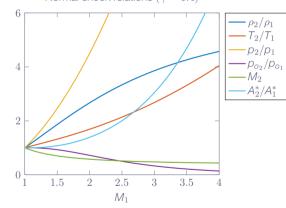
$$S_{2} - S_{1} = C_{\rho} \ln \frac{T_{o_{2}}}{T_{o_{1}}} - R \ln \frac{\rho_{o_{2}}}{\rho_{o_{1}}} = \{T_{o_{1}} = T_{o_{2}}\} = -R \ln \frac{\rho_{o_{2}}}{\rho_{o_{1}}}$$
$$\frac{\rho_{o_{2}}}{\rho_{o_{1}}} = e^{-(S_{2} - S_{1})/R}$$

i.e. the total pressure decreases over a normal shock

Normal shock relations for calorically perfect gas (summary):

As the flow passes a stationary normal shock, the following changes will take place discontinuously across the shock:





The normal shock relations for calorically perfect gases are valid for $M_1 \le 5$ (approximately) for air at standard conditions

Calorically perfect gas \Rightarrow Shock strength depends on M_1 only

Thermally perfect gas \Rightarrow Shock strength depends on M_1 and T_1

General real gas (non-perfect) \Rightarrow Shock strength depends on M_1 , p_1 , and T_1

And now to the question that probably bothers most of you but that no one dares to ask ...

And now to the question that probably bothers most of you but that no one dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

And now to the question that probably bothers most of you but that no one dares to ask ...

When or where did we say that there was going to be a shock between 1 and 2?

Answer: We did not (explicitly)

The derivation is based on the fact that there should be a change in flow properties between 1 and 2

We are assuming steady state conditions

We have said that the flow is adiabatic (no added or removed heat)

There is no work done and no friction added

A normal shock is <u>the solution</u> provided by nature (and math) that fulfill these requirements!

Chapter 3.7 Hugoniot Equation

Hugoniot Equation

Starting point: governing equations for normal shocks

 $\rho_1 U_1 = \rho_2 U_2$

$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2$$

Eliminate u_1 and u_2 gives:

$$h_2 - h_1 = rac{
ho_2 -
ho_1}{2} \left(rac{1}{
ho_1} + rac{1}{
ho_2}
ight)$$

Now, insert $h = e + p/\rho$ gives

$$e_2 - e_1 = \frac{\rho_2 + \rho_1}{2} \left(\frac{1}{\rho_1} - \frac{1}{\rho_2} \right) = \frac{\rho_2 + \rho_1}{2} \left(\nu_1 - \nu_2 \right)$$

which is the Hugoniot relation

Stationary Normal Shock in One-Dimensional Flow

Normal shock:

$$e_2 - e_1 = -\frac{\rho_2 + \rho_1}{2} \left(\nu_2 - \nu_1\right)$$

6

More effective than isentropic process Gives entropy increase Isentropic process:

 $de = -pd\nu$

More efficient than normal shock process

see figure 3.11 p. 100

Stationary Normal Shock in One-Dimensional Flow

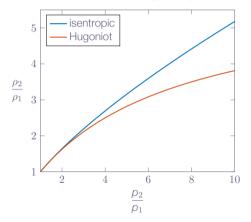
The Rankine-Hugoniot relation

$$\frac{\rho_2}{\rho_1} = \frac{1 + \left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{\rho_2}{\rho_1}\right)}{\left(\frac{\gamma+1}{\gamma-1}\right) + \left(\frac{\rho_2}{\rho_1}\right)}$$

The isentropic relation

$$\frac{\rho_2}{\rho_1} = \left(\frac{\rho_2}{\rho_1}\right)^{1/\gamma}$$

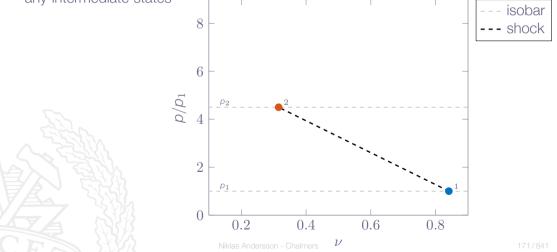
Pressure ratio ($\gamma = 1.4$)



The Normal-shock Process

Note!

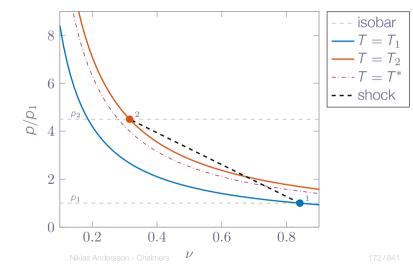
over the shock, the flow state changes discontinuously from 1 to 2 without passing any intermediate states

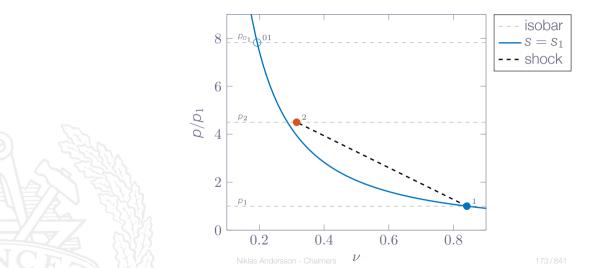


The Normal-shock Process

Note!

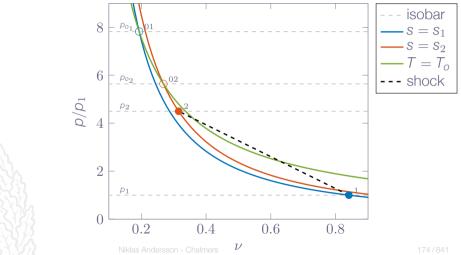
 $M_1 > 1.0$ and $M_2 < 1.0 \Rightarrow T_1 < T^* < T_2$

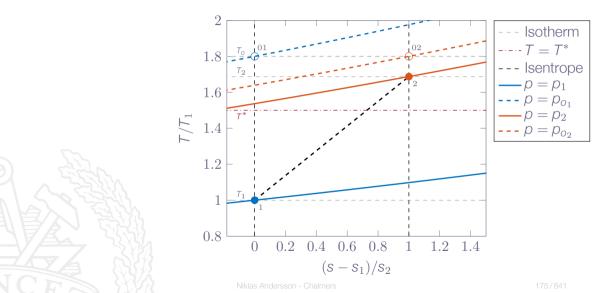




Note!

isotherms are less steep than isotherms $\Rightarrow p_{o_2} < p_{o_1}$





Continuity:

$$\rho_1 U_1 = \rho_2 U_2 = C > 0$$

Momentum:

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \Rightarrow p_1 + \frac{C^2}{\rho_1} = p_2 + \frac{C^2}{\rho_2} \Rightarrow p_1 + \nu_1 C^2 = p_2 + \nu_2 C^2$$
$$\frac{p_1 - p_2}{\nu_1 - \nu_2} = -C^2$$

a line in $p\nu$ -space with negative slope

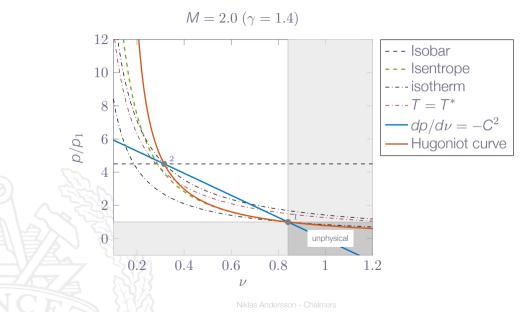
Energy equation:

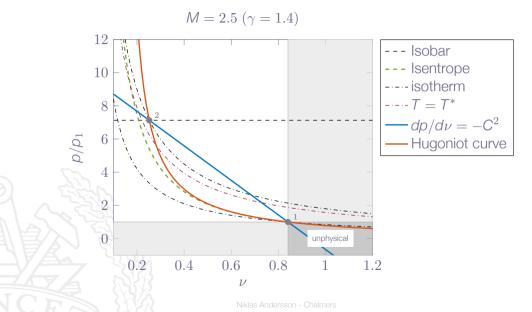
$$h_1+\frac{u_1^2}{2}=h_2+\frac{u_2^2}{2}$$
 with $h=C_{\rho}T=\frac{\gamma R}{\gamma-1}T$ and $u=\nu C$ we get

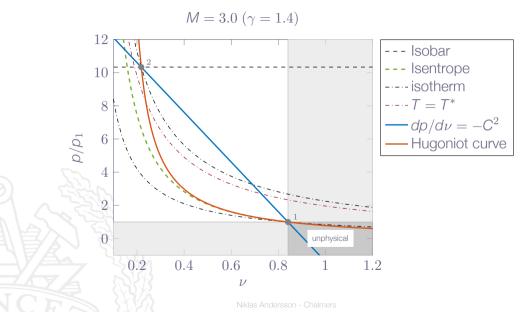
$$\frac{\gamma R}{\gamma - 1} T_1 + \frac{1}{2} \nu_1^2 C^2 = \frac{\gamma R}{\gamma - 1} T_2 + \frac{1}{2} \nu_2^2 C^2 \Rightarrow \dots \Rightarrow \frac{\rho_2}{\rho_1} \left(\frac{\nu_2}{\nu_1} - \frac{\gamma + 1}{\gamma - 1}\right) / \left(1 - \frac{\nu_2}{\nu_1} \frac{\gamma + 1}{\gamma - 1}\right)$$

quadratic function in $p\nu$ -space (Hugoniot curve)

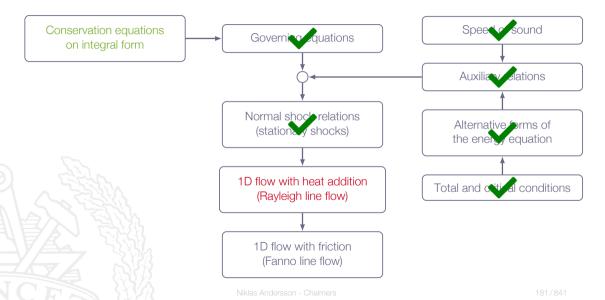
only thermodynamic variables



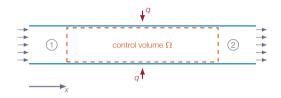




Roadmap - One-dimensional Flow



Chapter 3.8 One-Dimensional Flow with Heat Addition



1D pipe flow with heat addition:

- 1. no friction
- 2. 1D steady-state \Rightarrow all variables depend on x only
- 3. q is the amount of heat per unit mass added between 1 and 2
- 4. analyze by setting up a control volume between station 1 and 2

$$\rho_1 u_1 = \rho_2 u_2$$

$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

$$h_1 + \frac{1}{2} u_1^2 + \mathbf{q} = h_2 + \frac{1}{2} u_2^2$$

Valid for all gases!

General gas \Rightarrow Numerical solution necessary Calorically perfect gas \Rightarrow can be solved analytically

Calorically perfect gas ($h = C_p T$):

$$C_{\rho}T_{1} + \frac{1}{2}u_{1}^{2} + \mathbf{q} = C_{\rho}T_{2} + \frac{1}{2}u_{2}^{2}$$
$$\mathbf{q} = \left(C_{\rho}T_{2} + \frac{1}{2}u_{2}^{2}\right) - \left(C_{\rho}T_{1} + \frac{1}{2}u_{1}^{2}\right)$$
$$C_{\rho}T_{o} = C_{\rho}T + \frac{1}{2}u^{2} \Rightarrow$$
$$\left(\mathbf{q} = C_{\rho}(T_{o_{2}} - T_{o_{1}})\right)$$

i.e. heat addition increases T_o downstream

Momentum equation:

$$p_2 - p_1 = \rho_1 u_1^2 - \rho_2 u_2^2$$

$$\left\{ \rho u^2 = \rho a^2 M^2 = \rho \frac{\gamma \rho}{\rho} M^2 = \gamma \rho M^2 \right\}$$

$$p_2 - p_1 = \gamma \rho_1 M_1^2 - \gamma \rho_2 M_2^2 \Rightarrow$$

$$\left[\frac{\rho_2}{\rho_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2} \right]$$

We used the momentum equation to derive the relation for p_2/p_1 . In what way is this relation different than the one for normal shocks – the momentum equation is the same?

We used the momentum equation to derive the relation for p_2/p_1 . In what way is this relation different than the one for normal shocks – the momentum equation is the same?

Answer: There is no difference. If we would insert $M_2 = f(M_1)$ from the normal shock relations, we would end up with the normal shock relation for p_2/p_1 .

The relation for $M_2 = f(M_1)$ for normal shocks was derived assuming adiabatic flow

Ideal gas law:

$$T = \frac{\rho}{\rho R} \Rightarrow \frac{T_2}{T_1} = \frac{\rho_2}{\rho_2 R} \frac{\rho_1 R}{\rho_1} = \frac{\rho_2}{\rho_1} \frac{\rho_1}{\rho_2}$$

Continuity equation:

$$\rho_1 U_1 = \rho_2 U_2 \Rightarrow \frac{\rho_1}{\rho_2} = \frac{U_2}{U_1}$$

$$\frac{u_2}{u_1} = \frac{M_2 a_2}{M_1 a_1} = \frac{M_2 \sqrt{\gamma R T_2}}{M_1 \sqrt{\gamma R T_1}} \Rightarrow \frac{\rho_1}{\rho_2} = \frac{M_2}{M_1} \sqrt{\frac{T_2}{T_1}}$$

$$\boxed{\frac{T_2}{T_1} = \left(\frac{1 + \gamma M_1^2}{1 + \gamma M_2^2}\right)^2 \left(\frac{M_2}{M_1}\right)^2}$$

Calorically perfect gas, analytic solution:

$$\frac{T_2}{T_1} = \left[\frac{1+\gamma M_1^2}{1+\gamma M_2^2}\right]^2 \left(\frac{M_2}{M_1}\right)^2$$

$$\frac{\rho_2}{\rho_1} = \left[\frac{1+\gamma M_2^2}{1+\gamma M_1^2}\right] \left(\frac{M_1}{M_2}\right)^2$$

$$\rho_2 = 1 + \gamma M_1^2$$

$$\frac{\rho_2}{\rho_1} = \frac{1 + \gamma M_1}{1 + \gamma M_2^2}$$

Calorically perfect gas, analytic solution:

$$\frac{\rho_{o_2}}{\rho_{o_1}} = \left[\frac{1+\gamma M_1^2}{1+\gamma M_2^2}\right] \left(\frac{1+\frac{1}{2}(\gamma-1)M_2^2}{1+\frac{1}{2}(\gamma-1)M_1^2}\right)^{\frac{\gamma}{\gamma-1}}$$

$$\frac{T_{o_2}}{T_{o_1}} = \left[\frac{1+\gamma M_1^2}{1+\gamma M_2^2}\right] \left(\frac{M_2}{M_1}\right)^2 \left(\frac{1+\frac{1}{2}(\gamma-1)M_2^2}{1+\frac{1}{2}(\gamma-1)M_1^2}\right)^{\frac{\gamma}{\gamma-1}}$$

Initially subsonic flow (M < 1)

the Mach number, M, increases as more heat (per unit mass) is added to the gas for some limiting heat addition q^* , the flow will eventually become sonic M = 1

Initially supersonic flow (M > 1)

the Mach number, M, decreases as more heat (per unit mass) is added to the gas for some limiting heat addition q^* , the flow will eventually become sonic M = 1

Note! The (*) condition in this context **is not** the same as the "critical" condition discussed for isentropic flow

$$\frac{\rho_2}{\rho_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2}$$

Calculate the ratio between the pressure at a specific location in the flow p and the pressure at sonic conditions p^*

$$p_1 = p, M_1 = M, p_2 = p^*$$
, and $M_2 = 1$

$$\frac{p^*}{p} = \frac{1 + \gamma M^2}{1 + \gamma}$$

Niklas Andersson - Chalmers

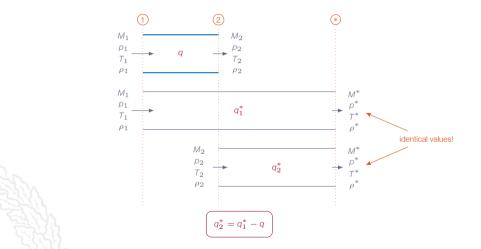
$$\frac{T}{T^*} = \left[\frac{1+\gamma}{1+\gamma M^2}\right]^2 M^2$$
$$\frac{\rho}{\rho^*} = \left[\frac{1+\gamma M^2}{1+\gamma}\right] \left(\frac{1}{M^2}\right)$$
$$\frac{\rho}{\rho^*} = \frac{1+\gamma}{1+\gamma M^2}$$

$$\frac{\rho_o}{\rho_o^*} = \left[\frac{1+\gamma}{1+\gamma M^2}\right] \left(\frac{2+(\gamma-1)M^2}{(\gamma+1)}\right)^{\frac{\gamma}{\gamma-1}}$$

$$\frac{T_o}{T_o^*} = \frac{(\gamma + 1)M^2}{(1 + \gamma M^2)^2} (2 + (\gamma - 1)M^2)$$

Amount of heat per unit mass needed to choke the flow:

$$\boldsymbol{q}^* = C_{\rho}(\boldsymbol{T}_o^* - \boldsymbol{T}_o) = C_{\rho}\boldsymbol{T}_o\left(\frac{\boldsymbol{T}_o^*}{\boldsymbol{T}_o} - 1\right)$$



Note! for a given flow, the starred quantities are constant values

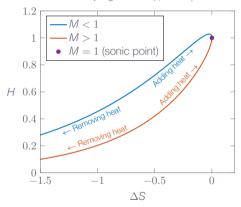
Niklas Andersson - Chalmers

Note! it is theoretically possible to heat an initially subsonic flow to reach sonic conditions and then continue to accelerate the flow by cooling

Lord Rayleigh 1842-1919 Nobel prize in physics 1904

$$\Delta S = \frac{\Delta s}{C_{\rho}} = \ln \left[M^2 \left(\frac{\gamma + 1}{1 + \gamma M^2} \right)^{\frac{\gamma + 1}{\gamma}} \right]$$
$$H = \frac{h}{h^*} = \frac{C_{\rho}T}{C_{\rho}T^*} = \frac{T}{T^*} = \left[\frac{(\gamma + 1)M}{1 + \gamma M^2} \right]^2$$

Rayleigh curve ($\gamma = 1.4$)



And now, the million-dollar question ...

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn't that a violation of the second law of thermodynamics?!

And now, the million-dollar question ...

Removing heat seems to reduce the entropy. Isn't that a violation of the second law of thermodynamics?!

Answer: if the heat source or sink would have been included in the system studied, the system entropy would increase both when adding and removing heat.

M < 1: Adding heat will

M > 1: Adding heat will

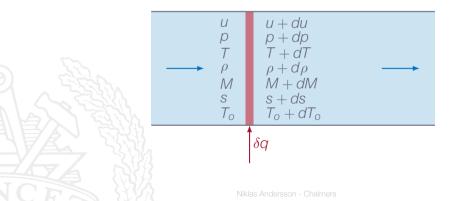
increase Mdecrease pincrease T_o decrease p_o increase sincrease udecrease ρ decrease Mincrease pincrease T_o decrease p_o increase sdecrease uincrease ρ

Note! the flow is not isentropic, there will always be losses

The Rayleigh-flow Process

Unlike the normal shock, Rayleigh flow has continuous solutions

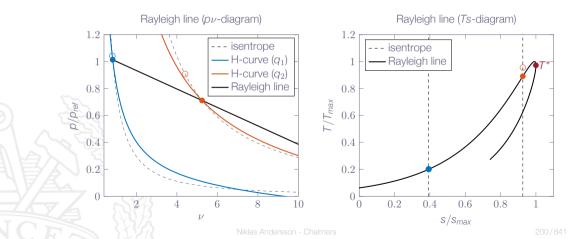
A small addition of heat δq will change flow properties slightly



The Rayleigh-flow Process - Subsonic Heat Addition

Note!

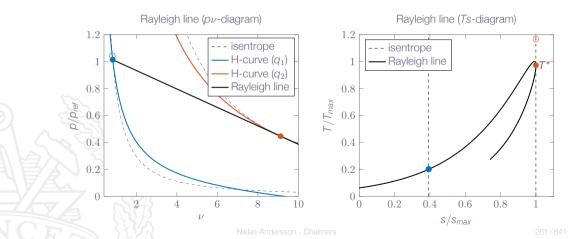
Heat addition moves the H-curve in the direction of increasing pressure and increasing specific volume



The Rayleigh-flow Process - Choked Subsonic Flow

Note!

When $q = q^*$, the H-curve is tangent to the Rayleigh line (thermal choking) Further heat addition will move the H-curve away from the Rayleigh line

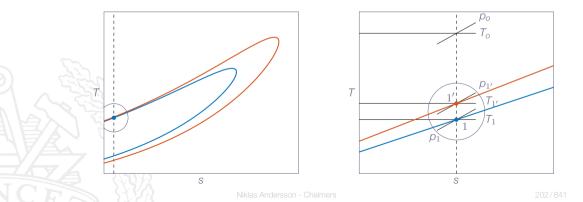


The Rayleigh-flow Process - Choked Subsonic Flow

Note!

If is added such that $q > q^*$, the inlet static flow properties will change (new massflow) such that the new q^* is equal to the added heat q

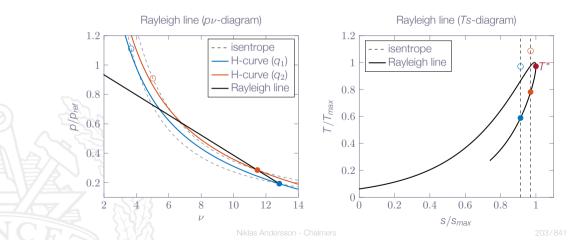
Total flow properties at the inlet remains the same (only work or heat addition can change the total flow properties)



The Rayleigh-flow Process - Supersonic Heat Addition

Note!

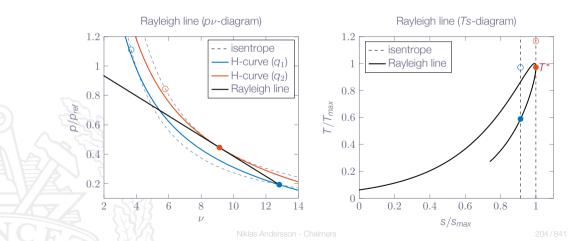
A supersonic flow is in general closer to thermal choking than a subsonic flow due to the high energy level (and thereby high T_o)



The Rayleigh-flow Process - Choked Supersonic Flow

Note!

When heat is added to a thermally choked supersonic flow, a shock will be generated at the exit of the pipe



The Rayleigh-flow Process - Choked Supersonic Flow

The shock generated at the exit will be infinitely weak (M = 1)

As the shock does not affect T_o , T^* , p^* etc, it does not affect the thermal choking condition (remember: T^* and p^* are **not the critical conditions**)

The heat process and the normal shock process operates along the **same line** in $p\nu$ -space

The shock will travel upstream through the pipe

If the supersonic flow is generated in a convergent-diveregent nozzle, the shock will propagate upstream in the nozzle until the resulting pipe inlet condition allows for the heat to be added with thermal choking at the pipe exit

The Rayleigh-flow Process - Maxumim Temperature

It can be showed that
$$\frac{dT}{ds} = \frac{1 - \gamma M^2}{1 - M^2} \frac{T}{C_p}$$

$$\frac{dT}{ds} = 0 \Rightarrow M = \sqrt{\frac{1}{\gamma}}$$

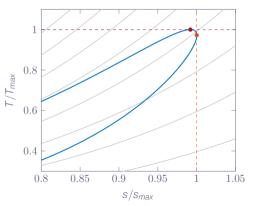
M =

we will have the maximum temperature for a subsonic Mach number

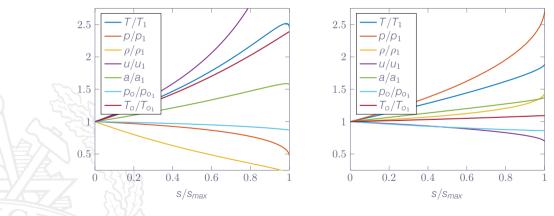
 ∞

ds

Rayleigh line (Ts-diagram)

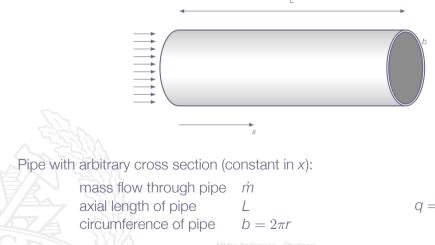


Rayleigh Flow Trends

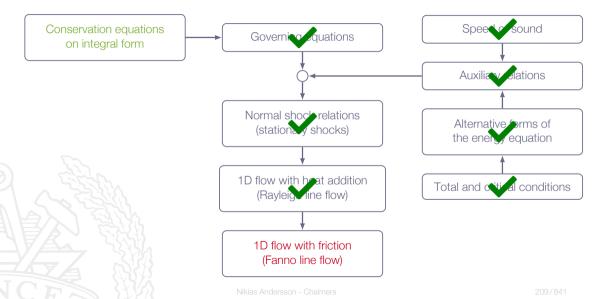


One-Dimensional Flow with Heat Addition

Relation between added heat per unit mass (q) and heat per unit surface area and unit time (\dot{q}_{wall})



Roadmap - One-dimensional Flow



Chapter 3.9 One-Dimensional Flow with Friction

inviscid flow with friction?!

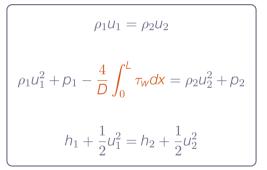
1D pipe flow with friction:

- 1. adiabatic (q = 0)
- 2. cross section area A is constant
- 3. average all variables in each cross-section \Rightarrow only x-dependence
- 4. analyze by setting up a control volume between station 1 and 2

Wall-friction contribution in momentum equation

$$\iint_{\partial\Omega} \tau_w dS = b \int_0^L \tau_w dx$$

where L is the tube length and b is the circumference



 $\tau_{\scriptscriptstyle W}$ varies with the distance x and thus complicating the integration

Solution: let L shrink to dx and we end up with relations on differential form

$$d(\rho u^{2} + p) = -\frac{4}{D}\tau_{w}dx \Leftrightarrow \frac{d}{dx}(\rho u^{2} + p) = -\frac{4}{D}\tau_{w}$$

From the continuity equation we get

$$\rho_1 u_1 = \rho_2 u_2 = const \Rightarrow \frac{d}{dx}(\rho u) = 0$$

Writing out all terms in the momentum equation gives

$$\frac{d}{dx}(\rho u^2 + \rho) = \rho u \frac{du}{dx} + u \underbrace{\frac{d}{dx}(\rho u)}_{=0} + \frac{d\rho}{dx} = -\frac{4}{D}\tau_w \Rightarrow \rho u \frac{du}{dx} + \frac{d\rho}{dx} = -\frac{4}{D}\tau_w$$

Common approximation for τ_W :

$$\tau_{\rm W} = f \frac{1}{2} \rho u^2 \Rightarrow \rho u \frac{du}{dx} + \frac{dp}{dx} = -\frac{2}{D} \rho u^2 f$$

Energy conservation:

$$h_{o_1} = h_{o_2} \Rightarrow \frac{d}{dx} h_o = 0$$

Summary:

$$\frac{d}{dx}(\rho u) = 0$$

$$\rho u \frac{du}{dx} + \frac{dp}{dx} = -\frac{2}{D}\rho u^2 f$$

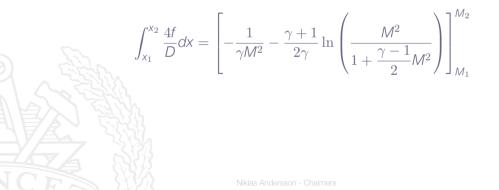
$$\frac{d}{dx}h_o = 0$$

Valid for all gases!

General gas \Rightarrow Numerical solution necessary

Calorically perfect gas \Rightarrow Can be solved analytically (for constant *f*)

Calorically perfect gas:



Calorically perfect gas and adiabatic flow:

$$\frac{T_2}{T_1} = \frac{T_2}{T_{o_2}} \frac{T_{o_2}}{T_{o_1}} \frac{T_{o_1}}{T_1} = \{T_o = const\} = \frac{T_2}{T_o} \frac{T_o}{T_1} = \frac{2 + (\gamma - 1)M_1^2}{2 + (\gamma - 1)M_2^2}$$
Continuity:

$$\frac{\rho_2}{\rho_1} = \frac{u_1}{u_2} = \frac{a_1 M_1}{a_2 M_2} = \left\{ a = \sqrt{\gamma RT} \right\} = \sqrt{\frac{T_1}{T_2}} \left(\frac{M_1}{M_2} \right)$$

Perfect gas:

Total pressure:

$$\frac{\rho_2}{\rho_1} = \{\rho = \rho RT\} = \frac{\rho_2 T_2}{\rho_1 T_1}$$

 $\frac{p_{O_2}}{p_{O_1}} = \frac{p_{O_2}}{p_2} \frac{p_2}{p_1} \frac{p_1}{p_{O_1}}$ Viklas Andersson - Chalmers

Calorically perfect gas:

$$\boxed{\frac{p_2}{p_1} = \frac{M_1}{M_2} \left[\frac{2 + (\gamma - 1)M_1^2}{2 + (\gamma - 1)M_2^2}\right]^{1/2}}$$

$$\boxed{\frac{p_{o_2}}{p_{o_1}} = \frac{M_1}{M_2} \left[\frac{2 + (\gamma - 1)M_2^2}{2 + (\gamma - 1)M_1^2}\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}}$$

Initially subsonic flow ($M_1 < 1$)

 M_2 will increase as *L* increases for a critical length *L*^{*}, the flow at point 2 will reach sonic conditions, *i.e.* $M_2 = 1$

Initially supersonic flow ($M_1 > 1$)

 M_2 will decrease as L increases

for a critical length L^* , the flow at point 2 will reach sonic conditions, *i.e.* $M_2 = 1$

Note! The (*) condition in this context **is not** the same as the "critical" condition discussed for isentropic flow

$$\frac{p}{p^*} = \frac{1}{M} \left[\frac{\gamma + 1}{2 + (\gamma - 1)M^2} \right]^{1/2}$$

$$\boxed{\frac{p_o}{p_o^*} = \frac{1}{M} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1}\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}}$$

see Table A.4

and

$$\int_0^{L^*} \frac{4f}{D} dx = \left[-\frac{1}{\gamma M^2} - \frac{\gamma + 1}{2\gamma} \ln \left(\frac{M^2}{1 + \frac{\gamma - 1}{2} M^2} \right) \right]_M^1$$

where L* is the tube length needed to change current state to sonic conditions

Let \overline{f} be the average friction coefficient over the length $L^* \Rightarrow$

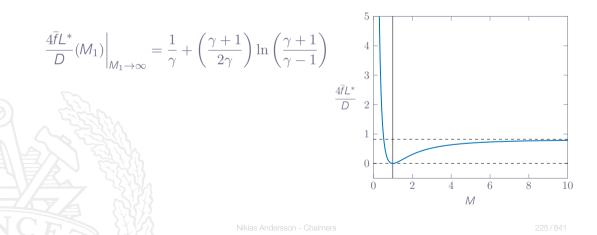
$$\frac{4\bar{f}\boldsymbol{L}^*}{D} = \frac{1-M^2}{\gamma M^2} + \frac{\gamma+1}{2\gamma} \ln\left(\frac{(\gamma+1)M^2}{2+(\gamma-1)M^2}\right)$$

Turbulent pipe flow $\rightarrow \bar{t} \sim 0.005$ (Re > 10⁵, roughness $\sim 0.001D$)

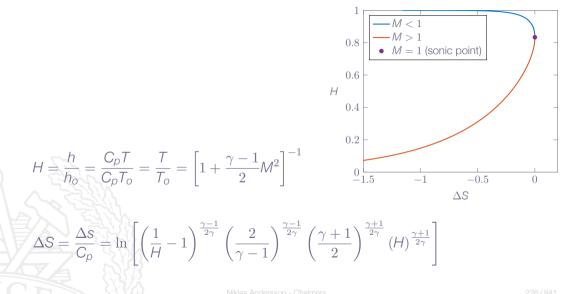
One-Dimensional Flow with Friction - Choking Length

Note!

Supersonic flow is much more prone to choke than subsonic flow There is an upper limit for supersonic choking length L^*



Fanno curve ($\gamma = 1.4$)



M < 1: Friction will

M > 1: Friction will

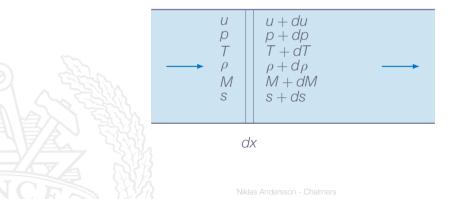
increase Mdecrease pdecrease T**decrease** p_o **increase** sincrease udecrease ρ decrease Mincrease pincrease T**decrease** p_o **increase** sdecrease uincrease ρ

Note! the flow is not isentropic, there will always be losses

The Fanno-flow Process

Just like the Rayleigh flow, Fanno flow has continuous solutions

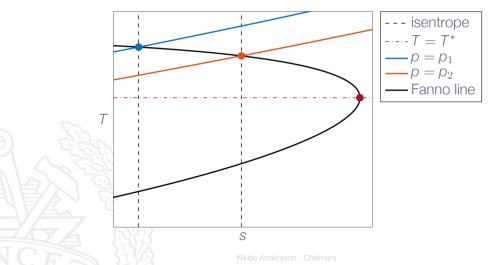
A small pipe section with length dx will change flow properties slightly



The Fanno-flow Process - Subsonic Flow

Note!

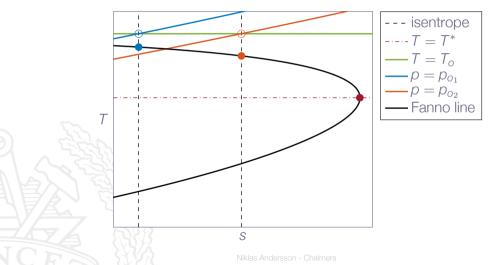
Pressure and temperature decreases when friction is added to a subsonic flow



The Fanno-flow Process - Subsonic Flow

Note!

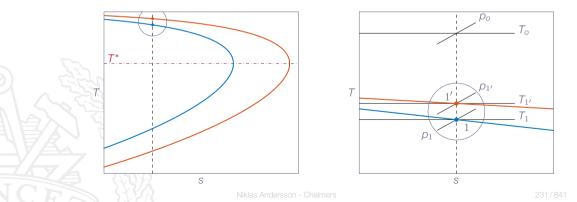
The Fanno flow process is adiabatic $\Rightarrow T_o$ is constant $\Rightarrow p_o$ increases



The Fanno-flow Process - Choked Subsonic Flow

Note!

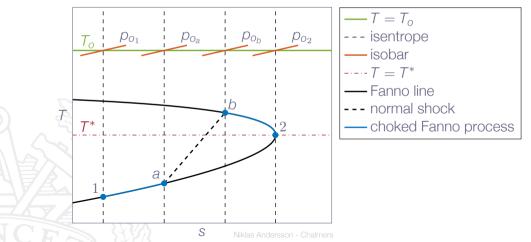
If the pipe length is increased such that $L > L^*$, the inlet static flow properties will change (new massflow) such that the new L^* is equal to the pipe length Total flow properties at the inlet remains the same (only work or heat addition can change the total flow properties)



The Fanno-flow Process - Choked Supersonic

Note!

Choked supersonic flow will lead to the formation of a shock inside the pipe (shock location depends on flow conditions)



Why does the normal shock change the choking condition for Fanno flow but not for Rayleigh flow?

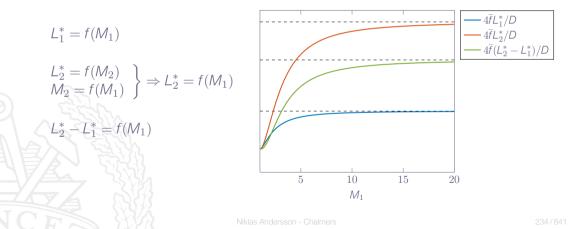
As for Rayleigh flow, T_o , T^* , p^* , etc are not affected by the shock

The **momentum equation is not the same** as for normal shocks \Rightarrow the Fanno-flow process does not operate along the same line as the normal-shock process in $p\nu$ -space

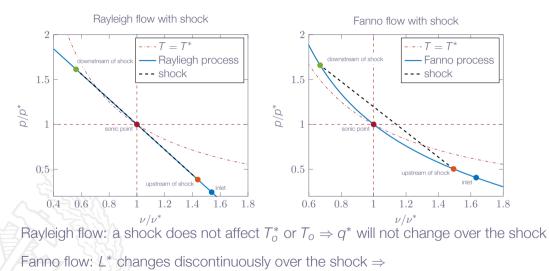
The Fanno-flow Process - Choked Supersonic

Note!

An internal shock will always increase the choking length L*

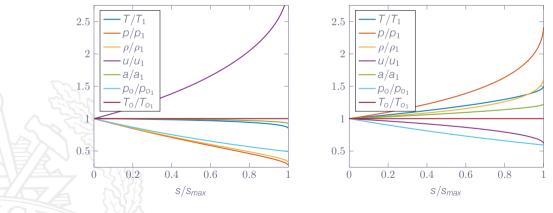


Friction Choking vs Thermal Choking

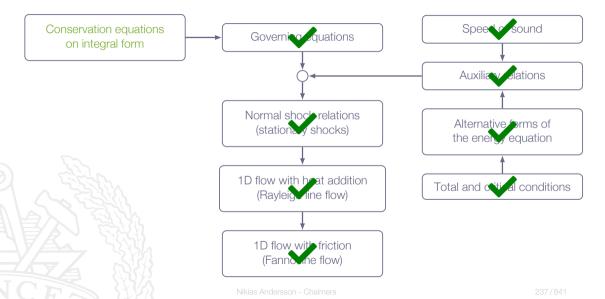


 L^* will always increase over a shock \Rightarrow possible to extend pipe for supersonic flow

Fanno-flow Trends

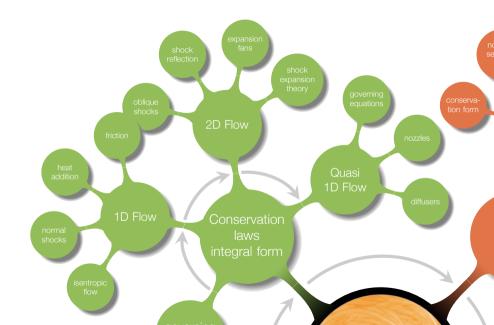


Roadmap - One-dimensional Flow



Chapter 4 Oblique Shocks and Expansion Waves

Overview



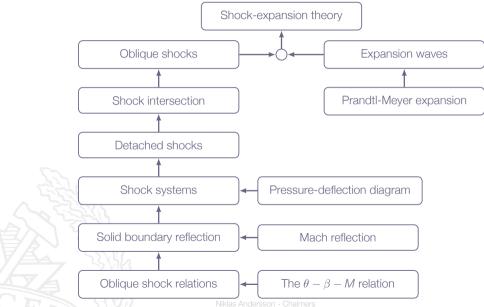
Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 7 Explain why entropy is important for flow discontinuities
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - b normal shocks*
 - e oblique shocks in 2D*
 - shock reflection at solid walls*
 - g contact discontinuities
 - h Prandtl-Meyer expansion fans in 2D
 - detached blunt body shocks, nozzle flows

Solve engineering problems involving the above-mentioned phenomena (8a-8k)

why do we get normal shocks in some cases and oblique shocks in other?

Roadmap - Oblique Shocks and Expansion Waves



Motivation

Come on, two-dimensional flow, really?! Why not three-dimensional?

the normal shocks studied in chapter 3 are a special casees of the more general oblique shock waves that may be studied in two dimensions

in two dimensions, we can still analyze shock waves using a pen-and-paper approach

many practical problems or subsets of problems may be analyzed in two-dimensions

by going from one to two dimensions we will be able to introduce physical processes important for compressible flows

Oblique Shocks and Expansion Waves - Assumptions

- 1. Supersonic
- 2. Steady-state
- 3. Two-dimensional
- 4. Inviscid flow (no wall friction)

In real flow, viscosity is non-zero \Rightarrow boundary layers

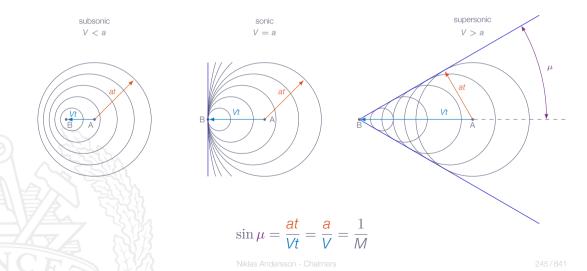
For high-Reynolds-number flows, boundary layers are thin \Rightarrow inviscid theory still relevant!

Mach Wave

Sound waves emitted from A (speed of sound a)

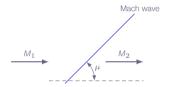
Mach Waves

A Mach wave is an infinitely weak oblique shock



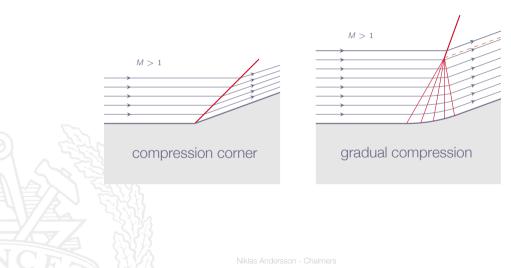
Mach Wave

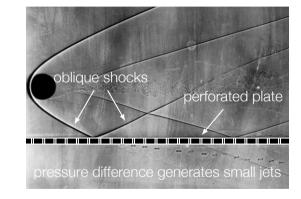
A Mach wave is an infinitely weak oblique shock

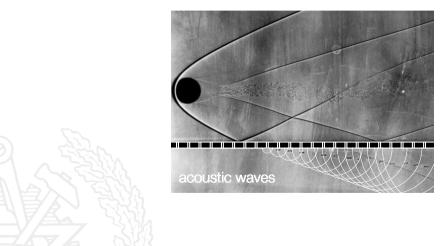


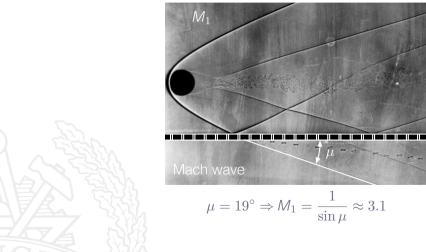
No substantial changes of flow properties over a single Mach wave $M_1 > 1.0$ and $M_1 \approx M_2$ Isentropic

Oblique Shocks

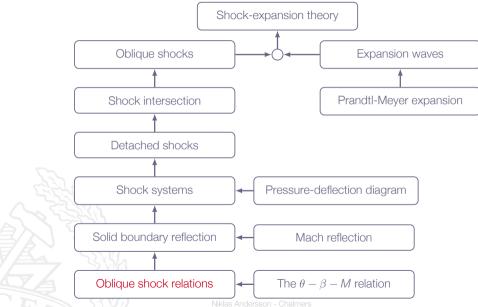








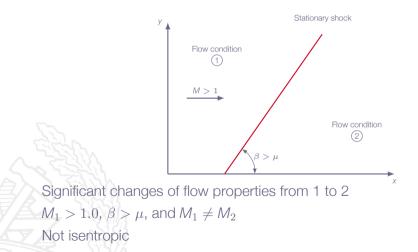
Roadmap - Oblique Shocks and Expansion Waves



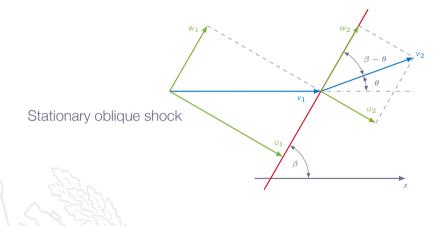
Chapter 4.3 Oblique Shock Relations

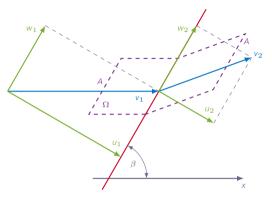
Oblique Shocks

Two-dimensional steady-state flow

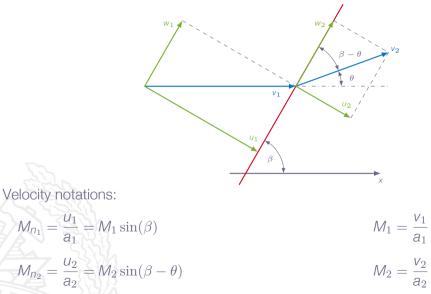


Oblique Shocks





Two-dimensional steady-state flow Control volume aligned with flow stream lines



Conservation of mass:

$$\frac{d}{dt}\iiint \rho d\mathcal{V} + \oiint \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

Mass conservation for control volume Ω :

$$0 - \rho_1 u_1 A + \rho_2 u_2 A = 0 \Rightarrow$$

$$\rho_1 u_1 = \rho_2 u_2$$

Conservation of momentum:

$$\frac{d}{dt}\iiint \rho \mathbf{v} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint \rho \mathbf{f} d\mathcal{V}$$

Momentum in shock-normal direction:

$$0 - (\rho_1 u_1^2 + \rho_1) A + (\rho_2 u_2^2 + \rho_2) A = 0 \Rightarrow$$

$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

Momentum in shock-tangential direction:

$$0 - \rho_1 u_1 w_1 A + \rho_2 u_2 w_2 A = 0 \Rightarrow$$

$$w_1 = w_2$$

Conservation of energy:

$$\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho h_o \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Energy equation applied to the control volume Ω :

$$0 - \rho_1 u_1 [h_1 + \frac{1}{2} (u_1^2 + w_1^2)] A + \rho_2 u_2 [h_2 + \frac{1}{2} (u_2^2 + w_2^2)] A = 0 \Rightarrow$$

$$h_1 + \frac{1}{2} u_1^2 = h_2 + \frac{1}{2} u_2^2$$

We can use the same equations as for normal shocks if we replace M_1 with M_{n_1} and M_2 with M_{n_2}

$$M_{n_2}^2 = \frac{M_{n_1}^2 + [2/(\gamma - 1)]}{[2\gamma/(\gamma - 1)]M_{n_1}^2 - 1}$$

Ratios such as ρ_2/ρ_1 , p_2/p_1 , and T_2/T_1 can be calculated using the relations for normal shocks with M_1 replaced by M_{n_1}

What about ratios involving stagnation flow properties, can we use the ones previously derived for normal shocks?

What about ratios involving stagnation flow properties, can we use the ones previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the shock $\Rightarrow T_{o_2} = T_{o_1}$

What about ratios involving stagnation flow properties, can we use the ones previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the shock $\Rightarrow T_{o_2} = T_{o_1}$

What about the total pressure?

What about ratios involving stagnation flow properties, can we use the ones previously derived for normal shocks?

The shock process is adiabatic and thus total temperature is not effected by the shock $\Rightarrow T_{o_2} = T_{o_1}$

What about the total pressure?

$$s_2 - s_1 = C_{\rho} \ln\left(\frac{T_{o_2}}{T_{o_1}}\right) - R \ln\left(\frac{\rho_{o_2}}{\rho_{o_1}}\right) = \{T_{o_2} = T_{o_1}\} = -R \ln\left(\frac{\rho_{o_2}}{\rho_{o_1}}\right)$$

entropy is a thermodynamic flow property and $s_2 - s_1$ is dictated by the shock strength and thus the total pressure ratio is a function of the shock-normal Mach number

Note! total pressure is always calculated using the flow Mach number, not the shock-normal Mach number

However, the ratio p_{o_2}/p_{o_1} may be calculated using the shock-normal Mach number

So, be careful when using relations derived for normal shocks for oblique shocks when it comes to total flow conditions...

$$p_{o_2}/p_{o_1}$$
 is calculated as: $\frac{p_{o_2}}{p_{o_1}} = \frac{p_{o_2}}{p_2} \frac{p_2}{p_1} \frac{p_1}{p_{o_1}}$

where

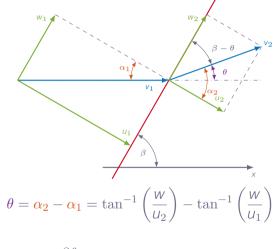
.
$$\frac{\rho_{o_2}}{\rho_2} = f(M_2), \frac{\rho_2}{\rho_1} = f(M_{n_1}), \text{ and } \frac{\rho_1}{\rho_{o_1}} = f(M_1)$$

or alternatively

2.
$$\frac{\rho_{o_2}}{\rho_2} = f(M_{n_2}), \frac{\rho_2}{\rho_1} = f(M_{n_1}), \text{ and } \frac{\rho_1}{\rho_{o_1}} = f(M_{n_1})$$

Note! in the second case the total pressures are **not** the true total pressures of the flow and therefore it is suggested to use the first approach

Deflection Angle (for the interested)



$$\frac{\partial\theta}{\partial w} = \frac{u_2}{w^2 + u_2^2} - \frac{u_1}{w^2 + u_1^2}$$

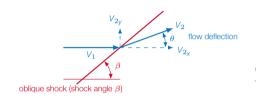
Deflection Angle (for the interested)

$$\frac{\partial\theta}{\partial w} = \frac{u_2}{w^2 + u_2^2} - \frac{u_1}{w^2 + u_1^2} = 0 \Rightarrow$$
$$\frac{u_2(w^2 + u_1^2) - u_1(w^2 + u_2^2)}{(w^2 + u_2^2)(w^2 + u_1^2)} = 0 \Rightarrow \frac{(u_2 - u_1)(w^2 - u_1u_2)}{(w^2 + u_2^2)(w^2 + u_1^2)} = 0$$

Two solutions:

 $u_2 = u_1$ (no deflection) $w^2 = u_1 u_2$ (max deflection)

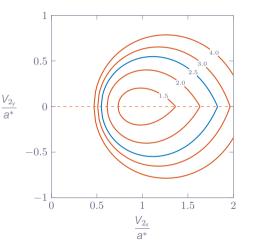
Graphical representation of all possible deflection angles for a specific Mach number



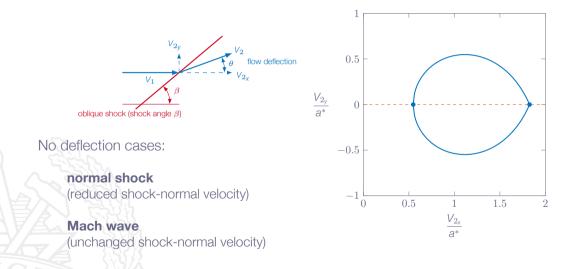
Note!

In the shock polar, V_{2_x} and V_{2_y} are normalized by a^*

- a^* is a constant in a adiabatic flow
- a* is not affected by shocks



Graphical representation of all possible deflection angles for a specific Mach number

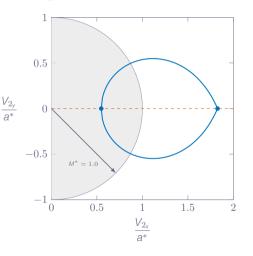


Graphical representation of all possible deflection angles for a specific Mach number

$$M^* = \frac{\sqrt{V_{2_x}^2 + V_{2_y}^2}}{a^*}$$

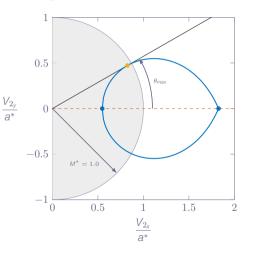
Solutions to the left of the sonic line are subsonic

Recall $M^* = 1 \Leftrightarrow M = 1$ $M^* < 1 \Leftrightarrow M < 1$ $M^* > 1 \Leftrightarrow M > 1$



Graphical representation of all possible deflection angles for a specific Mach number

It is not possible to deflect the flow more than $\theta_{\rm max}$

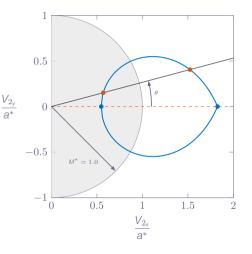


Graphical representation of all possible deflection angles for a specific Mach number

For each deflection angle $\theta < \theta_{max}$, there are two solutions

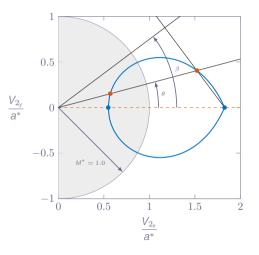
- 1. strong shock solution
- 2. weak shock solution

Weak shocks give lower losses and therefore the preferred solution



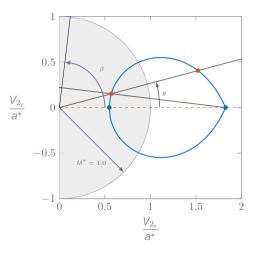
Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to calculate the shock angle β for a given deflection angle θ

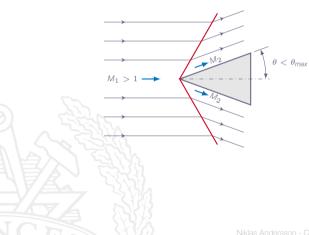


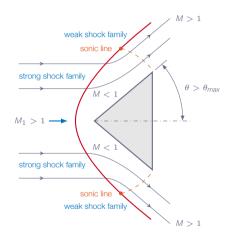
Graphical representation of all possible deflection angles for a specific Mach number

The shock polar can be used to calculate the shock angle β for a given deflection angle θ

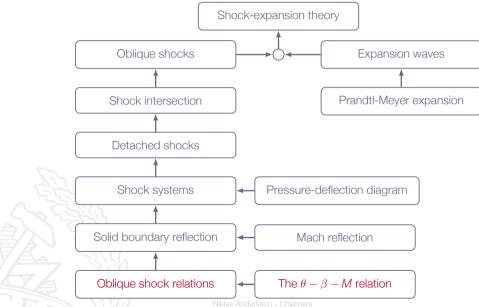


Flow Deflection



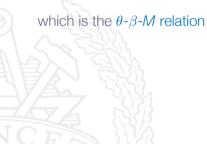


Roadmap - Oblique Shocks and Expansion Waves



It can be shown that

$$\tan \theta = 2 \cot \beta \left(\frac{M_1^2 \sin^2 \beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2} \right)$$



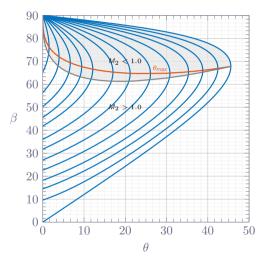
The θ - β -Mach Relation

A relation between:

- 1. flow deflection angle θ
- 2. shock angle β
- 3. upstream flow Mach number M_1

$$\tan(\boldsymbol{\theta}) = 2\cot(\boldsymbol{\beta}) \left(\frac{M_1^2 \sin^2(\boldsymbol{\beta}) - 1}{M_1^2(\gamma + \cos(2\boldsymbol{\beta})) + 2}\right)$$

Note! in general there are two solutions for a given M_1 (or none)



The θ - β -Mach Relation

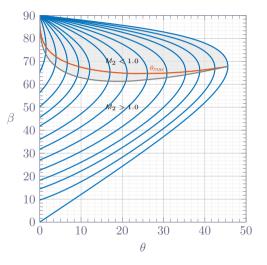
There is a small region where we may find weak shock solutions for which $M_2 < 1$

In most cases weak shock solutions have $M_2 > 1$

Strong shock solutions always have $M_2 < 1$

In practical situations, weak shock solutions are most common

Strong shock solution may appear in special situations due to high back pressure, which forces $M_2 < 1$

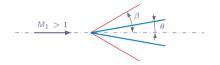


Note! In Chapter 3 we learned that the Mach number always reduces to subsonic values behind a shock. This is true for normal shocks (shocks that are normal to the flow direction). It is also true for oblique shocks if looking in the shock-normal direction.

The θ - β -M Relation - Wedge Flow

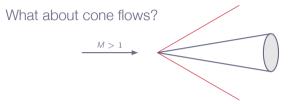
Wedge flow oblique shock analysis:

- 1. θ - β -M relation $\Rightarrow \beta$ for given M_1 and θ
- 2. β gives M_{n_1} according to: $M_{n_1} = M_1 \sin(\beta)$
- 3. normal shock formula with M_{n_1} instead of $M_1 \Rightarrow M_{n_2}$ (instead of M_2)
- 4. M_2 given by $M_2 = M_{n_2} / \sin(\beta \theta)$
- 5. normal shock formula with M_{n_1} instead of $M_1 \Rightarrow \rho_2/\rho_1, \rho_2/\rho_1$, etc
- 6. upstream conditions + ρ_2/ρ_1 , ρ_2/ρ_1 , etc \Rightarrow downstream conditions



Chapter 4.4 Supersonic Flow over Wedges and Cones

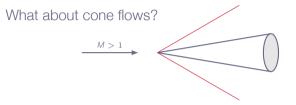
Supersonic Flow over Wedges and Cones



Similar to wedge flow, we do get a constant-strength shock wave, attached at the cone tip (or else a detached curved shock)

The attached shock is also cone-shaped

Supersonic Flow over Wedges and Cones

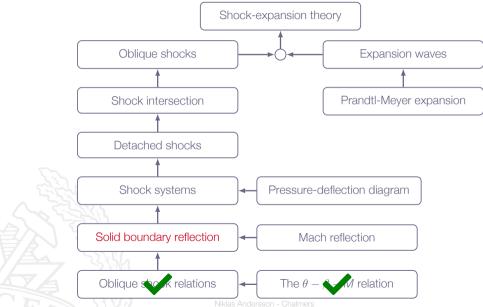


The flow condition immediately downstream of the shock is uniform

However, downstream of the shock the streamlines are curved and the flow varies in a more complex manner (3D relieving effect - as R increases there is more and more space around cone for the flow)

 β for cone shock is always smaller than that for wedge shock, if M_1 is the same Niklas Andersson - Chalmers 284/841

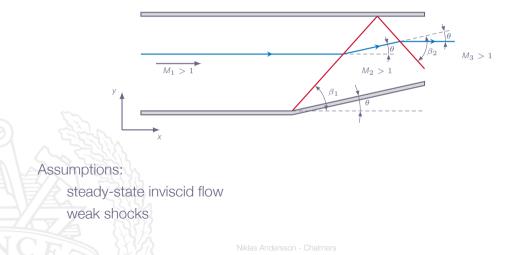
Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.6 Regular Reflection from a Solid Boundary

Shock Reflection

Regular reflection of oblique shock at solid wall $_{(see example 4.10)}$



Shock Reflection

first shock

upstream condition

 $M_1 > 1$ flow in *x*-direction

downstream condition

weak shock $\Rightarrow M_2 > 1$ deflection angle θ shock angle β_1 second shock

upstream condition

downstream of first shock

downstream condition

weak shock $\Rightarrow M_3 > 1$ deflection angle θ shock angle β_2

Shock Reflection

Solution:

first shock:

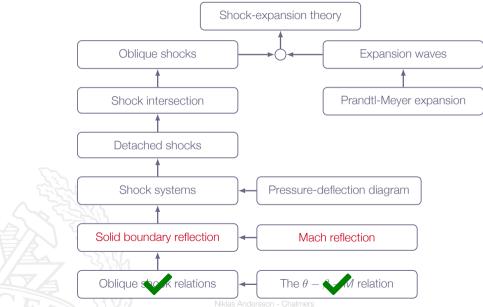
- 1. β_1 calculated from θ - β -M relation for specified θ and M_1 (weak solution)
- 2. flow condition 2 according to formulas for normal shocks $(M_{n_1} = M_1 \sin(\beta_1) \text{ and } M_{n_2} = M_2 \sin(\beta_1 \theta))$

second shock:

- $\Im_{\beta_2} \beta_2$ calculated from θ - β -M relation for specified θ and M_2 (weak solution)
- 2. flow condition 3 according to formulas for normal shocks ($M_{n_2} = M_2 \sin(\beta_2)$ and $M_{n_3} = M_3 \sin(\beta_2 \theta)$)

 \Rightarrow complete description of flow and shock waves (angle between upper wall and second shock: $\Phi = \beta_2 - \theta$)

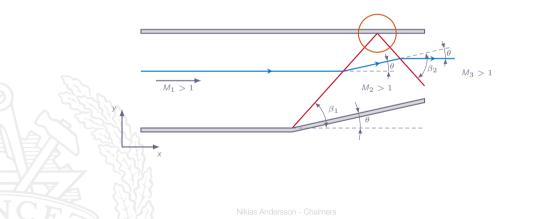
Roadmap - Oblique Shocks and Expansion Waves



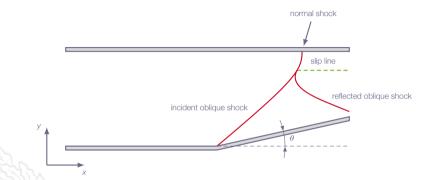
Chapter 4.11 Mach Reflection

Regular Shock Reflection

Regular reflection possible if both primary and reflected shocks are weak (see θ - β -M relation)

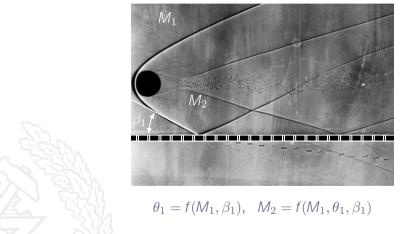


Mach Reflection



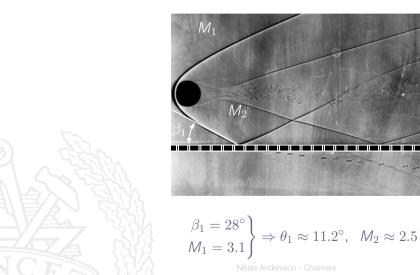
Mach reflection:

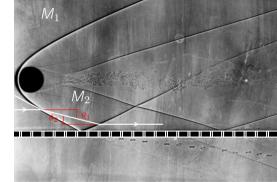
appears when regular reflection is not possible more complex flow than for a regular reflection no analytic solution - numerical solution necessary



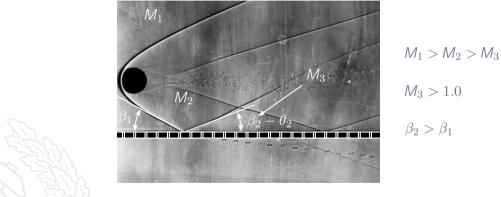
 $M_1 > M_2$

 $M_2 > 1.0$



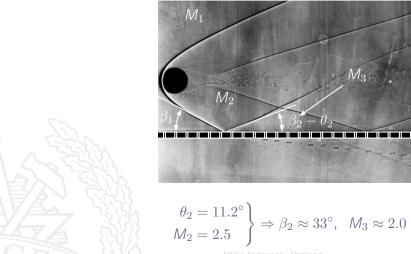


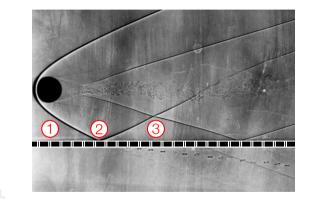
$$\theta_1 = \theta_2$$



$$\beta_2 = f(M_2, \theta_2), \quad M_3 = f(M_2, \theta_2, \beta_2)$$

Note! Shock wave reflection at solid wall is not specular

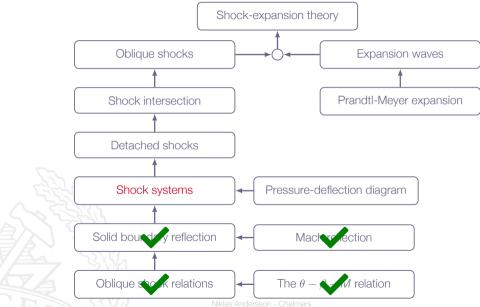




 $\frac{\rho_3}{\rho_1} = \frac{\rho_2}{\rho_1} \frac{\rho_3}{\rho_2} \approx 4.52$

 $\frac{T_3}{T_1} = \frac{T_2}{T_1} \frac{T_3}{T_2} \approx 1.57$

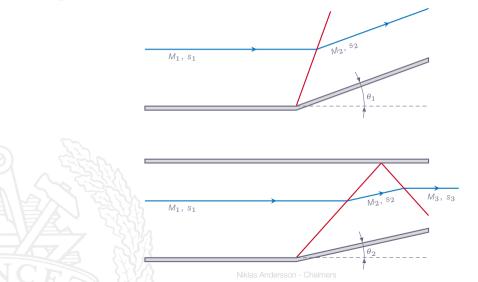
Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.7 Comments on Flow Through Multiple Shock Systems

Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:



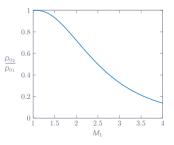
Flow Through Multiple Shock Systems

We may find θ_1 and θ_2 (for same M_1) which gives the same final Mach number

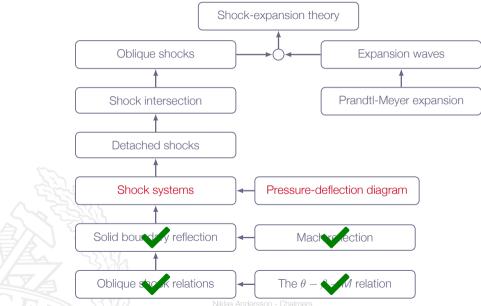
In such cases, the flow with multiple shocks has smaller losses

Explanation: entropy generation at a shock is a very non-linear function of shock strength

Note! the system of multiple shocks might very well result in a larger total flow deflection angle than the single-shock case

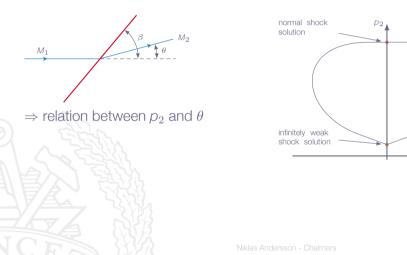


Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.8 Pressure Deflection Diagrams

Pressure Deflection Diagrams



strong shock

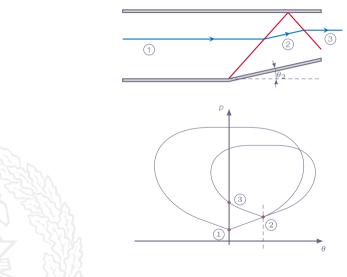
weak shock

θ

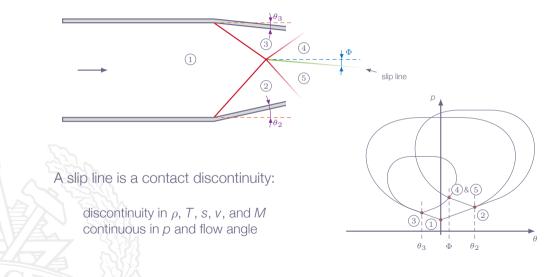
solution

solution

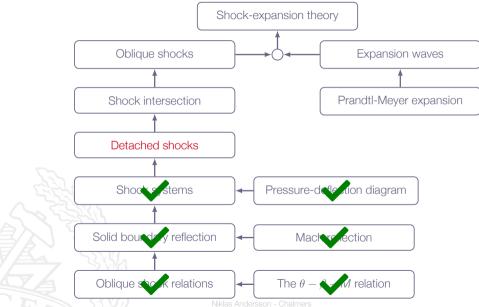
Pressure Deflection Diagrams - Shock Reflection



Pressure Deflection Diagrams - Shock Intersection

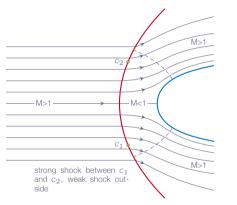


Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.12 Detached Shock Wave in Front of a Blunt Body

Detached Shocks



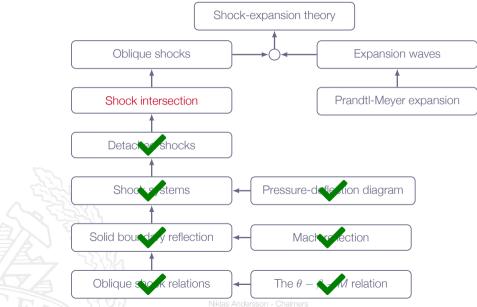
Niklas Andersson - Chalmers

As we move along the detached shock form the centerline, the shock will change in nature as

- 1. right in front of the body we will have a normal shock
- 2. strong oblique shock
- 3. weak oblique shock

4 far away from the body it will approach a **Mach wave**, *i.e.* an infinitely weak oblique shock

Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.10 Intersection of Shocks of the Same Family

Mach Waves (Repetition)

Oblique shock, angle β , flow deflection θ :

$$M_{n_2}^2 = \frac{M_{n_1}^2 + [2/(\gamma - 1)]}{[2\gamma/(\gamma - 1)]M_{n_1}^2 - 1}$$

where

 $M_{n_1} = M_1 \sin(\beta)$

and

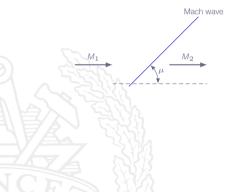
 $M_{n_2} = M_2 \sin(\beta - \theta)$

Now, let $M_{n_1} \rightarrow 1$ and $M_{n_2} \rightarrow 1 \Rightarrow$ infinitely weak shock! Such very weak shocks are called **Mach waves**

Niklas Andersson - Chalmers

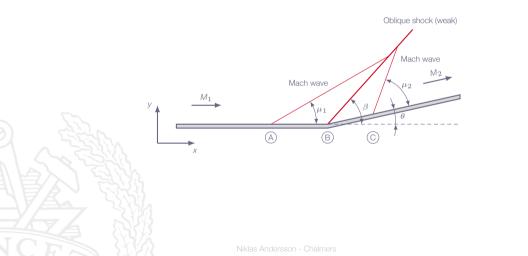
Mach Waves (Repetition)

$$M_{n_1} = 1 \Rightarrow M_1 \sin(\beta) = 1 \Rightarrow \beta = \arcsin(1/M_1)$$



 $M_2 \approx M_1$ $\theta \approx 0$ $\mu = \arcsin(1/M_1)$

Mach Waves



Mach Waves

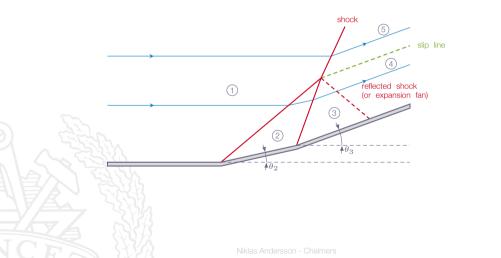
1. Mach wave at A: $\sin(\mu_1) = 1/M_1$

2. Mach wave at C: $\sin(\mu_2) = 1/M_2$

3. Oblique shock at B: $M_{n_1} = M_1 \sin(\beta) \Rightarrow \sin(\beta) = M_{n_1}/M_1$ Existence of shock requires $M_{n_1} > 1 \Rightarrow \beta > \mu_1$ Mach wave intercepts shock!

4. Also, $M_{n_2} = M_2 \sin(\beta - \theta) \Rightarrow \sin(\beta - \theta) = M_{n_2}/M_2$ For finite shock strength $M_{n_2} < 1 \Rightarrow (\beta - \theta) < \mu_2$ Again, Mach wave intercepts shock

Shock Intersection - Same Family



Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4 (through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5 (through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

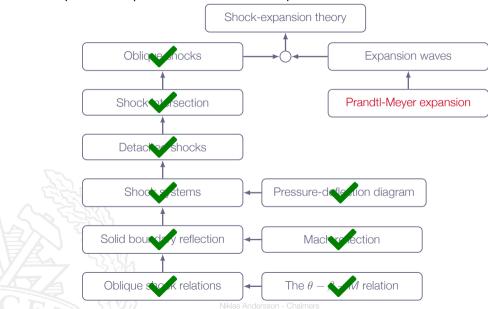
a.
$$p_4 = p_5$$

b. flow angle in 4 equals flow angle in 5

Solution may give either **reflected shock** or **expansion fan**, depending on actual conditions

A **slip line** usually appears, across which there is a discontinuity in all variables except *p* and flow angle

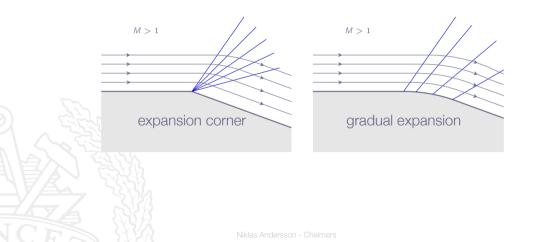
Roadmap - Oblique Shocks and Expansion Waves



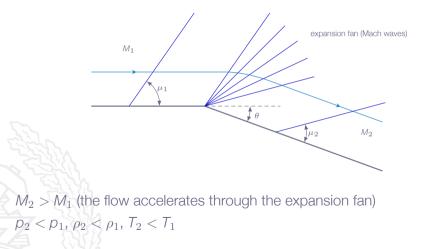
Chapter 4.14 Prandtl-Meyer Expansion Waves

Niklas Andersson - Chalmers

Expansion Waves



An expansion fan is a centered simple wave (also called Prandl-Meyer expansion)



Continuous expansion region

Infinite number of weak Mach waves

Streamlines through the expansion wave are smooth curved lines

ds = 0 for each Mach wave \Rightarrow the expansion process is **isentropic!**

upstream of expansion $M_1 > 1$, $\sin(\mu_1) = 1/M_1$

flow accelerates as it curves through the expansion fan

downstream of expansion $M_2 > M_1$, $\sin(\mu_2) = 1/M_2$

flow is isentropic \Rightarrow *s*, ρ_0 , T_0 , ρ_0 , a_0 , ... are constant along streamlines flow deflection: θ

It can be shown that $d\theta = \sqrt{M^2 - 1} \frac{dv}{v}$, where $v = |\mathbf{v}|$ (valid for all gases)

Integration gives

$$\int_{\theta_1}^{\theta_2} d\theta = \int_{M_1}^{M_2} \sqrt{M^2 - 1} \frac{dv}{v}$$

the term $\frac{dv}{v}$ needs to be expressed in terms of Mach number $v = Ma \Rightarrow \ln v = \ln M + \ln a \Rightarrow$ $\frac{dv}{v} = \frac{dM}{M} + \frac{da}{a}$

Niklas Andersson - Chalmers

Calorically perfect gas and adiabatic flow gives

$$\frac{T_o}{T} = 1 + \frac{1}{2}(\gamma - 1)M^2$$

$$\left\{a = \sqrt{\gamma RT}, \ a_o = \sqrt{\gamma RT_o}\right\} \Rightarrow \frac{T_o}{T} = \left(\frac{a_o}{a}\right)^2 \Rightarrow$$
$$\left(\frac{a_o}{a}\right)^2 = 1 + \frac{1}{2}(\gamma - 1)M^2 \Leftrightarrow a = a_o \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{-1/2}$$

Differentiation gives:

$$da = a_{0} \left[1 + \frac{1}{2} (\gamma - 1) M^{2} \right]^{-3/2} \left(-\frac{1}{2} \right) (\gamma - 1) M dM$$
or
$$da = a \left[1 + \frac{1}{2} (\gamma - 1) M^{2} \right]^{-1} \left(-\frac{1}{2} \right) (\gamma - 1) M dM$$
which gives
$$\frac{dv}{v} = \frac{dM}{M} + \frac{da}{a} = \frac{dM}{M} + \frac{-\frac{1}{2} (\gamma - 1) M dM}{1 + \frac{1}{2} (\gamma - 1) M^{2}} = \frac{1}{1 + \frac{1}{2} (\gamma - 1) M^{2}} \frac{dM}{M}$$

Thus,

$$\int_{\theta_1}^{\theta_2} d\theta = \theta_2 - \theta_1 = \int_{M_1}^{M_2} \frac{\sqrt{M^2 - 1}}{1 + \frac{1}{2}(\gamma - 1)M^2} \frac{dM}{M} = \nu(M_2) - \nu(M_1)$$

where

$$\nu(M) = \int \frac{\sqrt{M^2 - 1}}{1 + \frac{1}{2}(\gamma - 1)M^2} \frac{dM}{M}$$

is the so-called Prandtl-Meyer function

Performing the integration gives:

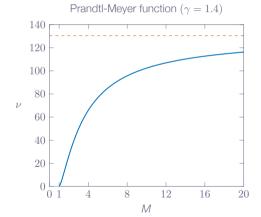
$$\nu(M) = \sqrt{\frac{\gamma+1}{\gamma-1}} \tan^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}(M^2-1)} - \tan^{-1} \sqrt{M^2-1}$$

We can now calculate the deflection angle $\Delta \theta$ as:

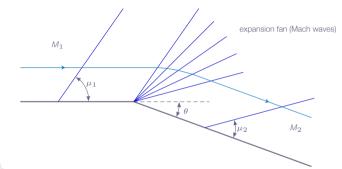
$$\Delta \theta = \nu(M_2) - \nu(M_1)$$

$$\nu(M) = \sqrt{\frac{\gamma+1}{\gamma-1}} \tan^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}} (M^2 - 1) - \tan^{-1} \sqrt{M^2 - 1}$$

 $\nu(M)|_{M\to\infty} = 130.45^{\circ}$



Example:



- 1. $heta_1=0, M_1>1$ is given
- 2. θ_2 is given
- 3. problem: find M_2 such that $\theta_2 = \nu(M_2) \nu(M_1)$
- 4. $\nu(M)$ for $\gamma = 1.4$ can be found in Table A.5

Since the flow is isentropic, the usual isentropic relations apply:

(p_o and T_o are constant)

Calorically perfect gas:

$$\frac{\rho_o}{\rho} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{T_o}{T} = \left[1 + \frac{1}{2}(\gamma - 1)M^2\right]$$

since $p_{o_1} = p_{o_2}$ and $T_{o_1} = T_{o_2}$

$$\frac{\rho_1}{\rho_2} = \frac{\rho_{o_2}}{\rho_{o_1}} \frac{\rho_1}{\rho_2} = \left(\frac{\rho_{o_2}}{\rho_2}\right) / \left(\frac{\rho_{o_1}}{\rho_1}\right) = \left[\frac{1 + \frac{1}{2}(\gamma - 1)M_2^2}{1 + \frac{1}{2}(\gamma - 1)M_1^2}\right]^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{T_1}{T_2} = \frac{T_{o_2}}{T_{o_1}} \frac{T_1}{T_2} = \left(\frac{T_{o_2}}{T_2}\right) / \left(\frac{T_{o_1}}{T_1}\right) = \left[\frac{1 + \frac{1}{2}(\gamma - 1)M_2^2}{1 + \frac{1}{2}(\gamma - 1)M_1^2}\right]$$

Alternative solution:

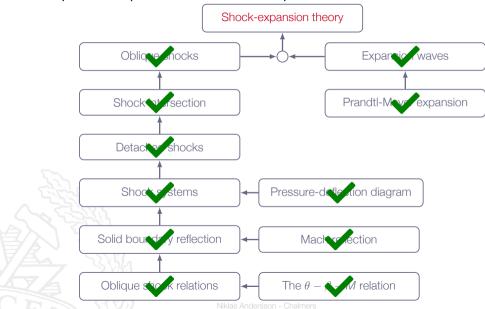
1. determine
$$M_2$$
 from $\theta_2 = \nu(M_2) - \nu(M_1)$

2. compute p_{o_1} and T_{o_1} from p_1 , T_1 , and M_1 (or use Table A.1)

3. set
$$p_{o_2} = p_{o_1}$$
 and $T_{o_2} = T_{o_1}$

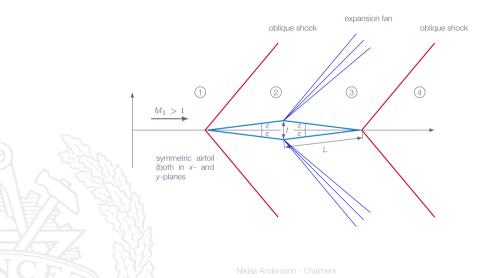
4. compute p_2 and T_2 from p_{o_2} , T_{o_2} , and M_2 (or use Table A.1)

Roadmap - Oblique Shocks and Expansion Waves



Chapter 4.15 Shock Expansion Theory

Diamond-Wedge Airfoil



- 1-2 standard oblique shock calculation for flow deflection angle ε and upstream Mach number M_1
- 2-3 Prandtl-Meyer expansion for flow deflection angle 2ε and upstream Mach number M_2

3-4 standard oblique shock calculation for flow deflection angle ε and upstream Mach number M_3

symmetric airfoil zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field zero lift force on airfoil

Diamond-Wedge Airfoil

Drag force:

$$D = - \oint_{\partial \Omega} \rho(\mathbf{n} \cdot \mathbf{e}_{\mathsf{X}}) d\mathsf{S}$$

- $\partial \Omega$ airfoil surface
- *p* surface pressure
- n outward facing unit normal vector
- \mathbf{e}_{x} unit vector in *x*-direction

Since conditions 2 and 3 are constant in their respective regions, we obtain:

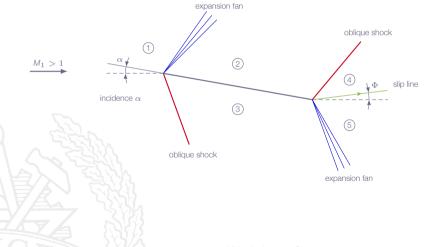
$$D = 2 [p_2 L \sin(\varepsilon) - p_3 L \sin(\varepsilon)] = 2(p_2 - p_3) \frac{t}{2} = (p_2 - p_3)t$$

For supersonic free stream ($M_1 > 1$), with shocks and expansion fans according to figure we will always find that $p_2 > p_3$

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)

Flat-Plate Airfoil



It seems that the angle of the flow downstream of the flat plate would be different than the angle of the flow upstream of the plate. Can that really be correct?!

It seems that the angle of the flow downstream of the flat plate would be different than the angle of the flow upstream of the plate. Can that really be correct?!

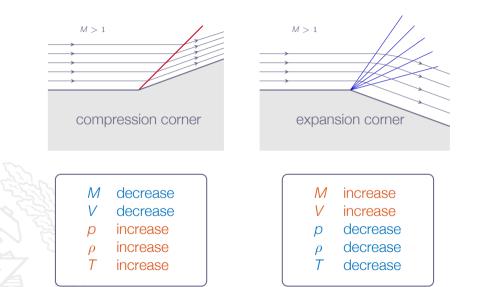
For the flow in the vicinity of the plate this is the correct picture. Further out from the plate, shock and expansion waves will interact and eventually sort the missmatch of flow angles out 1. Flow states 4 and 5 must satisfy:

 $p_4 = p_5$

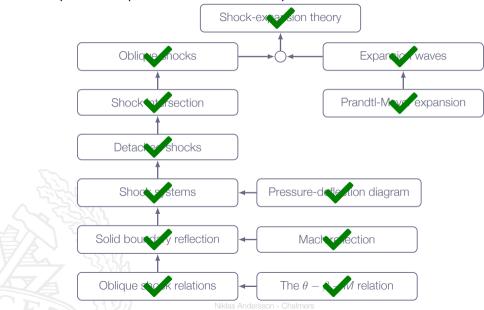
flow direction 4 equals flow direction 5 (Φ)

- 2. Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust themselves to comply with the requirements
- 3. For calculation of lift and drag only states 2 and 3 are needed
- 4. States 2 and 3 can be obtained using standard oblique shock formulas and Prandtl-Meyer expansion

Oblique Shocks and Expansion Waves

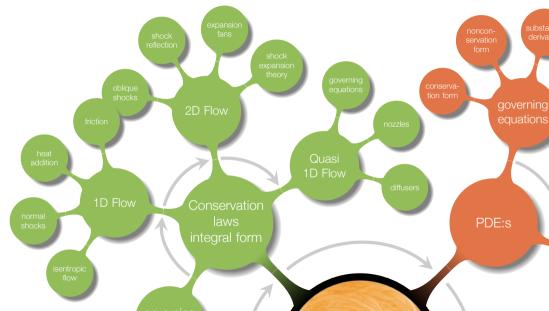


Roadmap - Oblique Shocks and Expansion Waves



Chapter 5 Quasi-One-Dimensional Flow

Overview

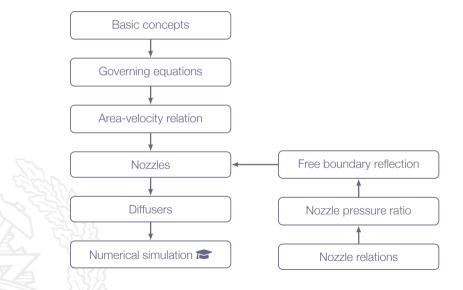


Learning Outcomes

- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases
- 7 Explain why entropy is important for flow discontinuities
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - i detached blunt body shocks, nozzle flows
 - Solve engineering problems involving the above-mentioned phenomena (8a-8k)

what does quasi-1D mean? either the flow is 1D or not, or?

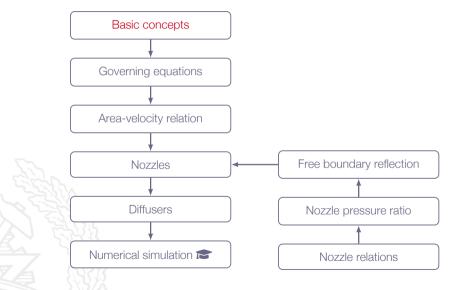
Roadmap - Quasi-One-Dimensional Flow



By extending the one-dimensional theory to quasi-one-dimensional, we can study important applications such as nozzles and diffusers

Even though the flow in nozzles and diffusers are in essence three dimensional we will be able to establish important relations using the quasi-one-dimensional approach

Roadmap - Quasi-One-Dimensional Flow



Quasi-One-Dimensional Flow

Chapter 3

overall assumption

one-dimensional flow steady state constant cross-section area

applications

normal shock 1D flow with heat addition 1D flow with friction

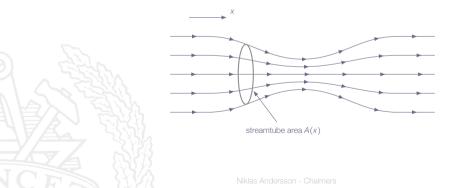
Chapter 4

overall assumption

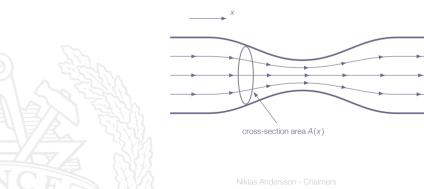
two-dimensional flow steady state uniform freestream

applications

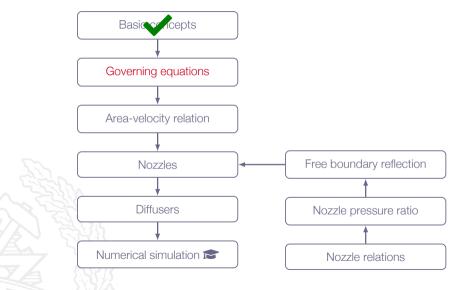
oblique shocks expansion fans shock-expansion theory Extension of one-dimensional flow to allow **variations in streamtube area** (steady-state flow assumption still applied)



Example: tube with variable cross-section area



Roadmap - Quasi-One-Dimensional Flow

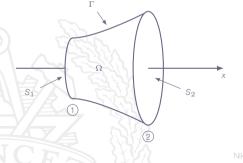


Chapter 5.2 Governing Equations

Governing Equations

Introduce **cross-section-averaged flow quantities** \Rightarrow all quantities depend on *x* only

$$A = A(x), \ \rho = \rho(x), \ u = u(x), \ \rho = \rho(x), \ \dots$$

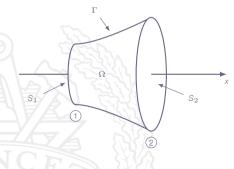


- S_1 left boundary (area A_1)
- S_2 right boundary (area A_2)
- Γ perimeter boundary

 $\partial \Omega = S_1 \cup \Gamma \cup S_2$

Governing Equations - Assumptions

- 1. Inviscid flow (no boundary layers)
- 2. Steady-state flow (no unsteady effects)
- 3. No flow through Γ (control volume aligned with streamlines)



Governing Equations - Conservation of Mass

$$\underbrace{\frac{d}{dt}\iiint \rho d\mathscr{V}}_{=0} + \underbrace{\bigoplus}_{-\rho_1 u_1 A_1 + \rho_2 u_2 A_2} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2$$

Governing Equations - Conservation of Momentum

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = 0}_{=0} \\
\bigoplus_{=0} \rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} dS = -\rho_1 u_1^2 A_1 + \rho_2 u_2^2 A_2 \\
\bigoplus_{\partial \Omega} \rho \mathbf{n} dS = -\rho_1 A_1 + \rho_2 A_2 - \int_{A_1}^{A_2} \rho dA \\
\left(\rho_1 u_1^2 + \rho_1) A_1 + \int_{A_1}^{A_2} \rho dA = (\rho_2 u_2^2 + \rho_2) A_2
\end{aligned}$$

Governing Equations - Conservation of Energy

$$\underbrace{\frac{d}{dt} \iiint \rho \mathbf{e}_o d\mathcal{V}}_{=0} + \bigoplus_{\partial \Omega} \left[\rho h_o (\mathbf{v} \cdot \mathbf{n}) \right] d\mathbf{S} = 0$$

which gives

 $\rho_1 u_1 A_1 h_{o_1} = \rho_2 u_2 A_2 h_{o_2}$

from continuity we have that $ho_1 u_1 A_1 =
ho_2 u_2 A_2 \Rightarrow$

$$h_{o_1} = h_{o_2}$$

Governing Equations - Summary

$$\rho_{1}u_{1}A_{1} = \rho_{2}u_{2}A_{2}$$

$$(\rho_{1}u_{1}^{2} + \rho_{1})A_{1} + \int_{A_{1}}^{A_{2}} \rho dA = (\rho_{2}u_{2}^{2} + \rho_{2})A_{2}$$

$$h_{0_{1}} = h_{0_{2}}$$
Niklas Andersson - Chalmers

Continuity equation:

$$\rho_1 u_1 A_1 = \rho_2 u_2 A_2 \text{ or } \rho u A = C$$

where *c* is a constant \Rightarrow

$$d(\rho u A) = 0$$

Momentum equation:

$$(\rho_{1}u_{1}^{2} + \rho_{1})A_{1} + \int_{A_{1}}^{A_{2}} pdA = (\rho_{2}u_{2}^{2} + \rho_{2})A_{2} \Rightarrow$$

$$d [(\rho u^{2} + \rho)A] = pdA \Rightarrow$$

$$d(\rho u^{2}A) + d(\rho A) = pdA \Rightarrow$$

$$u \underbrace{d(\rho uA)}_{=0} + \rho uAdu + Adp + pdA = pdA \Rightarrow$$

$$\rho uAdu + Adp = 0 \Rightarrow$$

$$dp = -\rho udu$$

Niklas Andersson - Chalmers

(Euler's equation)

Energy equation:

 $h_{o_1} = h_{o_2} \Rightarrow dh_o = 0$ $h_0 = h + \frac{1}{2}u^2 \Rightarrow$

$$\left[dh + udu = 0 \right]$$

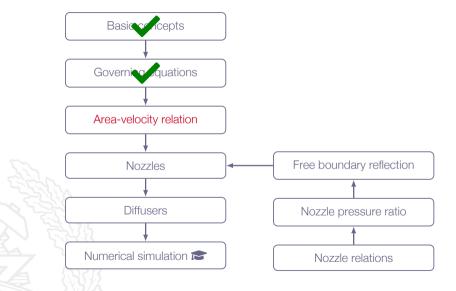
Summary (valid for all gases):

$$d(\rho uA) = 0$$
$$dp = -\rho udu$$
$$dh + udu = 0$$

Assumptions:

- 1. quasi-one-dimensional flow
- 2. inviscid flow
- 3. steady-state flow

Roadmap - Quasi-One-Dimensional Flow



Chapter 5.3 Area-Velocity Relation

Niklas Andersson - Chalmers

$$d(\rho uA) = 0 \Rightarrow uAd\rho + \rho Adu + \rho udA = 0$$

divide by ρuA gives

$$\frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

Euler's equation:

$$dp = -\rho u du \Rightarrow \frac{dp}{\rho} = \frac{dp}{d\rho} \frac{d\rho}{\rho} = -u du$$

Assuming adiabatic, reversible (isentropic) process and the definition of speed of sound gives

$$\frac{d\rho}{d\rho} = \left(\frac{\partial\rho}{\partial\rho}\right)_{s} = a^{2} \Rightarrow a^{2}\frac{d\rho}{\rho} = -udu \Rightarrow \frac{d\rho}{\rho} = -M^{2}\frac{du}{u}$$

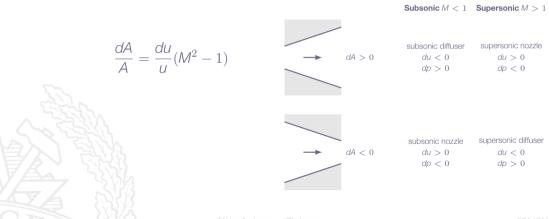
Now, inserting the expression for $\frac{d\rho}{\rho}$ in the rewritten continuity equation gives

$$(1-M^2)\frac{du}{u} + \frac{dA}{A} = 0$$

or

$\frac{dA}{A} = (M^2 - 1)\frac{du}{u}$

which is the area-velocity relation



klas Andersson - Chalmers

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

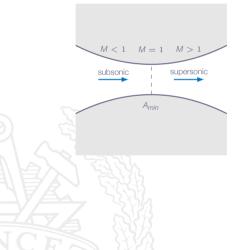
What happens when M = 1?

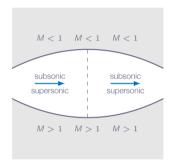
$$\frac{du}{u}(M^2 - 1) = \frac{dA}{A}$$

What happens when M = 1?

$$M = 1$$
 when $dA = 0$

maximum or minimum area





A converging-diverging nozzle is the **only possibility** to obtain supersonic flow!

A supersonic flow entering a convergent-divergent nozzle will slow down and, if the conditions are right, become sonic at the throat - hard to obtain a shock-free flow in this case

 $M \to 0 \Rightarrow \frac{dA}{A} = -\frac{du}{u}$ $\frac{dA}{A} + \frac{du}{u} = 0 \Rightarrow$ $\frac{1}{Au} \left[udA + Adu \right] = 0 \Rightarrow$

 $d(uA) = 0 \Rightarrow Au = c$

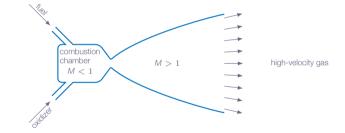
where c is a constant

Niklas Andersson - Chalmers

Note 1 The area-velocity relation is only valid for isentropic flow not valid across a compression shock (due to entropy increase)

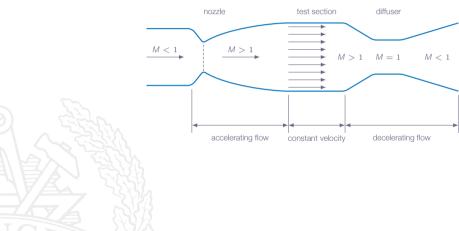
Note 2 The area-velocity relation is valid for all gases

Area-Velocity Relation Examples - Rocket Engine

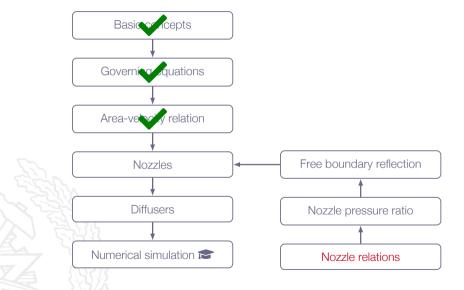


High-temperature, high-pressure gas in combustion chamber expand through the nozzle to very high velocities. Typical figures for a LH²/LOx rocket engine: $p_o \sim 120$ [bar], $T_o \sim 3600$ [K], exit velocity ~ 4000 [m/s]

Area-Velocity Relation Examples - Wind Tunnel



Roadmap - Quasi-One-Dimensional Flow



Chapter 5.4 Nozzles

Niklas Andersson - Chalmers

time for rocket science!

Niklas Andersson - Chalmers

Calorically perfect gas assumed:

From Chapter 3:

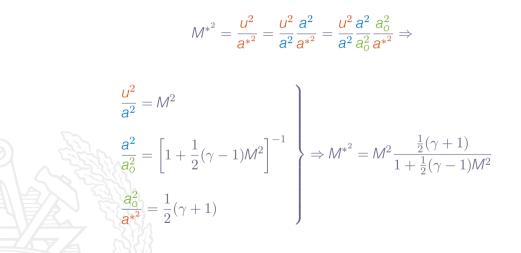
$$\frac{T_o}{T} = \left(\frac{a_o}{a}\right)^2 = 1 + \frac{1}{2}(\gamma - 1)M^2$$
$$\frac{p_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{\rho_o}{\rho} = \left(\frac{T_o}{T}\right)^{\frac{1}{\gamma - 1}}$$

Critical conditions:

$$\frac{T_o}{T^*} = \left(\frac{a_o}{a^*}\right)^2 = \frac{1}{2}(\gamma + 1)$$

$$\frac{\rho_o}{\rho^*} = \left(\frac{T_o}{T^*}\right)^{\frac{\gamma}{\gamma-1}}$$

$$\frac{\rho_{\rm O}}{\rho^*} = \left(\frac{T_{\rm O}}{T^*}\right)^{\frac{1}{\gamma-1}}$$



For nozzle flow we have

$$\rho UA = C$$

where *c* is a constant and therefore

$$\rho^* u^* A^* = \rho u A$$

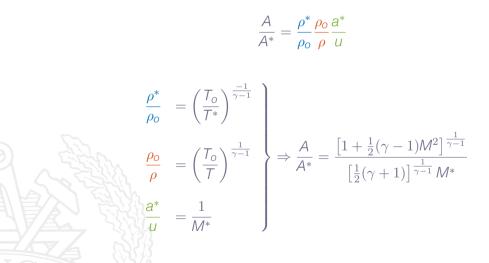
or, since at critical conditions $u^* = a^*$

$$\rho^* a^* A^* = \rho u A$$

which gives

$$\frac{A}{A^*} = \frac{\rho^*}{\rho} \frac{a^*}{u} = \frac{\rho^*}{\rho_0} \frac{\rho_0}{\rho} \frac{a^*}{u}$$

Niklas Andersson - Chalmers



$$\begin{pmatrix} \frac{A}{A^*} \end{pmatrix}^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{2}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{2}{\gamma - 1}}M^{*2}} \\ M^{*^2} = M^2 \frac{\frac{1}{2}(\gamma + 1)}{1 + \frac{1}{2}(\gamma - 1)M^2} \end{cases}$$

$$\left(\frac{A}{A^*}\right)^2 = \frac{\left[1 + \frac{1}{2}(\gamma - 1)M^2\right]^{\frac{\gamma + 1}{\gamma - 1}}}{\left[\frac{1}{2}(\gamma + 1)\right]^{\frac{\gamma + 1}{\gamma - 1}}M^2}$$

which is the area-Mach-number relation

Niklas Andersson - Chalmers

391/841

$$\left(\frac{A}{A^*}\right)^2 = \frac{1}{M^2} \left[\frac{2 + (\gamma - 1)M^2}{\gamma + 1}\right]^{(\gamma + 1)/(\gamma - 1)}$$
Note! $\frac{A}{A^*} = \frac{\rho^* u^*}{\rho u}$

$$M$$

$$I_0^0$$

$$I_0^{-1}$$

$$I_0^{$$

9 10

Note 1 Critical conditions used here are those corresponding to **isentropic flow**. Do not confuse these with the conditions in the cases of one-dimensional flow with heat addition and friction

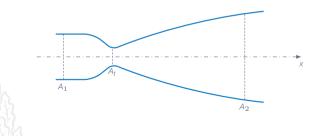
Note 2 For quasi-one-dimensional flow, assuming inviscid steady-state flow, both total and critical conditions are constant along streamlines unless shocks are present (then the flow is no longer isentropic)

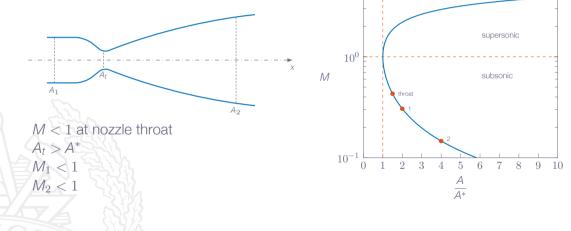
Note 3 The derived area-Mach-number relation is only valid for calorically perfect gas and for isentropic flow. It is not valid across a compression shock

Nozzle Flow

Assumptions:

- 1. inviscid
- 2. steady-state
- 3. quasi-one-dimensional
- 4. calorically perfect gas





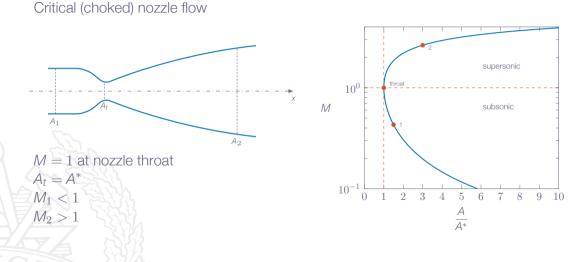
Subcritical nozzle flow (non-choked and subsonic \Rightarrow isentropic): A^* is constant throughout the nozzle ($A^* < A_t$) M_1 given by the subsonic solution of

$$\left(\frac{A_1}{A^*}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_1^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

 M_2 given by the subsonic solution of

$$\left(\frac{A_2}{A^*}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_2^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow both upstream and downstream of the throat



Supercritical nozzle flow (choked flow without shocks \Rightarrow isentropic): A^* is constant throughout the nozzle ($A^* = A_t$) M_1 given by the subsonic solution of

$$\left(\frac{A_1}{A^*}\right)^2 = \left(\frac{A_1}{A_t}\right)^2 = \frac{1}{M_1^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_1^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

 M_2 given by the supersonic solution of

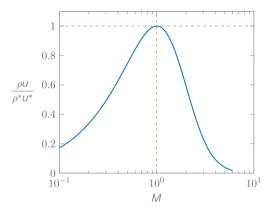
$$\left(\frac{A_2}{A^*}\right)^2 = \left(\frac{A_2}{A_t}\right)^2 = \frac{1}{M_2^2} \left[\frac{2}{\gamma+1}(1+\frac{1}{2}(\gamma-1)M_2^2)\right]^{\frac{\gamma+1}{\gamma-1}}$$

M is uniquely determined everywhere in the nozzle, with subsonic flow upstream of the throat and supersonic flow downstream of the throat

$$\rho U A = \rho^* A^* U^* \Rightarrow \frac{A^*}{A} = \frac{\rho U}{\rho^* U^*}$$

From the area-Mach-number relation

$$\frac{A^*}{A} = \begin{cases} < 1 & \text{if } M < 1\\ 1 & \text{if } M = 1\\ < 1 & \text{if } M > 1 \end{cases}$$

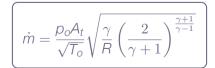


The maximum possible massflow through a duct is achieved when its throat reaches sonic conditions

For a choked nozzle:

$$\dot{m} = \rho_1 u_1 A_1 = \rho^* u^* A^* = \rho_2 u_2 A_2$$

$$\rho^* = \frac{\rho^*}{\rho_0} \rho_0 = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \frac{p_0}{RT_0} \\
 a^* = \frac{a^*}{a_0} a_0 = \left(\frac{2}{\gamma+1}\right)^{\frac{1}{2}} \sqrt{\gamma RT_0}
 \right\} \Rightarrow$$



$$\boxed{\dot{m} = \frac{p_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}}$$

The **maximum mass flow** that can be sustained through the nozzle Valid for quasi-one-dimensional, inviscid, steady-state flow and calorically perfect gas

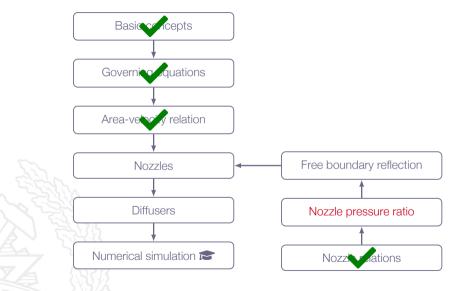
Note! The massflow formula is valid even if there are shocks present downstream of throat!

$$\vec{m} = \frac{\rho_o A_t}{\sqrt{T_o}} \sqrt{\frac{\gamma}{R} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

How can we increase mass flow through nozzle?

- 1. increase p_o
- 2. decrease T_o
- 3. increase A_t
- 4. decrease R (increase molecular weight, without changing γ)

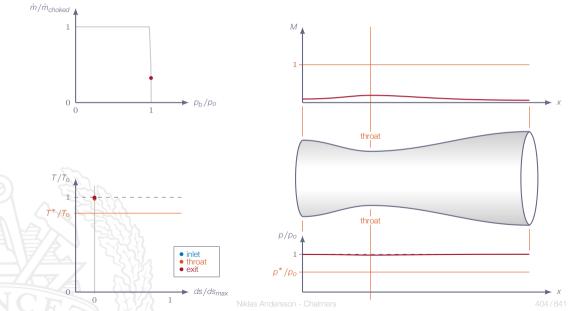
Roadmap - Quasi-One-Dimensional Flow

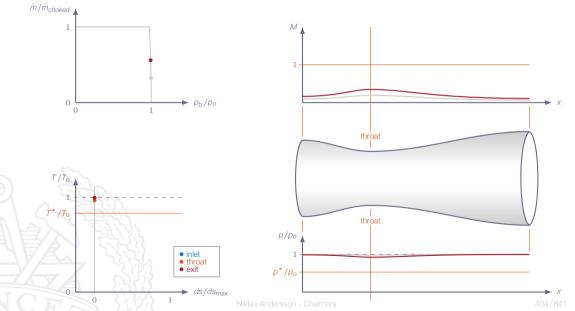


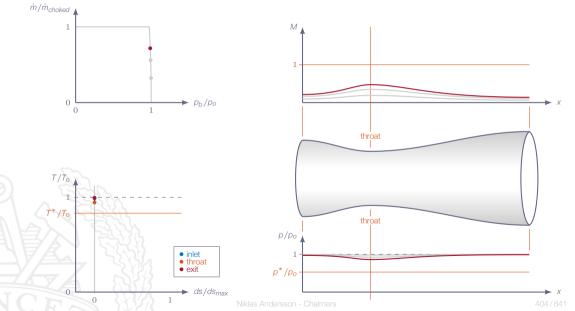


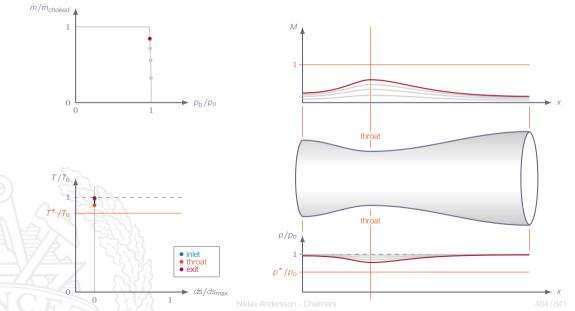
$\begin{array}{c} A(x) \\ A_t \\ \rho_o \\ \rho_b \end{array}$	area function $\min\{A(x)\}$ inlet total pressure outlet static pressure (ambient pressure)
p_o/p_b	pressure ratio

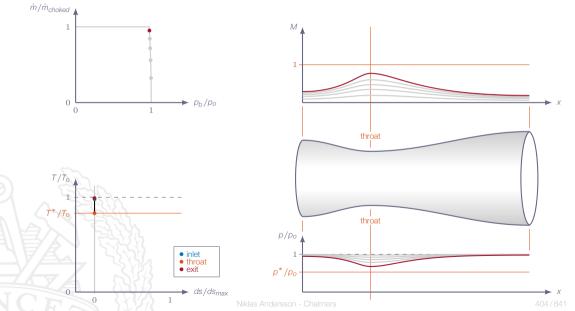
Niklas Andersson - Chalmers

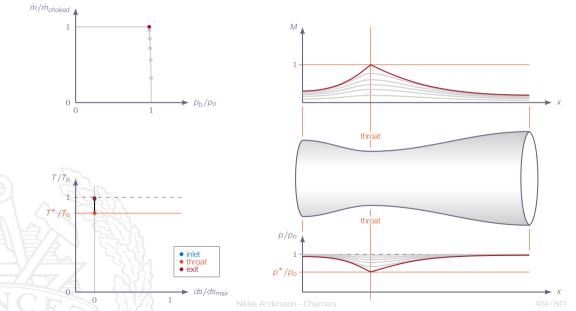


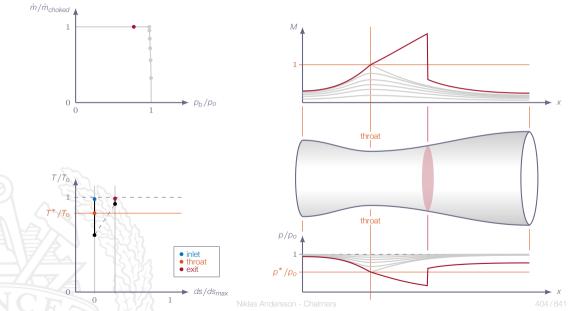


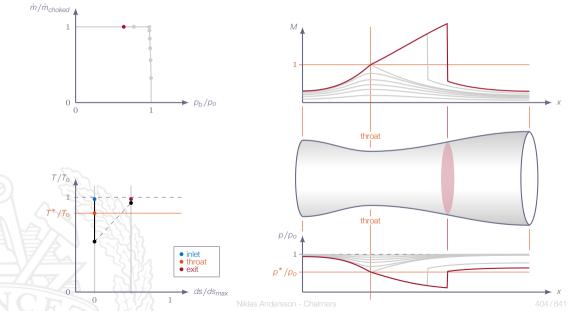


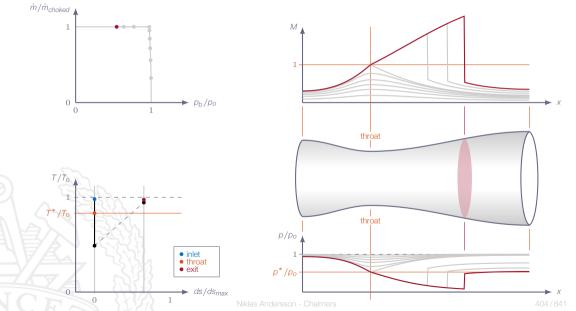


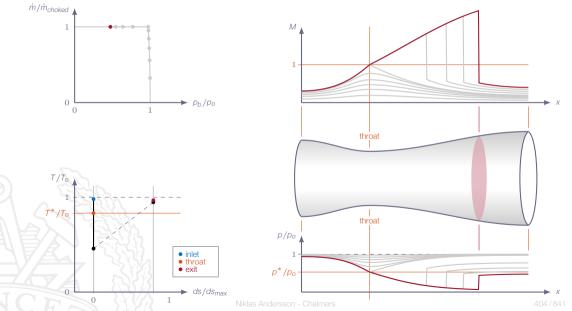


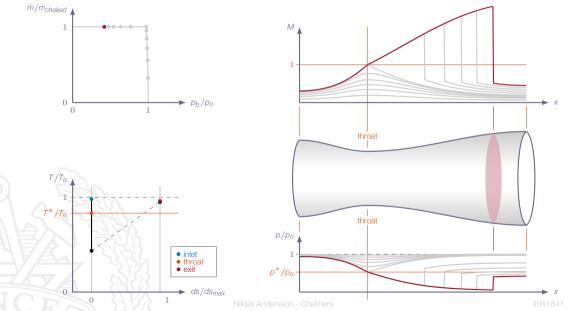




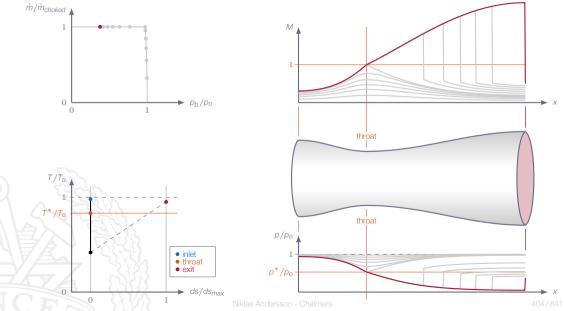




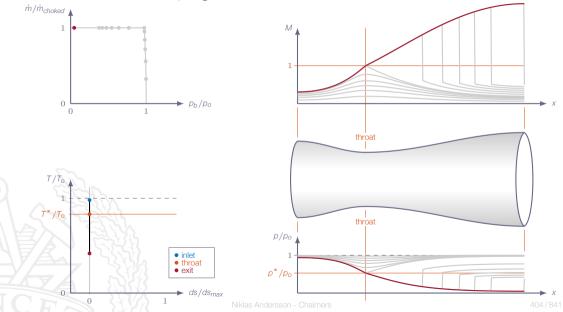




Nozzle Flow with Varying Pressure Ratio



Nozzle Flow with Varying Pressure Ratio

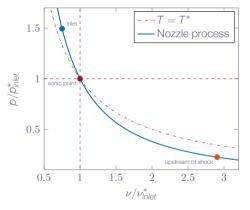


Nozzle Flow with Internal Shock

The nozzle flow process follows an isentrope up to the location of the internal normal shock

Sonic conditions at the nozzle throat

Nozzle flow with shock



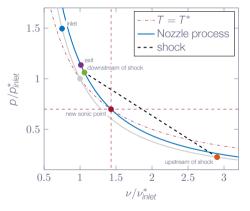
Nozzle Flow with Internal Shock

The normal shock moves the process line to another isentrope

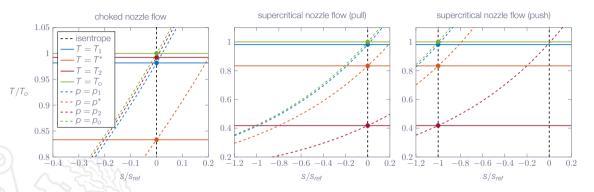
 T_o and thus T^* is not affected by the shock

 p_o decreases over the shock which means that p^* decreases and ν^* increases

Nozzle flow with shock

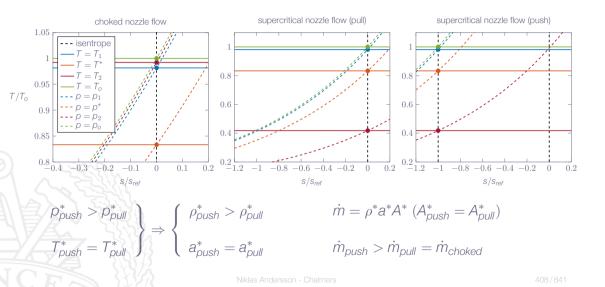


Nozzle Operation - Pull vs. Push

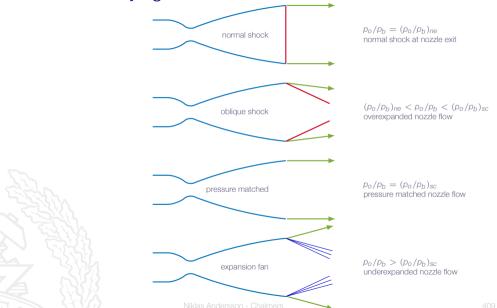


Nozzle Pressure Ratio $NPR = p_o/p_b$ Pull - increase NPR by reducing the back pressure (p_b) Push - increase NPR by increasing the inlet total pressure (p_o)

Nozzle Operation - Pull vs. Push



Nozzle Flow with Varying Pressure Ratio - Downstream Flow



Nozzle Flow with Varying Pressure Ratio (Summary)

 $(\rho_o/\rho_b) < (\rho_o/\rho_b)_{cr}$

subsonic, isentropic flow throughout the nozzle

the mass flow changes with pb, i.e. the flow is not choked

 $(p_o/p_b) = (p_o/p_b)_{cr}$

sonic flow (M = 1.0) at the throat

the flow will flip to the supersonic solution downstream of the throat, for an infinitesimal increase of (ρ_o/ρ_b)

 $(p_o/p_b)_{cr} < (p_o/p_b) < (p_o/p_b)_{ne}$

the flow is **choked** (fixed mass flow)

a **normal shock** will appear downstream of the throat, with strength and position depending on (p_o/p_b)

Nozzle Flow with Varying Pressure Ratio (Summary)

 $(\rho_o/\rho_b) = (\rho_o/\rho_b)_{ne}$

normal shock at the nozzle exit

supersonic, isentropic flow from throat to exit

 $(p_o/p_b)_{ne} < (p_o/p_b) < (p_o/p_b)_{sc}$

overexpanded flow (supersonic, isentropic flow from throat to exit)

oblique shocks formed downstream of the nozzle exit

 $(p_o/p_b) = (p_o/p_b)_{sc}$

supercritical flow (pressure matched)

supersonic, isentropic flow from the throat and downstream of the nozzle exit

 $(p_o/p_b)_{sc} < (p_o/p_b)$

 $\label{eq:underexpanded} \textbf{flow} (supersonic, is entropic flow from throat to exit)$

expansion fans formed downstream of the nozzle exit

Nozzle Flow with Varying Pressure Ratio - Q1D Limitations

Quasi-one-dimensional theory

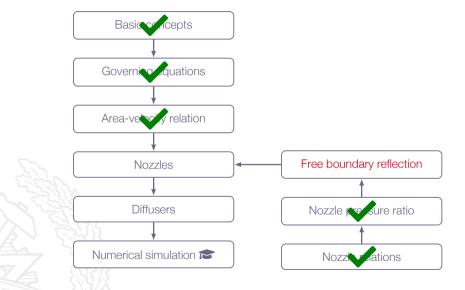
When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_b) , *i.e.* lowering the back pressure), it disappears completely.

The flow through the nozzle is then **shock free** (and thus also **isentropic** since we neglect viscosity).

Three-dimensional nozzle flow

When the interior normal shock is "pushed out" through the exit (by increasing (p_o/p_b)), an **oblique shock** is formed outside of the nozzle exit. For the exact **supercritical** value of (p_o/p_b) this oblique shock disappears. For (p_o/p_b) above the supercritical value an **expansion fan** is formed at the nozzle exit.

Roadmap - Quasi-One-Dimensional Flow

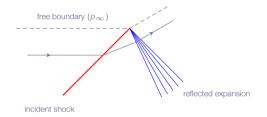


Chapter 5.6 Wave Reflection From a Free Boundary

Free-Boundary Reflection

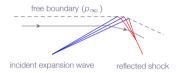
Free boundary - shear layer, interface between different fluids, etc

Free-Boundary Reflection - Shock Reflection



No discontinuity in pressure at the free boundary possible Incident **shock reflects as expansion** waves at the free boundary Reflection results in **net turning** of the flow

Free-Boundary Reflection - Expansion Wave Reflection

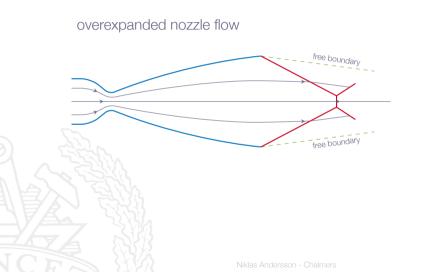


No discontinuity in pressure at the free boundary possible

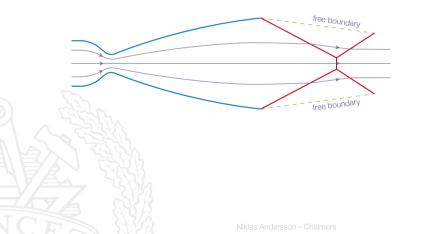
Incident **expansion** waves **reflects as compression** waves at the free boundary

Finite compression waves coalesces into a shock

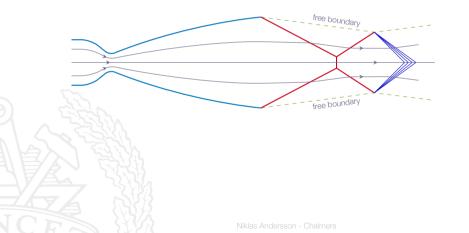
Reflection results in **net turning** of the flow



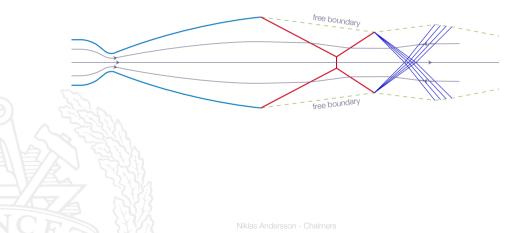
shock reflection at jet centerline



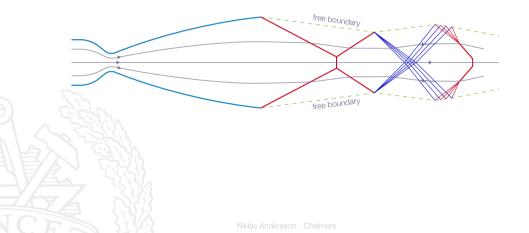
shock reflection at free boundary



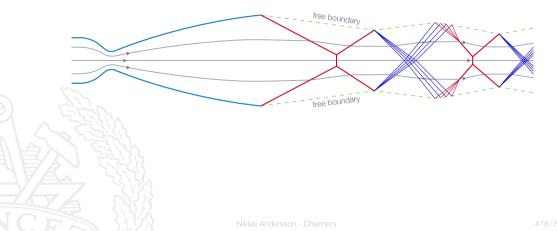
expansion wave reflection at jet centerline

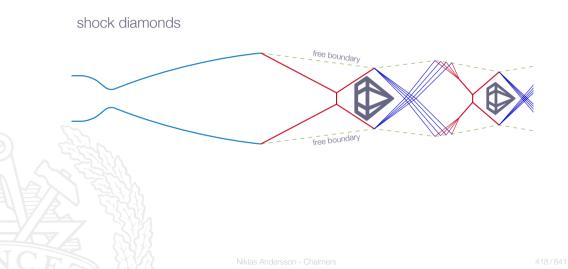


expansion wave reflection at free boundary



repeated shock/expansion system





Free-Boundary Reflection - Summary

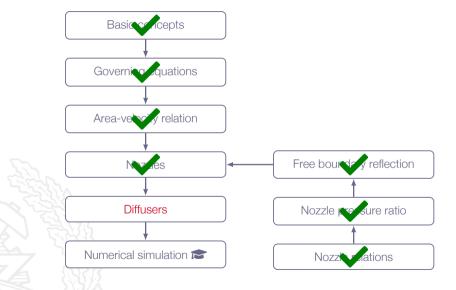
Solid-wall reflection

Compression waves reflects as compression waves Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves Expansion waves reflects as compression waves

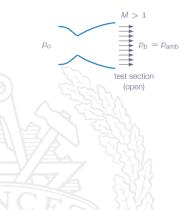
Roadmap - Quasi-One-Dimensional Flow



Chapter 5.5 Diffusers

wind tunnel with supersonic test section

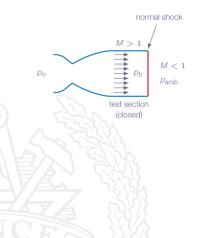
open test section



 $p_o/p_b = (p_o/p_b)_{sc}$ M = 3.0 in test section $\Rightarrow p_o/p_b = 36.7$!!!

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

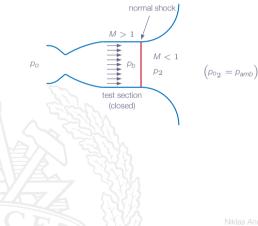


 $p_o/p_{amb} = (p_o/p_b)(p_b/p_{amb}) < (p_o/p_b)_{sc}$ M = 3.0 in test section \Rightarrow

 $p_o/p_{amb} = 36.7/10.33 = 3.55$

wind tunnel with supersonic test section

add subsonic diffuser after normal shock



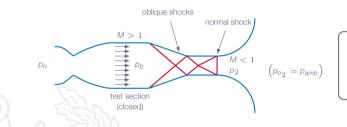
 $p_o/p_{amb} = (p_o/p_b)(p_b/p_2)(p_2/p_{o_2})$

M = 3.0 in test section \Rightarrow $p_o/p_{amb} = 36.7/10.33/1.17 = 3.04$

Note! this corresponds exactly to total pressure loss across normal shock

wind tunnel with supersonic test section

add supersonic diffuser before normal shock



well-designed supersonic + subsonic diffuser \Rightarrow
1. decreased total pressure loss
2. decreased p_o and power to drive wind tunnel

Main problems:

1. Complex 3D flow in the diffuser section

viscous effects

complex systems of oblique shocks

flow separation

shock/boundary-layer interaction

2. Starting requirements

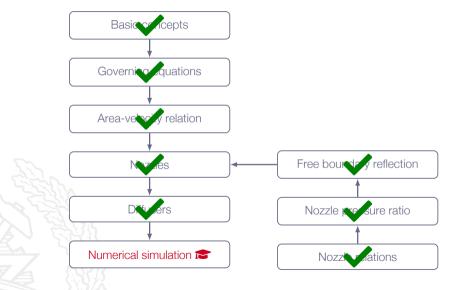
second throat must be significantly larger than first throat

variable geometry diffuser

second throat larger during startup procedure

decreased second throat to optimum value after supersonic flow is established

Roadmap - Quasi-One-Dimensional Flow

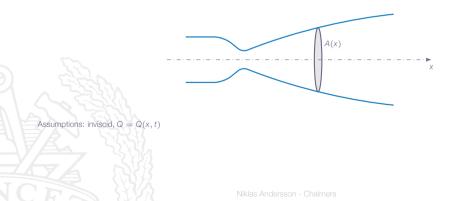


Quasi-One-Dimensional Euler Equations

Niklas Andersson - Chalmers

R

Example: choked flow through a convergent-divergent nozzle



Quasi-One-Dimensional Euler Equations

$$A(x)\frac{\partial}{\partial t}Q + \frac{\partial}{\partial x}\left[A(x)E\right] = A'(x)H$$

where A(x) is the cross section area and

$$Q = \begin{bmatrix} \rho \\ \rho u \\ \rho \Theta_o \end{bmatrix}, \ E(Q) = \begin{bmatrix} \rho u \\ \rho u^2 + \rho \\ \rho h_o u \end{bmatrix}, \ H(Q) = \begin{bmatrix} 0 \\ \rho \\ 0 \end{bmatrix}$$

Niklas Andersson - Chalmers

Numerical Approach

Discretization:

Finite-Volume Method (FVM) - Quasi-1D formulation

Numerical scheme:

third-order characteristic upwind scheme

Time stepping technique:

three-stage second-order Runge-Kutta explicit time marching

Boundary conditions:

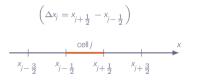
left-end boundary:

subsonic inflow specify: inlet total temperature (T_{α}) and total pressure (p_{α})

right-end boundary:

subsonic outflow specify: outlet static pressure (p)

Finite-Volume Spatial Discretization



Integration over cell *j* gives:

$$\frac{1}{2} \left[A(x_{j-\frac{1}{2}}) + A(x_{j+\frac{1}{2}}) \right] \Delta x_j \frac{d}{dt} \bar{Q}_j + \\ \left[A(x_{j+\frac{1}{2}}) \hat{E}_{j+\frac{1}{2}} - A(x_{j-\frac{1}{2}}) \hat{E}_{j-\frac{1}{2}} \right] = \\ \left[A(x_{j+\frac{1}{2}}) - A(x_{j-\frac{1}{2}}) \right] \hat{H}_j$$

Niklas Andersson - Chalmers

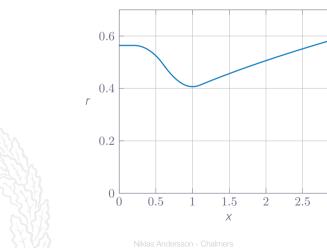
Finite-Volume Spatial Discretization

 $\bar{Q}_{j} = \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} QA(x)dx\right) \middle/ \left(\int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} A(x)dx\right)$

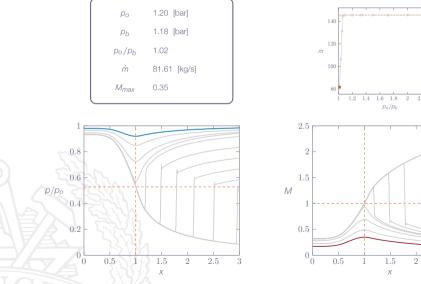
 $\hat{E}_{i+\frac{1}{2}} \approx E\left(Q\left(x_{i+\frac{1}{2}}\right)\right)$

 $\hat{H}_{j} \approx \left(\int_{x_{i-1}}^{x_{j+\frac{1}{2}}} HA'(x) dx\right) \middle/ \left(\int_{x_{i-1}}^{x_{j+\frac{1}{2}}} A'(x) dx\right)$

Nozzle geometry



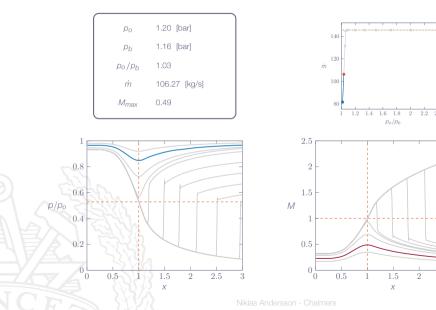
3



CFLOW 432/841

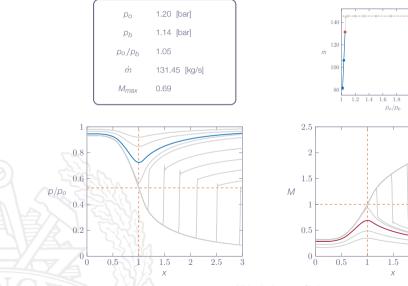
2.5

3



2.5

3



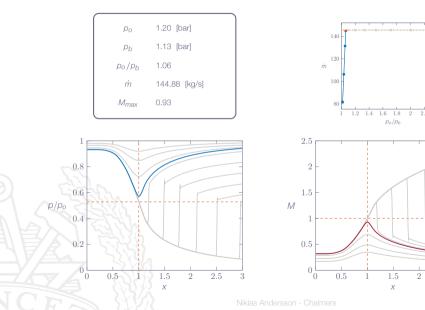
2 2.5

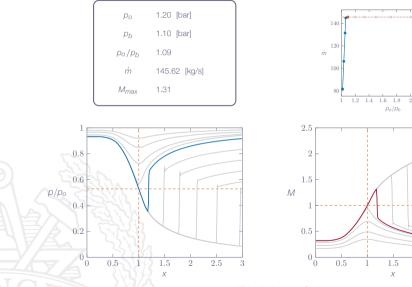
3

FLOW

2.5

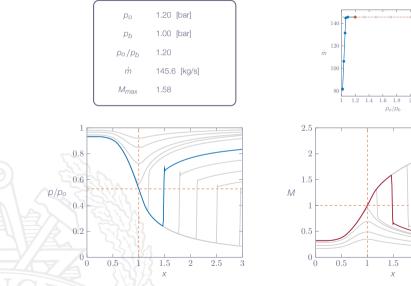
3





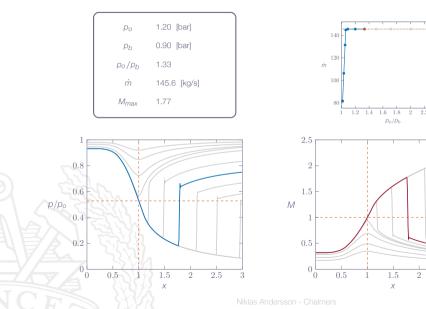
2 2.5

3



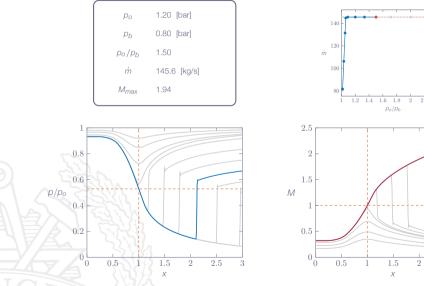
2 2.5

3



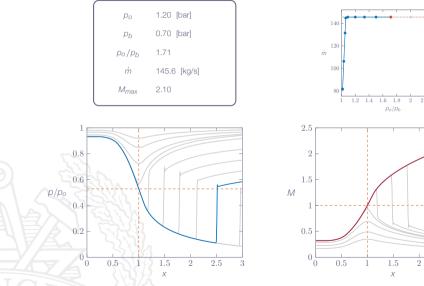
2.5

3



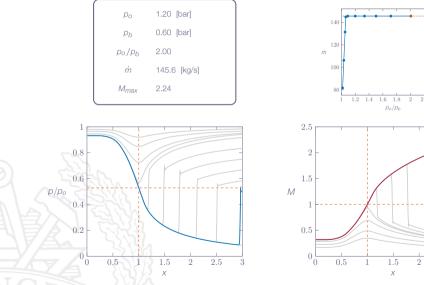
2.5

3



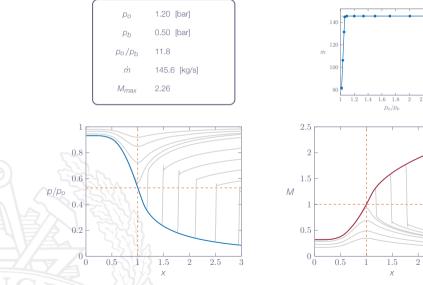
2.5

3



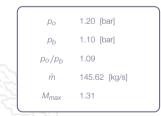
2.5

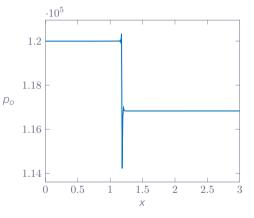
3

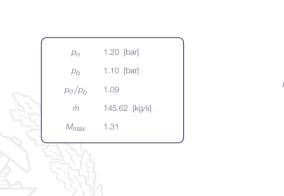


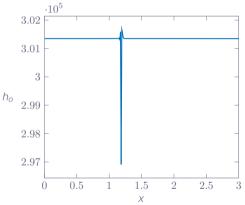
2.5

3

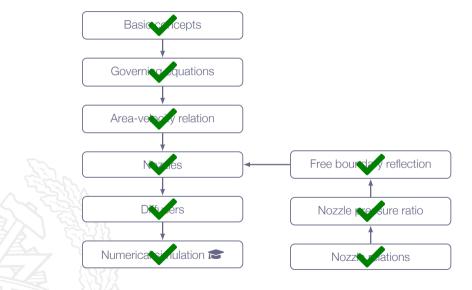






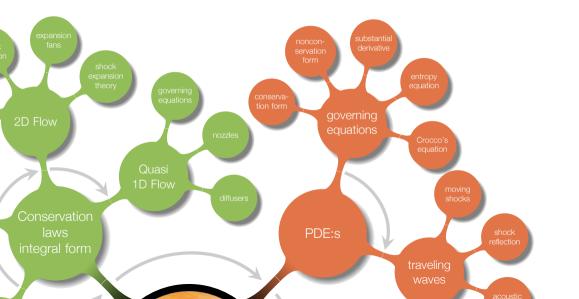


Roadmap - Quasi-One-Dimensional Flow



Chapter 6 Differential Conservation Equations for Inviscid Flows

Overview

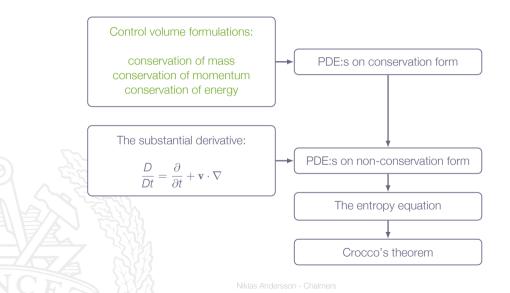


Learning Outcomes

4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on

the governing equations for compressible flows on differential form - finally ...

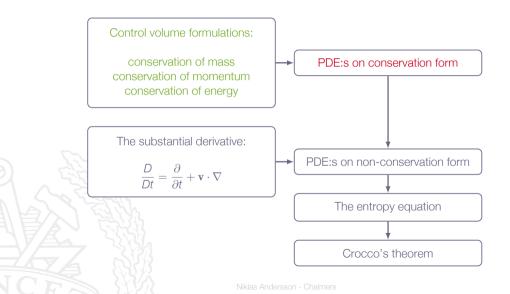
Roadmap - Differential Equations for Inviscid Flows



The differential form of the conservation equations is needed when analyzing unsteady problems

The differential form of the conservation equations forms the basis for multi-dimensional analysis and CFD

Roadmap - Differential Equations for Inviscid Flows



Chapter 6.2 **Differential Equations in Conservation** Form

Differential Equations in Conservation Form

Basic principle to derive PDE:s in conservation form:

- 1. Start with control volume formulation
- 2. Convert to volume integral via Gauss Theorem
- 3. Arbitrary control volume implies that integrand equals to zero everywhere

Continuity Equation - Conservation of Mass

Control volume formulation

$$\frac{d}{dt}\iiint \rho d\mathcal{V} + \oiint_{\partial\Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

where Ω is a fixed control volume and thus $\frac{d}{dt} \iiint_{\Omega} \rho d\mathcal{V} = \iiint_{\Omega} \frac{\partial \rho}{\partial t} d\mathcal{V}$

Applying Gauss' Theorem on the surface integral gives

$$\iint_{\partial\Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = \iiint_{\Omega} \nabla \cdot (\rho \mathbf{v}) d\mathcal{V}$$

Continuity Equation

Therefore

$$\iiint_{\Omega} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) \right] \mathcal{C} \mathcal{V} = 0$$

 $\boldsymbol{\Omega}$ is an arbitrary control volume, can be made infinitesimal and thus

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

which is the continuity equation on differential form

Momentum Equation - Conservation of Momentum

Control volume formulation

$$\frac{d}{dt}\iiint \rho \mathbf{v} d\mathcal{V} + \oiint \rho \mathbf{n} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint \rho \mathbf{f} d\mathcal{V}$$

where Ω is a fixed control volume and thus $\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} = \iiint_{\Omega} \frac{\partial}{\partial t} (\rho \mathbf{v}) d\mathcal{V}$

Applying Gauss' Theorem on the surface integrals gives

$$\iint_{\partial\Omega} \rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} dS = \iiint_{\Omega} \nabla \cdot (\rho \mathbf{v} \mathbf{v}) d\mathcal{V} \; ; \; \underset{\partial\Omega}{\bigoplus} \rho \mathbf{n} dS = \iiint_{\Omega} \nabla \rho d\mathcal{V}$$

Momentum Equation

Therefore

$$\iiint_{\Omega} \left[\frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla \rho - \rho \mathbf{f} \right] d\mathcal{V} = 0$$

 $\boldsymbol{\Omega}$ is an arbitrary control volume, can be made infinitesimal and thus

$$\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla \rho = \rho \mathbf{f}$$

which is the momentum equation on differential form

Momentum Equation

In cartesian form ($\mathbf{v} = u\mathbf{e}_x + v\mathbf{e}_y + w\mathbf{e}_z$):

$$\frac{\partial}{\partial t}(\rho u) + \nabla \cdot (\rho u \mathbf{v}) + \frac{\partial p}{\partial x} = \rho f_x$$
$$\frac{\partial}{\partial t}(\rho v) + \nabla \cdot (\rho v \mathbf{v}) + \frac{\partial p}{\partial y} = \rho f_y$$
$$\frac{\partial}{\partial t}(\rho w) + \nabla \cdot (\rho w \mathbf{v}) + \frac{\partial p}{\partial z} = \rho f_z$$

or expanded:

$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u u) + \frac{\partial}{\partial y}(\rho u v) + \frac{\partial}{\partial z}(\rho u w) + \frac{\partial p}{\partial x} = \rho f_x$$
$$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho v u) + \frac{\partial}{\partial y}(\rho v v) + \frac{\partial}{\partial z}(\rho v w) + \frac{\partial p}{\partial y} = \rho f_y$$
$$\frac{\partial}{\partial t}(\rho w) + \frac{\partial}{\partial x}(\rho w u) + \frac{\partial}{\partial y}(\rho w v) + \frac{\partial}{\partial z}(\rho w w) + \frac{\partial p}{\partial z} = \rho f_z$$

Energy Equation - Conservation of Energy

Control volume formulation

$$\frac{d}{dt}\iiint_{\Omega}\rho\mathbf{e}_{o}d\mathcal{V}+\bigoplus_{\partial\Omega}\rho h_{o}(\mathbf{v}\cdot\mathbf{n})dS=\iiint_{\Omega}\rho\mathbf{f}\cdot\mathbf{v}d\mathcal{V}$$

where Ω is a fixed control volume and thus $\frac{d}{dt} \iiint_{\Omega} \rho e_o d\mathcal{V} = \iiint_{\Omega} \frac{\partial}{\partial t} (\rho e_o) d\mathcal{V}$

Applying Gauss' Theorem on the surface integral gives

$$\iint_{\partial\Omega} \rho h_o(\mathbf{v} \cdot \mathbf{n}) dS = \iiint_{\Omega} \nabla \cdot (\rho h_o \mathbf{v}) d\mathcal{V}$$

Energy Equation

Therefore

$$\iiint_{\Omega} \left[\frac{\partial}{\partial t} (\rho \mathbf{e}_{o}) + \nabla \cdot (\rho h_{o} \mathbf{v}) - \rho(\mathbf{f} \cdot \mathbf{v}) \right] d\mathcal{V} = 0$$

 $\boldsymbol{\Omega}$ is an arbitrary control volume, can be made infinitesimal and thus

$$\frac{\partial}{\partial t}(\rho \mathbf{e}_0) + \nabla \cdot (\rho h_0 \mathbf{v}) = \rho(\mathbf{f} \cdot \mathbf{v})$$

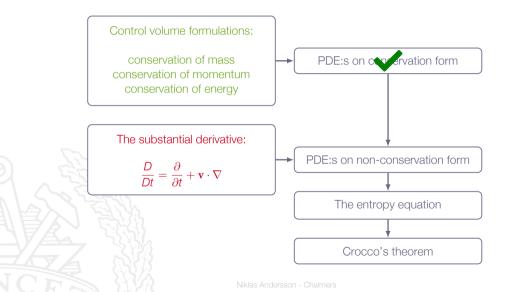
which is the energy equation on differential form

Partial Differential Equations in Conservation Form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla \rho = \rho \mathbf{f}$$
$$\frac{\partial}{\partial t} (\rho \mathbf{e}_0) + \nabla \cdot (\rho h_0 \mathbf{v}) = \rho (\mathbf{f} \cdot \mathbf{v})$$

These equations are referred to as PDE:s on conservation form since they stem directly from the integral conservation equations applied to a fixed control volume

Roadmap - Differential Equations for Inviscid Flows



The Substantial Derivative

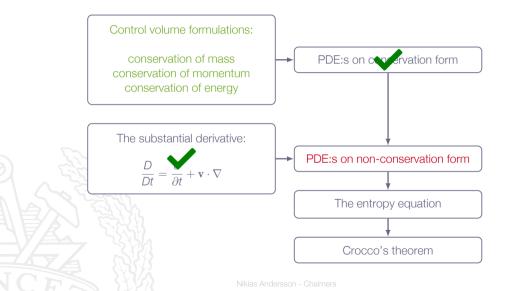
Introducing the substantial derivative operator

 $\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$

"... the time rate of change of any quantity associated with a particular moving fluid element is given by the substantial derivative ..."

"... the properties of the fluid element are changing as it moves past a point in a flow because the flowfield itself may be fluctuating with time (the local derivative) and because the fluid element is simply on its way to another point in the flowfield where the properties are different (the convective derivative)

Roadmap - Differential Equations for Inviscid Flows



Chapter 6.4 Differential Equations in Non-Conservation Form

Non-Conservation Form of the Continuity Equation

Applying the substantial derivative operator to density gives

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \mathbf{v} \cdot \nabla\rho$$

Continuity equation:

$$\frac{\partial\rho}{\partial t} + \nabla\cdot(\rho\mathbf{v}) = \frac{\partial\rho}{\partial t} + \mathbf{v}\cdot\nabla\rho + \rho(\nabla\cdot\mathbf{v}) = 0 \Rightarrow$$

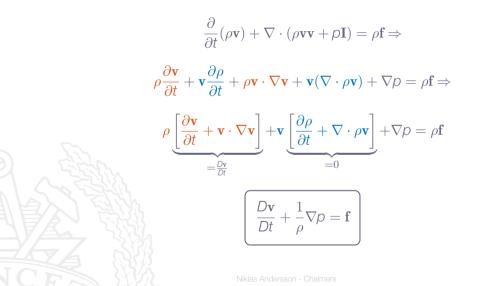
$$\left(\begin{array}{c} \frac{D\rho}{Dt} + \rho(\nabla \cdot \mathbf{v}) = 0 \end{array}\right)$$

Non-Conservation Form of the Continuity Equation

$$\frac{D\rho}{Dt} + \rho(\nabla \cdot \mathbf{v}) = 0$$

"... the mass of a fluid element made up of a fixed set of particles (molecules or atoms) is constant as the fluid element moves through space ..."

Non-Conservation Form of the Momentum Equation



$$\frac{\partial}{\partial t}(\rho\mathbf{e}_{0}) + \nabla \cdot (\rho h_{0}\mathbf{v}) = \rho(\mathbf{f} \cdot \mathbf{v}) + \rho\dot{q}$$

$$h_{0} = \mathbf{e}_{0} + \frac{\rho}{\rho} \Rightarrow$$

$$\frac{\partial}{\partial t}(\rho\mathbf{e}_{0}) + \nabla \cdot (\rho\mathbf{e}_{0}\mathbf{v}) + \nabla \cdot (\rho\mathbf{v}) = \rho(\mathbf{f} \cdot \mathbf{v}) + \rho\dot{q} \Rightarrow$$

$$\rho \frac{\partial \mathbf{e}_{0}}{\partial t} + \mathbf{e}_{0} \frac{\partial \rho}{\partial t} + \rho\mathbf{v} \cdot \nabla \mathbf{e}_{0} + \mathbf{e}_{0} \nabla \cdot (\rho\mathbf{v}) + \nabla \cdot (\rho\mathbf{v}) = \rho(\mathbf{f} \cdot \mathbf{v}) + \rho\dot{q} \Rightarrow$$

$$\rho \underbrace{\left[\frac{\partial \mathbf{e}_{0}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{e}_{0}\right]}_{=\frac{D}{Dt}} + \mathbf{e}_{0} \underbrace{\left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho\mathbf{v})\right]}_{=0} + \nabla \cdot (\rho\mathbf{v}) = \rho(\mathbf{f} \cdot \mathbf{v}) + \rho\dot{q}$$

$$\rho \frac{De_0}{Dt} + \nabla \cdot (p + \mathbf{v}) = \rho \mathbf{f} \cdot \mathbf{v} + \rho \dot{q}$$

$$e_0 = e + \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \Rightarrow$$

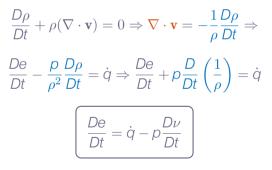
$$\rho \frac{De}{Dt} + \rho \mathbf{v} \cdot \frac{D \mathbf{v}}{Dt} + \nabla \cdot (p \mathbf{v}) = \rho \mathbf{f} \cdot \mathbf{v} + \rho \dot{q}$$
Using the momentum equation, $\left(\frac{D \mathbf{v}}{Dt} + \frac{1}{\rho} \nabla p = \mathbf{f}\right)$, gives
$$\rho \frac{De}{Dt} - \mathbf{v} \cdot \nabla p + \rho \mathbf{f} \cdot \mathbf{v} + \mathbf{v} \cdot \nabla p + \rho (\nabla \cdot \mathbf{v}) = \rho \mathbf{f} \cdot \mathbf{v} + \rho \dot{q} \Rightarrow$$

$$\left[\frac{De}{Dt} + \frac{p}{\rho} (\nabla \cdot \mathbf{v}) = \dot{q}\right]$$

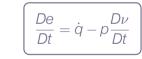
$$\frac{De}{Dt} + \frac{\rho}{\rho} (\boldsymbol{\nabla} \cdot \mathbf{v}) = \dot{q}$$

From the continuity equation we get

where $\nu = 1/\rho$



Compare with first law of thermodynamics: $de = \delta q - \delta W$



If we instead express the energy equation in terms of enthalpy:

$$\frac{De}{Dt} = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right) \Rightarrow \frac{De}{Dt} + \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right) = \dot{q}$$
$$h = e + \frac{\rho}{\rho} \Rightarrow \frac{Dh}{Dt} = \frac{De}{Dt} + \frac{1}{\rho} \frac{D\rho}{Dt} + \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right) \Rightarrow$$

$$\frac{Dh}{Dt} = \dot{q} + \frac{1}{\rho} \frac{D\rho}{Dt}$$

and total enthalpy ...

$$h_o = h + \frac{1}{2}\mathbf{v} \cdot \mathbf{v} \Rightarrow \frac{Dh_o}{Dt} = \frac{Dh}{Dt} + \mathbf{v} \cdot \frac{D\mathbf{v}}{Dt}$$

From the momentum equation we get

$$\rho \frac{D\mathbf{v}}{Dt} + \nabla \rho = \rho \mathbf{f} \Rightarrow \frac{D\mathbf{v}}{Dt} = -\frac{1}{\rho} \nabla \rho + \mathbf{f} \Rightarrow$$
$$\frac{Dh_o}{Dt} = \underbrace{\frac{Dh}{Dt}}_{\dot{q} + \frac{1}{\rho} \frac{D\rho}{Dt}} - \frac{1}{\rho} \mathbf{v} \cdot \nabla \rho + \mathbf{f} \cdot \mathbf{v} = \dot{q} + \frac{1}{\rho} \left[\frac{D\rho}{Dt} - \mathbf{v} \cdot \nabla \rho \right] + \mathbf{f} \cdot \mathbf{v}$$

$$\frac{Dh_o}{Dt} = \dot{q} + \frac{1}{\rho} \left[\frac{D\rho}{Dt} - \mathbf{v} \cdot \nabla \rho \right] + \mathbf{f} \cdot \mathbf{v}$$

Now, expanding the substantial derivative $\frac{Dp}{Dt} = \frac{\partial p}{\partial t} + \mathbf{v} \cdot \nabla p$ gives

$$\frac{Dh_o}{Dt} = \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \dot{\mathbf{q}} + \mathbf{f} \cdot \mathbf{v}$$

Let's examine the above relation ...

$$\boxed{\frac{Dh_o}{Dt} = \frac{1}{\rho} \frac{\partial p}{\partial t} + \dot{q} + \mathbf{f} \cdot \mathbf{v}}$$

The total enthalpy of a moving fluid element in an inviscid flow can change due to

- 1. unsteady flow: $\partial p / \partial t \neq 0$
- 2. heat transfer: $\dot{q} \neq 0$
- 3. body forces: $\mathbf{f} \cdot \mathbf{v} \neq 0$

Adiabatic flow without body forces \Rightarrow

$$\frac{Dh_o}{Dt} = \frac{1}{\rho} \frac{\partial \rho}{\partial t}$$

Steady-state adiabatic flow without body forces \Rightarrow

$$\frac{Dh_o}{Dt} = 0$$

ho is constant along streamlines!

Additional Form of the Energy Equation

Start from

 $\frac{De}{Dt}$

$$\frac{De}{Dt} = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right)$$

Calorically perfect gas:

$$e = C_v T \; ; \; C_v = \frac{R}{\gamma - 1} \; ; \; \rho = \rho RT \; ; \; \gamma, R = const$$
$$= C_v \frac{DT}{Dt} = \frac{R}{\gamma - 1} \frac{D}{Dt} \left(\frac{\rho}{\rho R}\right) = \frac{1}{\gamma - 1} \frac{D}{Dt} \left(\frac{\rho}{\rho}\right) \Rightarrow \frac{1}{\gamma - 1} \frac{D}{Dt} \left(\frac{\rho}{\rho}\right) = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right)$$

Additional Form of the Energy Equation

$$\frac{1}{\gamma - 1} \frac{D}{Dt} \left(\frac{\rho}{\rho} \right) = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho} \right) \Rightarrow$$

$$\frac{1}{\gamma - 1} \left[\rho \frac{D}{Dt} \left(\frac{1}{\rho} \right) + \left(\frac{1}{\rho} \right) \frac{D\rho}{Dt} \right] = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho} \right)$$

$$\rho \frac{D}{Dt} \left(\frac{1}{\rho}\right) + \left(\frac{1}{\rho}\right) \frac{D\rho}{Dt} = (\gamma - 1)\dot{q} - (\gamma - 1)\rho \frac{D}{Dt} \left(\frac{1}{\rho}\right)$$

 $\gamma \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right) + \left(\frac{1}{\rho}\right) \frac{D\rho}{Dt} = (\gamma - 1)\dot{q}$

Continuity:

$$\frac{D\rho}{Dt} = -\rho(\nabla \cdot \mathbf{v}) \Rightarrow \frac{D}{Dt} \left(\frac{1}{\rho}\right) = -\frac{1}{\rho^2} \frac{D\rho}{Dt} = \frac{1}{\rho} (\nabla \cdot \mathbf{v}) \Rightarrow$$
$$\frac{\gamma \rho}{\rho} (\nabla \cdot \mathbf{v}) + \left(\frac{1}{\rho}\right) \frac{D\rho}{Dt} = (\gamma - 1)\dot{q}$$

Additional Form of the Energy Equation

$$\frac{D\rho}{Dt} + \gamma \rho (\nabla \cdot \mathbf{v}) = (\gamma - 1)\rho \dot{q}$$

Adiabatic flow (no added heat):

$$\boxed{\frac{D\rho}{Dt} + \gamma \rho(\nabla \cdot \mathbf{v}) = 0}$$

Non-conservation form (calorically perfect gas)

Conservation Form

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial G}{\partial z} = 0$$

where Q(x, y, z, t), E(x, y, z, t), ... may be scalar or vector fields

Example: the continuity equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho U) + \frac{\partial}{\partial y}(\rho V) + \frac{\partial}{\partial z}(\rho W) = 0$$

If an equation **cannot** be written in this form, it is said to be in **non-conservation** form

Euler Equations - Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) + \frac{\partial}{\partial z}(\rho w) = 0$$
$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u u + \rho) + \frac{\partial}{\partial y}(\rho u v) + \frac{\partial}{\partial z}(\rho u w) = 0$$
$$\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(\rho v u) + \frac{\partial}{\partial y}(\rho v v + \rho) + \frac{\partial}{\partial z}(\rho v w) = 0$$
$$\frac{\partial}{\partial t}(\rho w) + \frac{\partial}{\partial x}(\rho w u) + \frac{\partial}{\partial y}(\rho w v) + \frac{\partial}{\partial z}(\rho w w + \rho) = 0$$
$$\frac{\partial}{\partial t}(\rho e_o) + \frac{\partial}{\partial x}(\rho h_o u) + \frac{\partial}{\partial y}(\rho h_o v) + \frac{\partial}{\partial z}(\rho h_o w) = 0$$

Euler Equations - Non-Conservation Form

Continuity, momentum and energy equations in Cartesian coordinates, velocity components u, v, w (no body forces, no added heat), calorically perfect gas

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} + \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{1}{\rho} \frac{\partial \rho}{\partial x} = 0$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{1}{\rho} \frac{\partial \rho}{\partial y} = 0$$
$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{1}{\rho} \frac{\partial \rho}{\partial z} = 0$$
$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} + \gamma \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) = 0$$

The governing equations on non-conservation form are not, although the name might give that impression, less physically accurate than the equations on conservation form. The nomenclature comes from CFD where the equations on conservation form are preferred.

Using the conservation form as a basis for a Finite-Volume Method (FVM) solver ensures conservation of mass, momentum and energy.

Conservation and Non-Conservation Form

Conservative equations are equations that directly stems from **conservation of flow quantities** over a control volume

The equations on **non-conservation form** are derived from the corresponding equations on conservation form using the **chain rule** for derivatives

Thus the equations on non-conservation form do not stem directly from a conservation law - **but aren't the two formulations still equivalent?**

Only for continuous solutions! The chain rule can only be used for continuous fields

Conservation and Non-Conservation Form

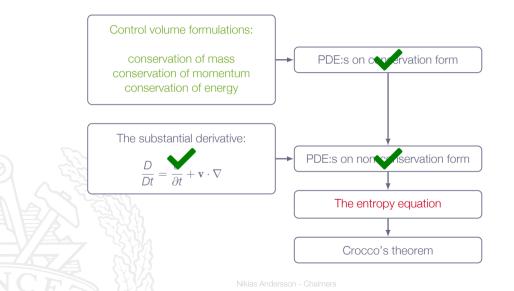
Conservation forms are useful for:

- 1. Numerical methods for compressible flow
- 2. Theoretical understanding of non-linear waves (shocks etc)
- 3. Provide link between integral forms (control volume formulations) and PDE:s

Non-conservation forms are useful for:

- Theoretical understanding of behavior of numerical methods
- 2. Theoretical understanding of boundary conditions
- 3. Analysis of linear waves (aero-acoustics)

Roadmap - Differential Equations for Inviscid Flows



Chapter 6.5 The Entropy Equation

From the first and second law of thermodynamics we have

$$\frac{De}{Dt} = T\frac{Ds}{Dt} - \rho\frac{D}{Dt}\left(\frac{1}{\rho}\right)$$

which is called the entropy equation

The Entropy Equation

Compare the entropy equation

$$\frac{De}{Dt} = T\frac{Ds}{Dt} - p\frac{D}{Dt}\left(\frac{1}{\rho}\right)$$

with the energy equation (inviscid flow):

$$\frac{De}{Dt} = \dot{q} - \rho \frac{D}{Dt} \left(\frac{1}{\rho}\right)$$

The Entropy Equation

If $\dot{q} = 0$ (adiabatic flow) then

$$\frac{Ds}{Dt} = 0$$

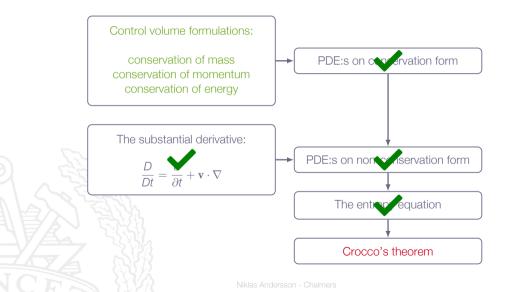
i.e., entropy is constant for moving fluid element

Furthermore, if the flow is steady we have

$$\frac{Ds}{Dt} = \frac{\partial s}{\partial t} + (\mathbf{v} \cdot \nabla)s = (\mathbf{v} \cdot \nabla)s = 0$$

i.e., entropy is constant along streamlines

Roadmap - Differential Equations for Inviscid Flows



494/841

Chapter 6.6 Crocco's Theorem

"... a relation between gradients of total enthalpy, gradients of entropy, and flow rotation ..."

Momentum equation (no body forces)

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla \rho$$

Writing out the substantial derivative gives

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \rho \Rightarrow \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla \rho$$

First and second law of thermodynamics (energy equation)

$$dh = Tds + \frac{1}{\rho}dp$$

Replace differentials with a gradient operator

$$\nabla h = T\nabla s + \frac{1}{\rho}\nabla p \Rightarrow T\nabla s = \nabla h - \frac{1}{\rho}\nabla p$$

With pressure derivative from the momentum equation inserted in the energy equation we get

$$T\nabla s = \nabla h + \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}$$

$$h = h_o - \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \Rightarrow \nabla h = \nabla h_o - \nabla (\frac{1}{2} \mathbf{v} \cdot \mathbf{v})$$

$$abla(rac{1}{2} \mathbf{v} \cdot \mathbf{v}) = \mathbf{v} imes (
abla imes \mathbf{v}) + \mathbf{v} \cdot
abla \mathbf{v}$$

 $\nabla (A \cdot B) = (A \cdot \nabla) B + (B \cdot \nabla) A + A \times (\nabla \times B) + B \times (\nabla \times A)$

$$\mathbf{A} = \mathbf{B} = \mathbf{v} \Rightarrow \nabla(\mathbf{v} \cdot \mathbf{v}) = 2[\mathbf{v} \cdot \nabla \mathbf{v} + \mathbf{v} \times (\nabla \times \mathbf{v})]$$

$$T\nabla s = \nabla h_o - \mathbf{v} \times (\nabla \times \mathbf{v}) - \mathbf{v} \cdot \nabla \mathbf{v} + \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}$$

$$T\nabla s = \nabla h_o + \frac{\partial \mathbf{v}}{\partial t} - \mathbf{v} \times (\nabla \times \mathbf{v})$$

Note! $\nabla \times \mathbf{v}$ is the vorticity of the fluid

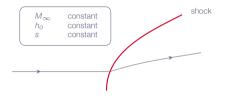
the rotational motion of the fluid is described by the angular velocity $\omega = \frac{1}{2} (\nabla \times \mathbf{v})$

$$T\nabla s = \nabla h_o + \frac{\partial \mathbf{v}}{\partial t} - \mathbf{v} \times (\nabla \times \mathbf{v})$$

"... when a steady flow field has gradients of total enthalpy and/or entropy Crocco's theorem dramatically shows that it is **rotational** ..."

Crocco's Theorem - Example

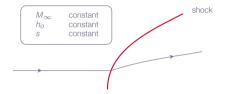
Curved stationary shock (steady-state flow)



- 1. s is constant upstream of shock
- 2. jump in s across shock depends on local shock angle
- 3. s will vary from streamline to streamline downstream of shock
 - 4. $\nabla s \neq 0$ downstream of shock

Crocco's Theorem - Example

Curved stationary shock (steady-state flow)



Total enthalpy upstream of shock h_o is constant along streamlines h_o is uniform Total enthalpy downstream of shock h_o is uniform

$\nabla h_o = 0$

Niklas Andersson - Chalmers

Crocco's Theorem - Example

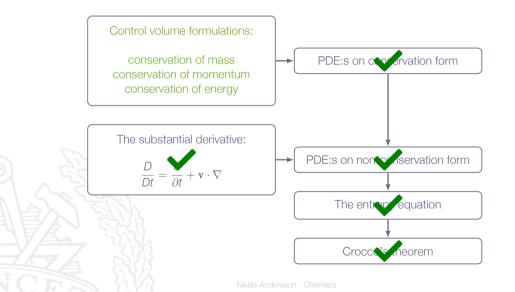
Crocco's equation for steady-state flow:

$$T\nabla s = \nabla h_o - \mathbf{v} \times (\nabla \times \mathbf{v})$$

 $\mathbf{v} \times (\nabla \times \mathbf{v}) \neq 0$ downstream of a curved shock the rotation $\nabla \times \mathbf{v} \neq 0$ downstream of a curved shock

Explains why it is difficult to solve such problems by analytic means!

Roadmap - Differential Equations for Inviscid Flows

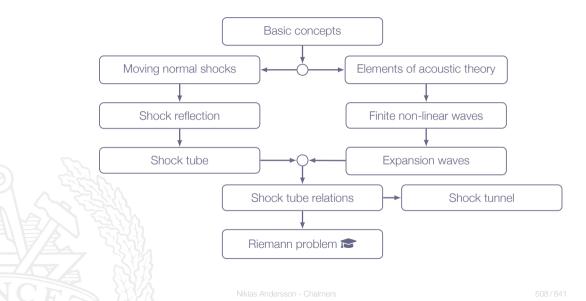


Chapter 7 Unsteady Wave Motion

Learning Outcomes

- 3 **Describe** typical engineering flow situations in which compressibility effects are more or less predominant (e.g. Mach number regimes for steady-state flows)
- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - a 1D isentropic flow*
 - b normal shocks*
 - unsteady waves and discontinuities in 1D
 - basic acoustics
 - **Solve** engineering problems involving the above-mentioned phenomena (8a-8k) **Explain** how the equations for aero-acoustics and classical acoustics are derived as limiting cases of the compressible flow equations
 - moving normal shocks frame of reference seems to be the key here?!

Roadmap - Unsteady Wave Motion



Motivation

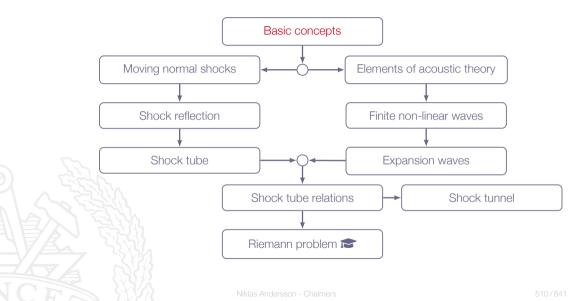
Most practical flows are unsteady

Traveling waves appears in many real-life situations and is an important topic within compressible flows

We will study unsteady flows in one dimension in order to reduce complexity and focus on the physical effects introduced by the unsteadiness

Throughout this section, we will study an application called the shock tube, which is a rather rare application but it lets us study unsteady waves in one dimension and it includes all physical principles introduced in chapter 7

Roadmap - Unsteady Wave Motion



inertial frames!

Physical laws are the same for both frame of references

Shock characteristics are the same for both observers (shape, strength, etc)

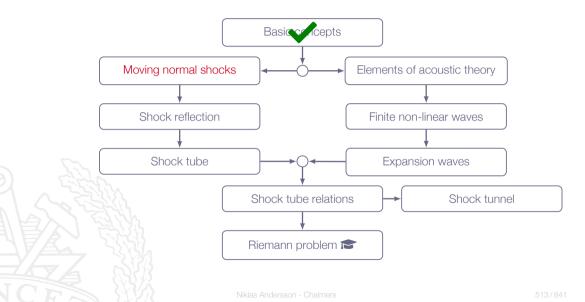
Recall - the Hugonoit relation does not include velocities, only static thermodynamic quantities that are independent of reference frame

Is there a connection with stationary shock waves?

Answer: Yes!

Locally, in a **moving frame of reference**, the shock may be viewed as a **stationary normal shock**

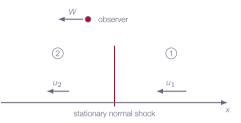
Roadmap - Unsteady Wave Motion



Chapter 7.2 Moving Normal Shock Waves

Chapter 3: stationary normal shock

$u_2 < a_2 \\ p_2 > p_1$	(supersonic flow) (subsonic flow) (sudden compression)
$S_2 > S_1$	(shock loss)



Introduce observer moving to the left with speed *W* if *W* is constant the observer is still in an inertial system (all physical laws are unchanged)

The observer sees a normal shock moving to the right with speed W gas velocity ahead of shock: $u'_1 = W - u_1$ gas velocity behind shock: $u'_2 = W - u_2$

Now, let $W = u_1 \Rightarrow$

$$U'_1 = 0$$

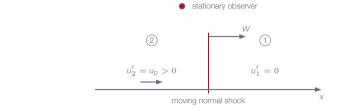
$$u_2' = u_1 - u_2 > 0$$

The observer now sees the shock traveling to the right with speed $W = u_1$ into a stagnant gas, leaving a compressed gas $(p_2 > p_1)$ with velocity $u'_2 > 0$ behind it

Introducing up:

$$u_p = u'_2 = u_1 - u_2$$

Niklas Andersson - Chalmers



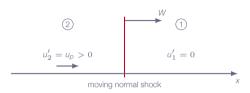
Analogy:

Case 1

stationary normal shock observer moving with velocity *W* Case 2 normal shock moving with velocity *W* stationary observer

Moving Normal Shock Waves - Governing Equations

stationary observer



For stationary normal shocks we have:

$$\rho_1 u_1 = \rho_2 u_2$$

$$\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2$$

$$h_1 + \frac{1}{2} u_1^2 = h_2 + \frac{1}{2} u_2^2$$

With $(u_1 = W)$ and $(u_2 = W - u_p)$ we get:

$$\rho_1 W = \rho_2 (W - u_p)$$

$$\rho_1 W^2 + \rho_1 = \rho_2 (W - u_p)^2 + \rho_2$$

$$h_1 + \frac{1}{2} W^2 = h_2 + \frac{1}{2} (W - u_p)^2$$

Starting from the governing equations

$$\rho_1 W = \rho_2 (W - u_\rho)$$

$$\rho_1 W^2 + \rho_1 = \rho_2 (W - u_\rho)^2 + \rho_2$$

$$h_1 + \frac{1}{2} W^2 = h_2 + \frac{1}{2} (W - u_\rho)^2$$

and using $h = e + \frac{p}{\rho}$

it is possible to show that

$$e_2 - e_1 = rac{
ho_1 +
ho_2}{2} \left(rac{1}{
ho_1} + rac{1}{
ho_2}
ight)$$

Niklas Andersson - Chalmers

$$e_2 - e_1 = rac{
ho_1 +
ho_2}{2} \left(rac{1}{
ho_1} + rac{1}{
ho_2}
ight)$$

same Hugoniot equation as for stationary normal shock

This means that we will have same shock strength, *i.e.* same discontinuities in density, velocity, pressure, etc

Starting from the Hugoniot equation one can show that

$$\frac{\rho_2}{\rho_1} = \frac{1 + \frac{\gamma + 1}{\gamma - 1} \left(\frac{\rho_2}{\rho_1}\right)}{\frac{\gamma + 1}{\gamma - 1} + \frac{\rho_2}{\rho_1}}$$

$$\frac{T_2}{T_1} = \frac{p_2}{p_1} \left[\frac{\frac{\gamma+1}{\gamma-1} + \frac{p_2}{p_1}}{1 + \frac{\gamma+1}{\gamma-1} \left(\frac{p_2}{p_1}\right)} \right]$$

For calorically perfect gas and stationary normal shock:

$$\frac{\rho_2}{\rho_1} = 1 + \frac{2\gamma}{\gamma + 1} (M_s^2 - 1)$$

same as eq. (3.57) in Anderson with $M_1 = M_s$

where

$$M_{\rm s}=rac{W}{a_1}$$

 $M_{\rm s}$ is simply the speed of the shock, traveling into the stagnant gas, normalized by the speed of sound in the gas ahead of the shock

Note!

 $M_s > 1$, otherwise there is no shock!

shocks always moves faster than sound - no warning before it hits you ③

Niklas Andersson - Chalmers

523/841

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} (M_s^2 - 1)$$
Incident shock Mach number ($\gamma = 1.4$)
Re-arrange \Rightarrow

$$M_s = \sqrt{\frac{\gamma + 1}{2\gamma} \left(\frac{p_2}{p_1} - 1\right) + 1}$$

$$M_s = \frac{W}{a_1} \Rightarrow W = a_1 M_s = a_1 \sqrt{\frac{\gamma + 1}{2\gamma} \left(\frac{p_2}{p_1} - 1\right) + 1}$$
Incident shock Mach number ($\gamma = 1.4$)
$$M_s = \frac{W}{a_1} \Rightarrow W = a_1 M_s = a_1 \sqrt{\frac{\gamma + 1}{2\gamma} \left(\frac{p_2}{p_1} - 1\right) + 1}$$
Incident shock Mach number ($\gamma = 1.4$)
$$M_s = \frac{W}{a_1} \Rightarrow W = a_1 M_s = a_1 \sqrt{\frac{\gamma + 1}{2\gamma} \left(\frac{p_2}{p_1} - 1\right) + 1}$$
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number ($\gamma = 1.4$)
Incident shock Mach number

Moving Normal Shock Waves - Induced Flow Velocity

From the continuity equation we get:

$$u_{\rho} = W\left(1 - \frac{\rho_1}{\rho_2}\right) > 0$$

After some derivation we obtain:

$$u_{\rho} = \frac{a_1}{\gamma} \left(\frac{\rho_2}{\rho_1} - 1\right) \left[\frac{\frac{2\gamma}{\gamma+1}}{\frac{\rho_2}{\rho_1} + \frac{\gamma-1}{\gamma+1}}\right]^{1/2}$$

Moving Normal Shock Waves - Induced Flow Mach Number

$$M_{\rho} = rac{u_{
ho}}{a_2} = rac{u_{
ho}}{a_1} rac{a_1}{a_2} = rac{u_{
ho}}{a_1} \sqrt{rac{T_1}{T_2}}$$

inserting u_p/a_1 and T_1/T_2 from relations on previous slides we get:

$$M_{p} = \frac{1}{\gamma} \left(\frac{p_{2}}{p_{1}} - 1\right) \left[\frac{\frac{2\gamma}{\gamma+1}}{\frac{\gamma-1}{\gamma+1} + \frac{p_{2}}{p_{1}}}\right]^{1/2} \left[\frac{1 + \left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{p_{2}}{p_{1}}\right)}{\left(\frac{\gamma+1}{\gamma-1}\right) \left(\frac{p_{2}}{p_{1}}\right) + \left(\frac{p_{2}}{p_{1}}\right)^{2}}\right]^{1/2}$$
Niklas Andersson - Chalmers

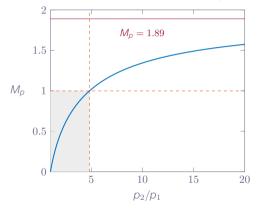
Moving Normal Shock Waves - Induced Flow Mach Number

Note!

$$\lim_{\substack{\frac{p_2}{p_1} \to \infty}} M_p \to \sqrt{\frac{2}{\gamma(\gamma - 1)}}$$

for air ($\gamma = 1.4$)
$$\lim_{\frac{p_2}{p_1} \to \infty} M_p \to 1.89$$

Induced Mach number ($\gamma = 1.4$)



Moving Normal Shock Waves - Example

Moving normal shock with $p_2/p_1 = 10$

 $(p_1 = 1.0 \text{ bar}, T_1 = 300 \text{ K}, \gamma = 1.4)$

 $\Rightarrow M_{\rm s} = 2.95$ and $W = 1024.2 \ m/s$

The shock is advancing with almost **three times** the speed of sound!

Behind the shock the induced velocity is $u_p = 756.2 \text{ m/s} \Rightarrow$ supersonic flow $(a_2 = 562.1 \text{ m/s})$

May be calculated by formulas 7.13, 7.16, 7.10, 7.11 or by using Table A.2 for stationary normal shock ($u_1 = W, u_2 = W - u_p$)

Moving Normal Shock Waves - Total Enthalpy

Note! $h_{o_1} \neq h_{o_2}$

constant total enthalpy is only valid for stationary shocks!

shock is uniquely defined by pressure ratio p_2/p_1

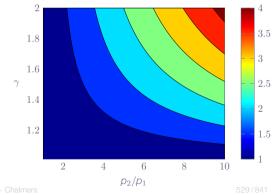
$$u_{1} = 0$$

$$h_{o_{1}} = h_{1} + \frac{1}{2}u_{1}^{2} = h_{1}$$

$$h_{o_{2}} = h_{2} + \frac{1}{2}u_{2}^{2}$$

$$h_{2} > h_{1} \Rightarrow h_{o_{2}} > h_{o_{1}}$$

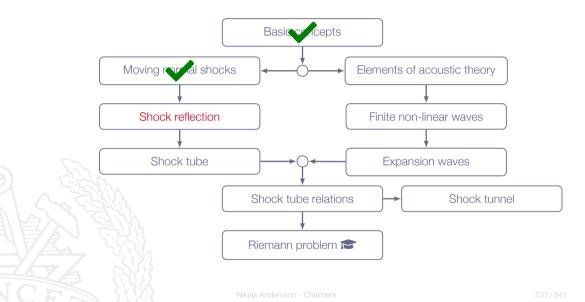
h2/h1 = T2/T1 (constant C_p)



Moving Normal Shock Waves - Total Enthalpy

Gas/Vapor	Ratio of specific heats (γ)	Gas constant R
Acetylene	1.23	319
Air (standard)	1.40	287
Ammonia	1.31	530
Argon	1.67	208
Benzene	1.12	100
Butane	1.09	143
Carbon Dioxide	1.29	189
Carbon Disulphide	1.21	120
Carbon Monoxide	1.40	297
Chlorine	1.34	120
Ethane	1.19	276
Ethylene	1.24	296
Helium	1.67	2080
Hydrogen	1.41	4120
Hydrogen chloride	1.41	230
Methane	1.30	518
Natural Gas (Methane)	1.27	500
Nitric oxide	1.39	277
Nitrogen	1.40	297
Nitrous oxide	1.27	180
Oxygen	1.40	260
Propane	1.13	189
Steam (water)	1.32	462
Sulphur dioxide	1.29	130

Roadmap - Unsteady Wave Motion



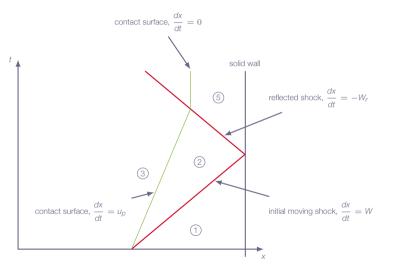
Chapter 7.3 Reflected Shock Wave

Niklas Andersson - Chalmers

One-Dimensional Flow with Friction

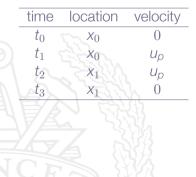
what happens when a moving shock approaches a wall?

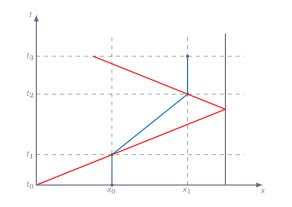
Shock Reflection



Shock Reflection - Particle Path

A fluid particle located at x_0 at time t_0 (a location ahead of the shock) will be affected by the moving shock and follow the blue path





Shock Reflection Relations

In the frame of reference of the reflected shock we have

```
velocity ahead of shock: W_r + u_p
```

velocity behind shock: Wr

where W_r is the velocity of the reflected shock and u_p is the induced flow velocity behind the incident shock

Shock Reflection Relations

Continuity:

 $\rho_2(W_r + u_p) = \rho_5 W_r$

Momentum:

$$(p_2 + \rho_2(W_r + u_p)^2) = p_5 + \rho_5 W_r^2$$

$$h_2 + \frac{1}{2}(W_r + u_p)^2 = h_5 + \frac{1}{2}W_r^2$$

Shock Reflection Relations

Reflected shock is determined such that $u_5 = 0$

$$\frac{M_r}{M_r^2 - 1} = \frac{M_s}{M_s^2 - 1} \sqrt{1 + \frac{2(\gamma - 1)}{(\gamma + 1)^2} (M_s^2 - 1) \left(\gamma + \frac{1}{M_s^2}\right)}$$

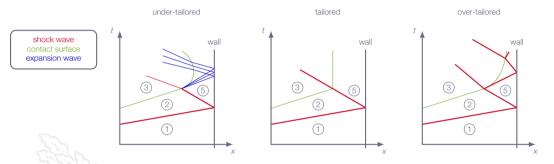
$$M_r = \frac{W_r + u_p}{a_2}$$

Tailored v.s. Non-Tailored Shock Reflection

The time duration of condition 5 is determined by what happens after interaction between reflected shock and contact discontinuity

For special choice of initial conditions (tailored case), this interaction is negligible, thus prolonging the duration of condition 5

Tailored v.s. Non-Tailored Shock Reflection



Under-tailored conditions:

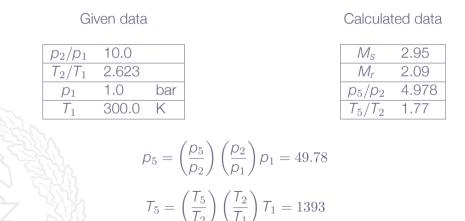
Mach number of incident wave lower than in tailored conditions

Over-tailored conditions:

Mach number of incident wave higher than in tailored conditions

Shock Reflection - Example

Shock reflection in shock tube ($\gamma=1.4$) (Example 7.1 in Anderson)

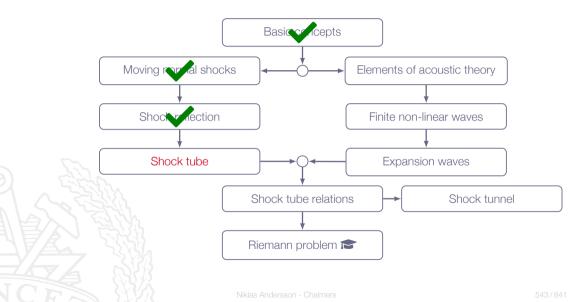


Very high pressure and temperature conditions in a specified location with very high precision (p_5, T_5)

measurements of thermodynamic properties of various gases at extreme conditions, *e.g.* dissociation energies, molecular relaxation times, etc.

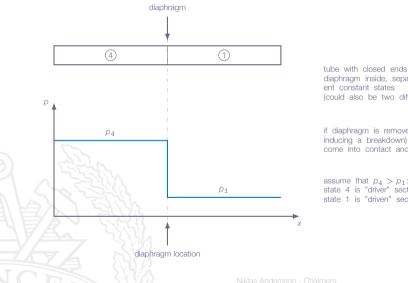
measurements of chemical reaction properties of various gas mixtures at extreme conditions

Roadmap - Unsteady Wave Motion



The Shock Tube

Shock Tube

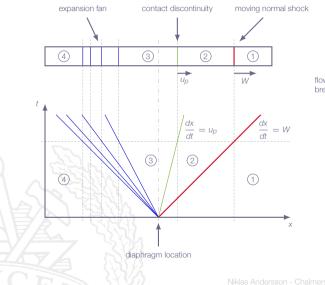


diaphragm inside, separating two different constant states (could also be two different gases)

if diaphragm is removed suddenly (by inducing a breakdown) the two states come into contact and a flow develops

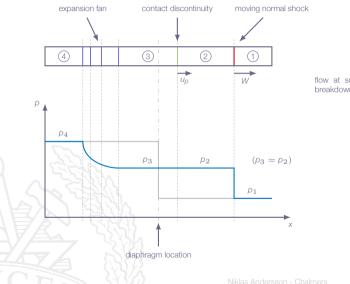
assume that $p_4 > p_1$: state 4 is "driver" section state 1 is "driven" section

Shock Tube



flow at some time after diaphragm breakdown

Shock Tube



flow at some time after diaphragm breakdown

Shock Tube - Basic Principles

As the diaphragm is removed, a pressure discontinuity is generated

The only process that can generate a pressure **discontinuity** in the gas is a **shock**

In chapter 3 we learned that the velocity upstream of the shock **must be supersonic**

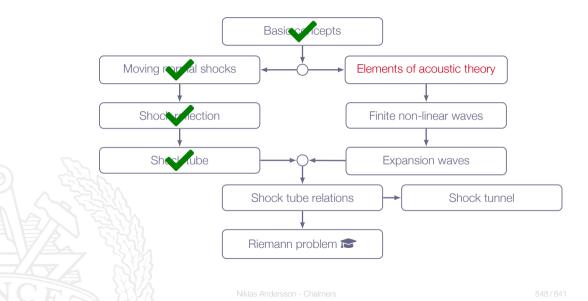
Since the gas is standing still when the shock tube is started, **the shock must move** in order to establish the required **relative velocity**

The shock must move in to the gas with the lower pressure

By using light gases for the **driver section** (*e.g.* He) and heavier gases for the **driven section** (*e.g.* air) the pressure p_4 required for a specific p_2/p_1 ratio is significantly reduced

If T_4/T_1 is increased, the pressure p_4 required for a specific p_2/p_1 is also reduced

Roadmap - Unsteady Wave Motion



Chapter 7.5 Elements of Acoustic Theory

Sound Waves - Sound Pressure Level

sound wave	L_p [dB]	Δp [Pa]
Weakest audible sound wave	0	2.83×10^{-5}
Loud sound wave	91	$1.00 imes 10^0$
Amplified music	120	2.80×10^1
Jet engine @ 30 m	130	9.00×10^1
Threshold of pain	140	2.83×10^2
Military jet @ 30 m	150	8.90×10^2

Example (Loud sound wave):

 $\Delta p \sim$ 1 Pa (91 dB) gives $\Delta \rho \sim 8.5 \times 10^{-6}$ kg/m³ and $\Delta u \sim 2.4 \times 10^{-3}$ m/s

PDE:s for conservation of mass and momentum derived in Chapter 6:

	conservation form	non-conservation form
mass	$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$	$\frac{D\rho}{Dt} + \rho(\nabla \cdot \mathbf{v}) = 0$
momentum	$\frac{\partial}{\partial t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + \rho \mathbf{I}) = 0$	$\rho \frac{D\mathbf{v}}{Dt} + \nabla \rho = 0$

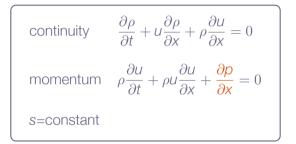
For adiabatic inviscid flow we also have the entropy equation as

 $\frac{Ds}{Dt} = 0$

Assume one-dimensional flow

$$\left. \begin{array}{cc}
\rho &= \rho(\mathbf{x},t) \\
\mathbf{v} &= u(\mathbf{x},t)\mathbf{e}_{\mathbf{x}} \\
\rho &= \rho(\mathbf{x},t) \\
\dots \end{array} \right\} \Rightarrow$$

continuity $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$ momentum $\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = 0$ *s*=constant



More unknowns than equations \Rightarrow the equation system can not be solved Can $\frac{\partial p}{\partial x}$ be expressed in terms of density? Leading question; it is possible so let's do just that ...

From Chapter 1: any thermodynamic state variable is uniquely defined by any two other state variables

$$p = p(\rho, s) \Rightarrow dp = \left(\frac{\partial p}{\partial \rho}\right)_s d\rho + \left(\frac{\partial p}{\partial s}\right)_\rho ds$$

s=constant gives

$$dp = \left(\frac{\partial \rho}{\partial \rho}\right)_{s} d\rho = a^{2} d\rho$$

$$\Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0\\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + a^2 \frac{\partial \rho}{\partial x} = 0 \end{cases}$$

Assume **small perturbations** around stagnant reference condition:

 $\rho = \rho_{\infty} + \Delta \rho \qquad p = p_{\infty} + \Delta p \qquad T = T_{\infty} + \Delta T \qquad u = u_{\infty} + \Delta u = \{u_{\infty} = 0\} = \Delta u$

where ρ_{∞} , p_{∞} , and T_{∞} are constant

Now, insert $\rho = (\rho_{\infty} + \Delta \rho)$ and $u = \Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t} (\Delta \rho) + \Delta u \frac{\partial}{\partial x} (\Delta \rho) + (\rho_{\infty} + \Delta \rho) \frac{\partial}{\partial x} (\Delta u) = 0 \\ (\rho_{\infty} + \Delta \rho) \frac{\partial}{\partial t} (\Delta u) + (\rho_{\infty} + \Delta \rho) \Delta u \frac{\partial}{\partial x} (\Delta u) + a^2 \frac{\partial}{\partial x} (\Delta \rho) = 0 \end{cases}$$

Assume **small perturbations** around stagnant reference condition:

 $\rho = \rho_{\infty} + \Delta \rho \qquad p = p_{\infty} + \Delta p \qquad T = T_{\infty} + \Delta T \qquad u = u_{\infty} + \Delta u = \{u_{\infty} = 0\} = \Delta u$

where ρ_{∞} , p_{∞} , and T_{∞} are constant

Now, insert $\rho = (\rho_{\infty} + \Delta \rho)$ and $u = \Delta u$ in the continuity and momentum equations (derivatives of ρ_{∞} are zero)

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t}(\Delta\rho) + \Delta u \frac{\partial}{\partial x}(\Delta\rho) + (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial x}(\Delta u) = 0\\ (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial t}(\Delta u) + (\rho_{\infty} + \Delta\rho) \Delta u \frac{\partial}{\partial x}(\Delta u) + a^{2} \frac{\partial}{\partial x}(\Delta\rho) = 0 \end{cases}$$

Speed of sound is a thermodynamic state variable $\Rightarrow a^2 = a^2(\rho, s)$. With entropy constant $\Rightarrow a^2 = a^2(\rho)$

Taylor expansion around a_∞ with $(\Delta\rho=\rho-\rho_\infty)$ gives

$$a^{2} = a_{\infty}^{2} + \left(\frac{\partial}{\partial\rho}(a^{2})\right)_{\infty} \Delta\rho + \frac{1}{2} \left(\frac{\partial^{2}}{\partial\rho^{2}}(a^{2})\right)_{\infty} (\Delta\rho)^{2} + \dots$$

$$\begin{cases} \frac{\partial}{\partial t}(\Delta\rho) + \Delta u \frac{\partial}{\partial x}(\Delta\rho) + (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial x}(\Delta u) = 0\\ (\rho_{\infty} + \Delta\rho) \frac{\partial}{\partial t}(\Delta u) + (\rho_{\infty} + \Delta\rho) \Delta u \frac{\partial}{\partial x}(\Delta u) + \left[a_{\infty}^{2} + \left(\frac{\partial}{\partial\rho}(a^{2})\right)_{\infty} \Delta\rho + \dots\right] \frac{\partial}{\partial x}(\Delta\rho) = 0 \end{cases}$$

Elements of Acoustic Theory - Acoustic Equations

Since $\Delta \rho$ and Δu are assumed to be small ($\Delta \rho \ll \rho_{\infty}$, $\Delta u \ll a$)

- 1. products of perturbations can be neglected
- 2. higher-order terms in the Taylor expansion can be neglected

$$\Rightarrow \begin{cases} \frac{\partial}{\partial t}(\Delta \rho) + \rho_{\infty}\frac{\partial}{\partial x}(\Delta u) = 0\\ \rho_{\infty}\frac{\partial}{\partial t}(\Delta u) + a_{\infty}^{2}\frac{\partial}{\partial x}(\Delta \rho) = 0 \end{cases}$$

Note! The assumption is only valid for small perturbations (sound waves)

This type of derivation is based on linearization, *i.e.* the acoustic equations are linear

Elements of Acoustic Theory - Acoustic Equations

Acoustic equations:

"... describe the motion of gas induced by the passage of a sound wave ..."

Combining linearized continuity and the momentum equations we get

$$\boxed{\frac{\partial^2}{\partial t^2}(\Delta \rho) = a_\infty^2 \frac{\partial^2}{\partial x^2}(\Delta \rho)}$$

(combine the time derivative of the continuity eqn. and the divergence of the momentum eqn.)

General solution:

$$\Delta \rho(x,t) = F(x - a_{\infty}t) + G(x + a_{\infty}t)$$

wave traveling in positive *x*-direction with speed a_{∞}

wave traveling in negative *x*-direction with speed a_{∞}

F and G may be arbitrary functions

Wave shape is determined by functions F and G

Spatial and temporal derivatives of F are obtained according to

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial (x - a_{\infty} t)} \frac{\partial (x - a_{\infty} t)}{\partial t} = -a_{\infty} F'$$
$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial (x - a_{\infty} t)} \frac{\partial (x - a_{\infty} t)}{\partial x} = F'$$

spatial and temporal derivatives of G can of course be obtained in the same way...

with $\Delta \rho(x,t) = F(x - a_{\infty}t) + G(x + a_{\infty}t)$ and the derivatives of *F* and *G* we get

$$\frac{\partial^2}{\partial t^2}(\Delta\rho) = a_\infty^2 F'' + a_\infty^2 G''$$

and

$$\frac{\partial^2}{\partial x^2}(\Delta \rho) = F'' + G''$$

which gives

$$\frac{\partial^2}{\partial t^2}(\Delta \rho) - a_{\infty}^2 \frac{\partial^2}{\partial x^2}(\Delta \rho) = 0$$

i.e., the proposed solution fulfils the wave equation

F and *G* may be arbitrary functions, assume G = 0

 $\Delta \rho(\mathbf{x}, t) = F(\mathbf{x} - \mathbf{a}_{\infty} t)$

If $\Delta \rho$ is constant (constant wave amplitude), $(x - a_{\infty}t)$ must be a constant which implies

where *c* is a constant

$$x = a_{\infty}t + c$$

 $\frac{dx}{dt} = a_{\infty}$

Let's try to find a relation between $\Delta \rho$ and Δu

 $\Delta \rho(x,t) = F(x - a_{\infty}t)$ (wave in positive *x* direction) gives:

 $\frac{\partial}{\partial t}(\Delta \rho) = -a_{\infty}F'$ and $\frac{\partial}{\partial x}(\Delta \rho) = F'$

$$\underbrace{\frac{\partial}{\partial t}(\Delta \rho)}_{-a_{\infty}F'} + a_{\infty} \underbrace{\frac{\partial}{\partial x}(\Delta \rho)}_{F'} = 0$$

$$\frac{\partial}{\partial x}(\Delta \rho) = -\frac{1}{a_{\infty}}\frac{\partial}{\partial t}(\Delta \rho)$$

or

Linearized momentum equation:

$$\rho_{\infty}\frac{\partial}{\partial t}(\Delta u) = -a_{\infty}^{2}\frac{\partial}{\partial x}(\Delta \rho) \Rightarrow$$

$$\frac{\partial}{\partial t}(\Delta U) = -\frac{a_{\infty}^2}{\rho_{\infty}}\frac{\partial}{\partial x}(\Delta \rho) = \left\{\frac{\partial}{\partial x}(\Delta \rho) = -\frac{1}{a_{\infty}}\frac{\partial}{\partial t}(\Delta \rho)\right\} = \frac{a_{\infty}}{\rho_{\infty}}\frac{\partial}{\partial t}(\Delta \rho)$$

$$\frac{\partial}{\partial t} \left(\Delta u - \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho \right) = 0 \Rightarrow \Delta u - \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho = \text{const}$$

In undisturbed gas $\Delta u = \Delta \rho = 0$ which implies that the constant must be zero and thus

$$\Delta u = \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho$$

Similarly, for $\Delta \rho(x,t) = G(x + a_{\infty}t)$ (wave in negative *x* direction) we obtain:

$$\boxed{\Delta u = -\frac{a_{\infty}}{\rho_{\infty}}\Delta\rho}$$

Also, since $\Delta p = a_{\infty}^2 \Delta \rho$ we get:

(-*x*

Right going wave (+x direction)
$$\Delta u = \frac{a_{\infty}}{\rho_{\infty}} \Delta \rho = \frac{1}{a_{\infty}\rho_{\infty}} \Delta \rho$$

Left going wave

direction)
$$\Delta u = -\frac{a_{\infty}}{\rho_{\infty}}\Delta \rho = -\frac{1}{a_{\infty}\rho_{\infty}}\Delta \rho$$

 Δu denotes **induced mass motion** and is positive in the positive *x*-direction

$$\Delta u = \pm \frac{a_{\infty} \Delta \rho}{\rho_{\infty}} = \pm \frac{\Delta \rho}{a_{\infty} \rho_{\infty}}$$

condensation (the part of the sound wave where $\Delta \rho > 0$): Δu is always in the **same** direction as the wave motion

rarefaction (the part of the sound wave where $\Delta \rho < 0$): Δu is always in the direction **opposite** to the wave motion

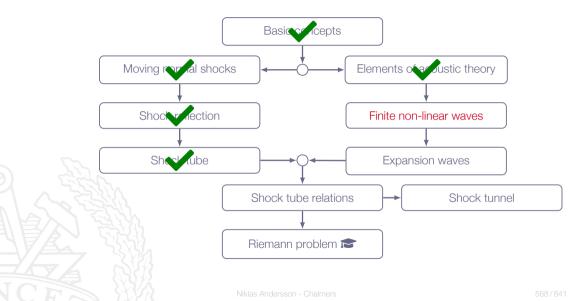
Combining linearized continuity and the momentum equations we get

$$\boxed{\frac{\partial^2}{\partial t^2}(\Delta \rho) = a_{\infty}^2 \frac{\partial^2}{\partial x^2}(\Delta \rho)}$$

Due to the assumptions made, the **equation is not exact** More and more accurate as the perturbations becomes smaller and smaller

So, how should we describe waves with larger amplitudes?

Roadmap - Unsteady Wave Motion



Chapter 7.6 Finite (Non-Linear) Waves

Finite (Non-Linear) Waves

When $\Delta \rho$, Δu , Δp , ... Become large, the **linearized acoustic equations become poor approximations**

Non-linear equations must be used

One-dimensional non-linear continuity and momentum equations:

$$\frac{\frac{\partial \rho}{\partial t} + u\frac{\partial \rho}{\partial x} + \rho\frac{\partial u}{\partial x} = 0}{\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{1}{\rho}\frac{\partial \rho}{\partial x} = 0}$$

We still assume isentropic flow, ds = 0

$$\frac{\partial \rho}{\partial t} = \left(\frac{\partial \rho}{\partial \rho}\right)_s \frac{\partial \rho}{\partial t} = \frac{1}{a^2} \frac{\partial \rho}{\partial t}$$

$$\frac{\partial \rho}{\partial x} = \left(\frac{\partial \rho}{\partial \rho}\right)_s \frac{\partial \rho}{\partial x} = \frac{1}{a^2} \frac{\partial \rho}{\partial x}$$

Inserted in the continuity equation this gives:

$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho a^2 \frac{\partial u}{\partial x} = 0$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$

Add $1/(\rho a)$ times the continuity equation to the momentum equation:

$$\left[\frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x}\right] + \frac{1}{\rho a}\left[\frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x}\right] = 0$$

If we instead **subtract** $1/(\rho a)$ times the continuity equation from the momentum equation, we get:

$$\left[\frac{\partial u}{\partial t} + (u-a)\frac{\partial u}{\partial x}\right] - \frac{1}{\rho a}\left[\frac{\partial p}{\partial t} + (u-a)\frac{\partial p}{\partial x}\right] = 0$$

Since u = u(x, t), we have:

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial x}dx = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial x}\frac{dx}{dt}dt$$

Let
$$\frac{dx}{dt} = u + a$$
 gives
$$du = \left[\frac{\partial u}{\partial t} + (u + a)\frac{\partial u}{\partial x}\right] dt$$

Interpretation: change of *u* in the direction of line $\frac{dx}{dt} = u + a$

Niklas Andersson - Chalmers

In the same way we get:

$$dp = \frac{\partial p}{\partial t}dt + \frac{\partial p}{\partial x}\frac{dx}{dt}dt$$

and thus

$$dp = \left[rac{\partial p}{\partial t} + (u+a)rac{\partial p}{\partial x}
ight] dt$$

Interpretation: change of p in the direction of line $\frac{dx}{dt} = u + a$

Now, if we combine

$$\begin{bmatrix} \frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x} \end{bmatrix} + \frac{1}{\rho a} \begin{bmatrix} \frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x} \end{bmatrix} = 0$$
$$du = \begin{bmatrix} \frac{\partial u}{\partial t} + (u+a)\frac{\partial u}{\partial x} \end{bmatrix} dt$$
$$dp = \begin{bmatrix} \frac{\partial p}{\partial t} + (u+a)\frac{\partial p}{\partial x} \end{bmatrix} dt$$
$$\begin{bmatrix} \frac{du}{dt} + \frac{1}{\rho a}\frac{dp}{dt} = 0 \end{bmatrix}$$

Niklas Andersson - Chalmers

Characteristic Lines

Thus, along a line dx = (u + a)dt we have

$$du + \frac{dp}{\rho a} = 0$$

In the same way we get along a line where dx = (u - a)dt

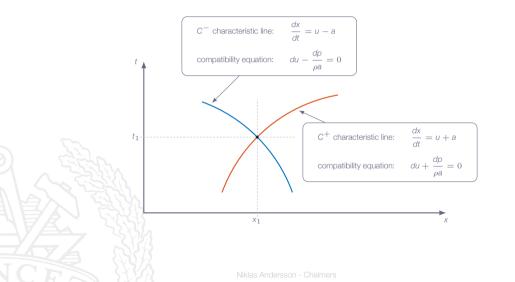
$$du - \frac{dp}{\rho a} = 0$$

We have found a path through a point (x, t) along which the governing partial differential equations reduces to ordinary differential equations

These paths or lines are called characteristic lines

The C^+ and C^- characteristic lines are physically the paths of **right- and left-running acoustic waves** in the *xt*-plane

Characteristic Lines



Characteristic Lines - Summary

$$\frac{du}{dt} + \frac{1}{\rho a} \frac{dp}{dt} = 0 \quad \text{along } C^+ \text{ characteristic}$$
$$\frac{du}{dt} - \frac{1}{\rho a} \frac{dp}{dt} = 0 \quad \text{along } C^- \text{ characteristic}$$

$$du + \frac{dp}{\rho a} = 0 \quad \text{along } C^+ \text{ characteristic}$$
$$du - \frac{dp}{\rho a} = 0 \quad \text{along } C^- \text{ characteristic}$$

Integration gives:

$$J^+ = u + \int \frac{dp}{\rho a} = \text{constant along } C^+ \text{ characteristic}$$

 $J^- = u - \int \frac{dp}{\rho a} = \text{constant along } C^- \text{ characteristic}$

We need to rewrite $\frac{dp}{\rho a}$ to be able to perform the integrations

For an isentropic processes the **isentropic relations** give:

$$p = c_1 T^{\gamma/(\gamma-1)} = c_2 a^{2\gamma/(\gamma-1)}$$

where c_1 and c_2 are constants and thus

$$dp=c_2\left(rac{2\gamma}{\gamma-1}
ight)a^{[2\gamma/(\gamma-1)-1]}da$$

Assume calorically perfect gas: $a^2 = \frac{\gamma \rho}{\rho} \Rightarrow \rho = \frac{\gamma \rho}{a^2}$

with $\rho = c_2 a^{2\gamma/(\gamma-1)}$ we get $\rho = c_2 \gamma a^{[2\gamma/(\gamma-1)-2]}$

$$J^{+} = u + \int \frac{dp}{\rho a} = u + \int \frac{C_{2}\left(\frac{2\gamma}{\gamma-1}\right)a^{[2\gamma/(\gamma-1)-1]}}{C_{2}\gamma a^{[2\gamma/(\gamma-1)-1]}}da = u + \int \frac{2da}{\gamma-1}$$

$$J^{+} = u + \frac{2a}{\gamma - 1}$$
$$J^{-} = u - \frac{2a}{\gamma - 1}$$

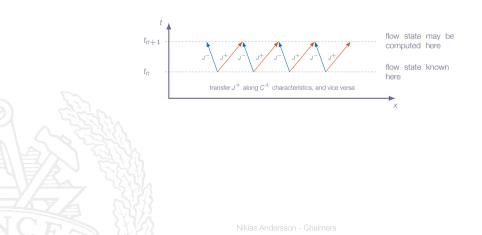
Niklas Andersson - Chalmers

If J^+ and J^- are known at some point (x, t), then

$$\begin{cases} J^{+} + J^{-} = 2u \\ J^{+} - J^{-} = \frac{4a}{\gamma - 1} \end{cases} \Rightarrow \begin{cases} u = \frac{1}{2}(J^{+} + J^{-}) \\ a = \frac{\gamma - 1}{4}(J^{+} - J^{-}) \end{cases}$$

With the Riemann invariants known, the flow state is uniquely defined!

Method of Characteristics



Summary

Acoustic waves

- 1. $\Delta \rho$, Δu , etc **very small**
- 2. All parts of the wave propagate with the same **velocity** a_{∞}
- 3. The wave shape stays the same
 - The flow is governed by linear relations

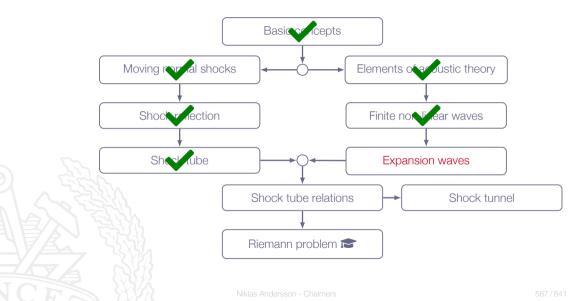
Finite (non-linear) waves

- 1. $\Delta \rho$, Δu , etc can be **large**
- 2. Each local part of the wave propagates at the **local velocity** (u + a)
- 3. The wave **shape changes** with time
- 4. The flow is governed by **non-linear** relations

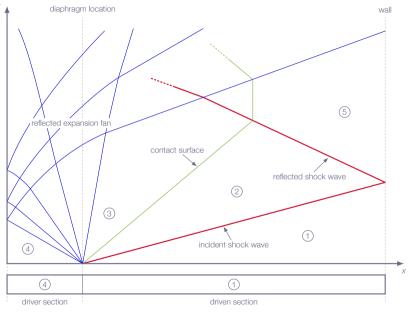
the method of characteristics is a central element in classic compressible flow theory

Niklas Andersson - Chalmers

Roadmap - Unsteady Wave Motion



Chapter 7.7 Incident and Reflected Expansion Waves

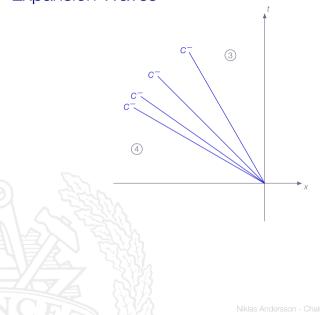


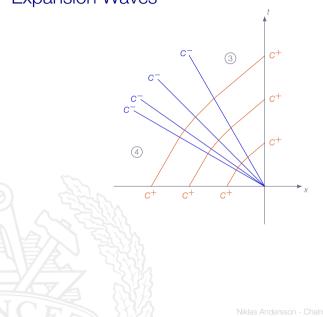
Properties of a left-running expansion wave

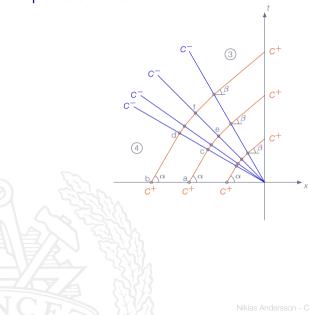
- 1. All flow properties are constant along C^- characteristics
- 2. The wave head is propagating into region 4 (high pressure)
- 3. The wave tail defines the limit of region 3 (lower pressure)
- 4. Regions 3 and 4 are assumed to be constant states

For calorically perfect gas:

$$J^{+} = u + \frac{2a}{\gamma - 1}$$
 is constant along C^{+} lines
$$J^{-} = u - \frac{2a}{\gamma - 1}$$
 is constant along C^{-} lines

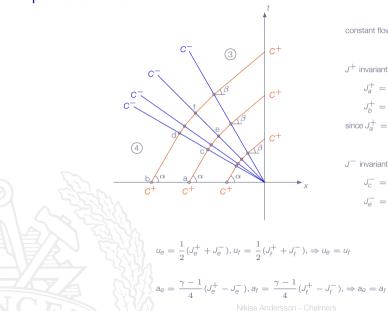






constant flow properties in region 4: $J_a^+ = J_b^+$

- J^+ invariants constant along C^+ characteristics: $J_a^+ = J_c^+ = J_e^+$ $J_{b}^{+} = J_{d}^{+} = J_{f}^{+}$ since $J_{a}^{+} = J_{b}^{+}$ this also implies $J_{a}^{+} = J_{f}^{+}$
- J^- invariants constant along C^- characteristics: $J_c^- = J_d^ J_e^- = J_f^-$



constant flow properties in region 4: $J_a^+ = J_b^+$

 $\begin{aligned} J^+ \text{ invariants constant along } C^+ \text{ characteristics:} \\ J^+_a &= J^+_c = J^+_e \\ J^+_b &= J^+_d = J^+_f \\ \text{since } J^+_a &= J^+_b \text{ this also implies } J^+_e = J^+_f \end{aligned}$

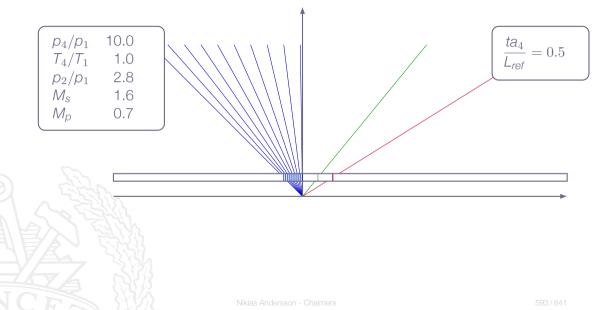
 J^- invariants constant along C^- characteristics: $J^-_c ~= J^-_d \\ J^-_\theta ~= J^-_f$

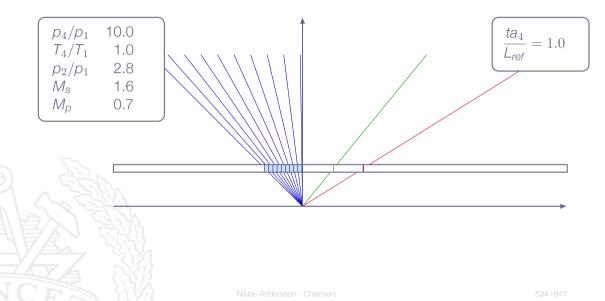
591/841

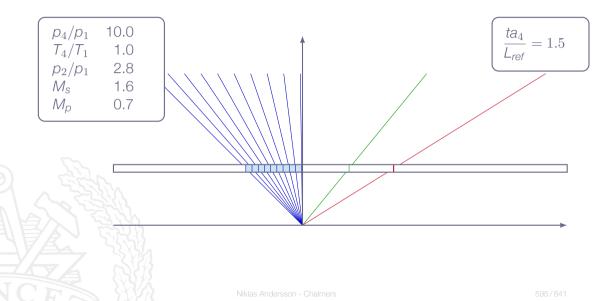
Along each C^- line u and a are **constants** which means that

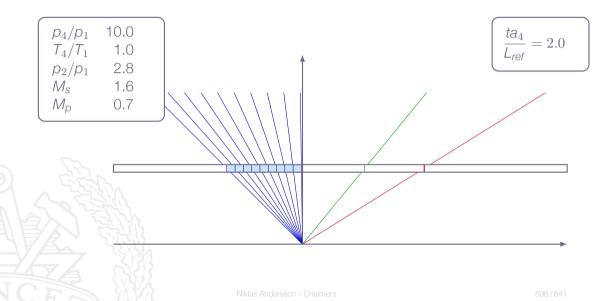
$$\frac{dx}{dt} = u - a = const$$

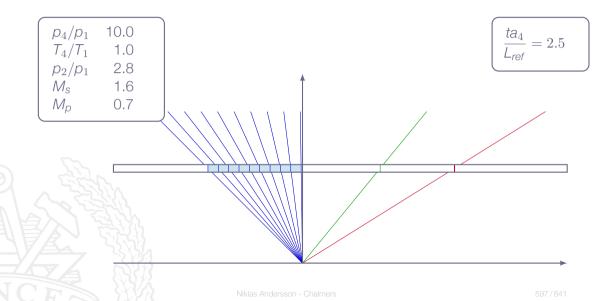
C⁻ characteristics are **straight lines** in *xt*-space

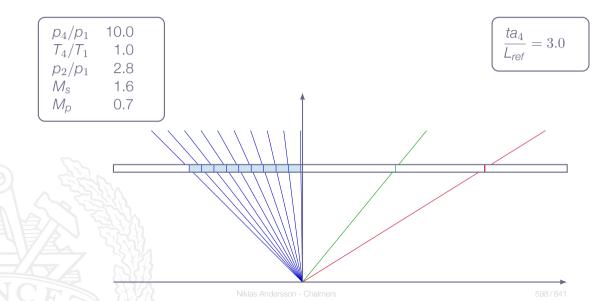












Shock Tube Expansion Waves - Summary

The start and end conditions are the same for all C^+ lines

 J^+ invariants have the same value for all C^+ characteristics

 C^- characteristics are straight lines in xt-space

Simple expansion waves centered at (x, t) = (0, 0)

In a left-running expansion fan:

 J^+ is constant throughout expansion fan, which implies:

$$u + \frac{2a}{\gamma - 1} = u_4 + \frac{2a_4}{\gamma - 1} = u_3 + \frac{2a_3}{\gamma - 1}$$

 J^- is constant along C^- lines, but varies from one line to the next, which means that

$$u - \frac{2a}{\gamma - 1}$$

is constant along each C^- line

Since $u_4 = 0$ we obtain:

$$u + \frac{2a}{\gamma - 1} = u_4 + \frac{2a_4}{\gamma - 1} = \frac{2a_4}{\gamma - 1} \Rightarrow$$
$$\frac{a}{a_4} = 1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4}$$

with $a = \sqrt{\gamma RT}$ we get

$$\frac{T}{T_4} = \left[1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4}\right]^2$$

Expansion Wave Relations

Isentropic flow \Rightarrow we can use the isentropic relations

complete description in terms of u/a_4

$$\frac{T}{T_4} = \left[1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4}\right]^2$$
$$\frac{\rho}{\rho_4} = \left[1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4}\right]^{\frac{2\gamma}{\gamma - 1}}$$
$$\frac{\rho}{\rho_4} = \left[1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4}\right]^{\frac{2}{\gamma - 1}}$$

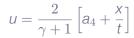
Expansion Wave Relations

Since C^- characteristics are straight lines, we have:

$$\frac{dx}{dt} = u - a \Rightarrow x = (u - a)t$$

$$\frac{a}{a_4} = 1 - \frac{1}{2}(\gamma - 1)\frac{u}{a_4} \Rightarrow a = a_4 - \frac{1}{2}(\gamma - 1)u \Rightarrow$$

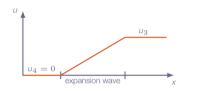
$$x = \left[u - a_4 + \frac{1}{2}(\gamma - 1)u\right]t = \left[\frac{1}{2}(\gamma - 1)u - a_4\right]t \Rightarrow$$



Niklas Andersson - Chalmers

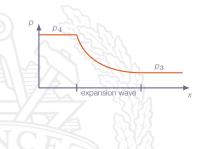
603/841

Expansion Wave Relations

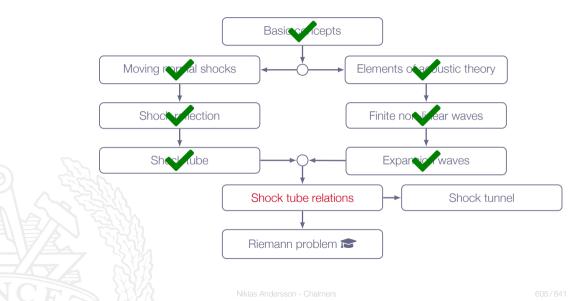


Expansion wave head is advancing to the left with speed a_4 into the stagnant gas

Expansion wave tail is advancing with speed $u_3 - a_3$, which may be positive or negative, depending on the initial states



Roadmap - Unsteady Wave Motion



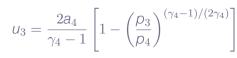
Chapter 7.8 Shock Tube Relations

Shock Tube Relations

solving for u_3 gives

$$u_{\rho} = u_{2} = \frac{a_{1}}{\gamma} \left(\frac{\rho_{2}}{\rho_{1}} - 1 \right) \left[\frac{\frac{2\gamma_{1}}{\gamma_{1} + 1}}{\frac{\rho_{2}}{\rho_{1}} + \frac{\gamma_{1} - 1}{\gamma_{1} + 1}} \right]^{1/2}$$

$$\frac{\rho_3}{\rho_4} = \left[1 - \frac{\gamma_4 - 1}{2} \left(\frac{u_3}{a_4}\right)\right]^{2\gamma_4/(\gamma_4 - 1)}$$



Niklas Andersson - Chalmers

Shock Tube Relations

а

But, $p_3 = p_2$ and $u_3 = u_2$ (no change in velocity and pressure over contact discontinuity)

$$\Rightarrow u_2 = \frac{2a_4}{\gamma_4 - 1} \left[1 - \left(\frac{\rho_2}{\rho_4}\right)^{(\gamma_4 - 1)/(2\gamma_4)} \right]$$

We have now two expressions for u_2 which gives us

$$-1\right) \left[\frac{\frac{2\gamma_1}{\gamma_1+1}}{\frac{\rho_2}{\rho_1}+\frac{\gamma_1-1}{\gamma_1+1}}\right]^{1/2} = \frac{2a_4}{\gamma_4-1} \left[1 - \left(\frac{\rho_2}{\rho_4}\right)^{(\gamma_4-1)/(2\gamma_4)}\right]$$

Shock Tube Relations

Rearranging gives:

$$\frac{\rho_4}{\rho_1} = \frac{\rho_2}{\rho_1} \left\{ 1 - \frac{(\gamma_4 - 1)(a_1/a_4)(\rho_2/\rho_1 - 1)}{\sqrt{2\gamma_1 \left[2\gamma_1 + (\gamma_1 + 1)(\rho_2/\rho_1 - 1)\right]}} \right\}^{-2\gamma_4/(\gamma_4 - 1)}$$

 p_2/p_1 as implicit function of p_4/p_1

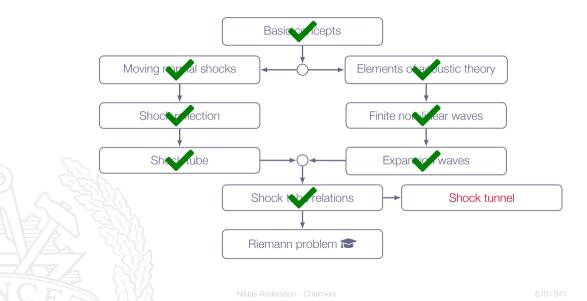
for a given p_4/p_1 , p_2/p_1 will increase with decreased a_1/a_4

$$a = \sqrt{\gamma RT} = \sqrt{\gamma (R_u/M)T}$$

the speed of sound in a light gas is higher than in a heavy gas driver gas: low molecular weight, high temperature driven gas: high molecular weight, low temperature

Niklas Andersson - Chalmers

Roadmap - Unsteady Wave Motion



Shock Tunnel

Addition of a convergent-divergent nozzle to a shock tube configuration

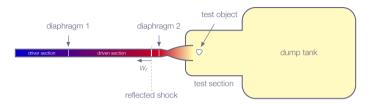
Capable of producing flow conditions which are close to those during the reentry of a space vehicles into the earth's atmosphere

high-enthalpy, hypersonic flows (short time) real gas effects

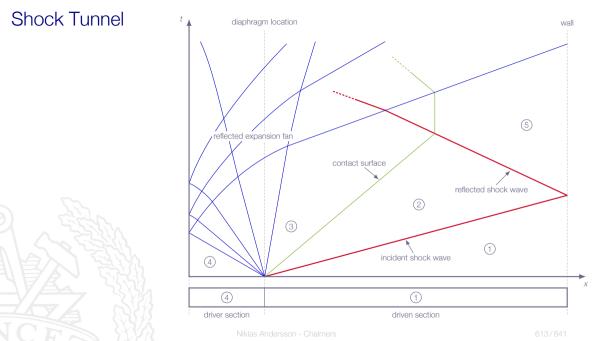
Example - Aachen TH2:

velocities up to 4 km/s stagnation temperatures of several thousand degrees

Shock Tunnel

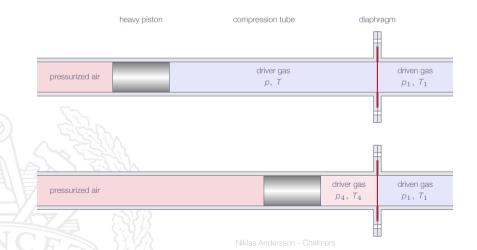


 High pressure in region 4 (driver section) diaphragm 1 burst primary shock generated
 Primary shock reaches end of shock tube shock reflection
 High pressure in region 5 diaphragm 2 burst nozzle flow initiated hypersonic flow in test section

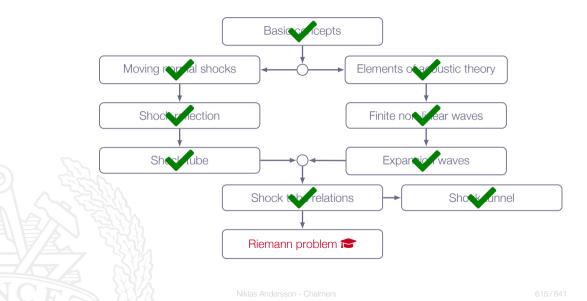


Shock Tunnel

By adding a compression tube to the shock tube a very high p_4 and T_4 may be achieved for any gas in a fairly simple manner



Roadmap - Unsteady Wave Motion



The shock tube problem is a special case of the general **Riemann Problem**

"... A Riemann problem, named after Bernhard Riemann, consists of an initial value problem composed by a conservation equation together with piecewise constant data having a single discontinuity ..."

Wikipedia

May show that solutions to the shock tube problem have the general form:

$$p = p(x/t)$$

$$\rho = \rho(x/t)$$

$$u = u(x/t)$$

$$T = T(x/t)$$

$$a = a(x/t)$$

where x = 0 denotes the position of the initial jump between states 1 and 4

Numerical method:

Finite-Volume Method (FVM) solver

three-stage Runge-Kutta time stepping

third-order characteristic upwinding scheme

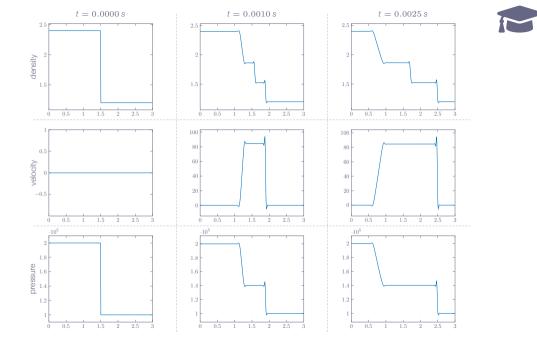
local artificial damping

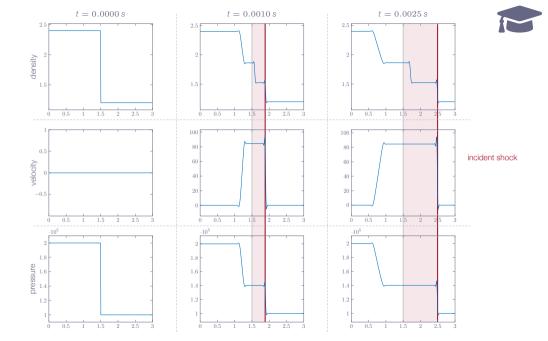
Left side conditions (state 4):

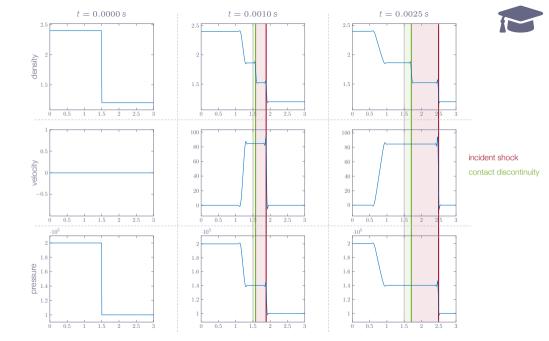
 $\rho = 2.4 \text{ kg/m}^3$ u = 0.0 m/s $\rho = 2.0 \text{ bar}$

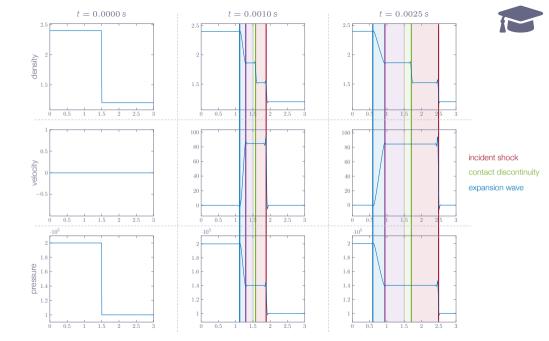
Right side conditions (state 1):

$$\label{eq:rho} \begin{split} \rho &= 1.2 \ \text{kg}/\text{m}^3 \\ u &= 0.0 \ \text{m/s} \\ p &= 1.0 \ \text{bar} \end{split}$$

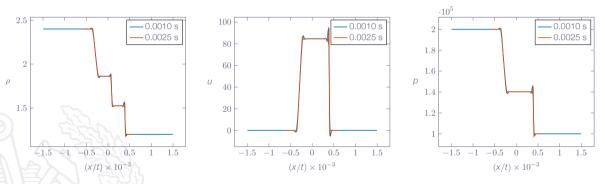








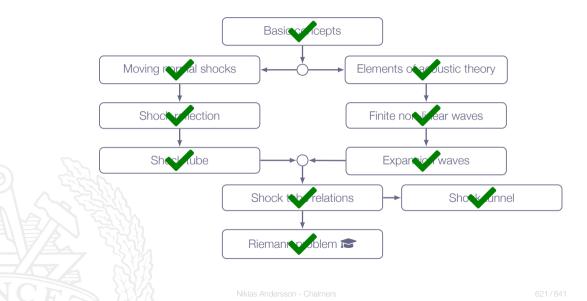
Riemann Problem - Shock Tube Simulation



The solution can be made self similar by plotting the flow field variables as function of x/t

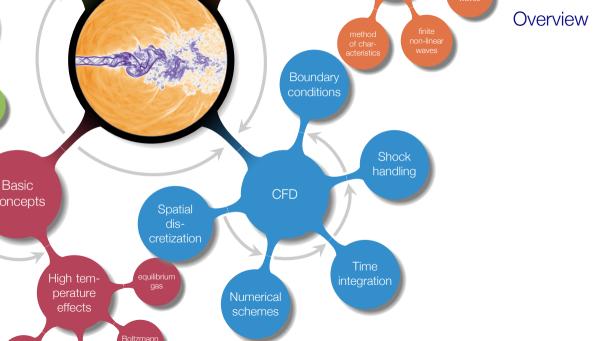
Niklas Andersson - Chalmers

Roadmap - Unsteady Wave Motion



Chapter 12 The Time-Marching Technique

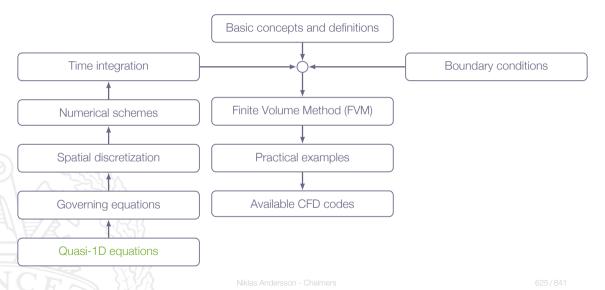
Niklas Andersson - Chalmers



Learning Outcomes

- 12 **Explain** the main principles behind a modern Finite Volume CFD code and such concepts as explicit/implicit time stepping, CFL number, conservation, handling of compression shocks, and boundary conditions
- 14 Analyze and verify the quality of the numerical solution
- 15 Explain the limitations in fluid flow simulation software

Roadmap - The Time-Marching Technique



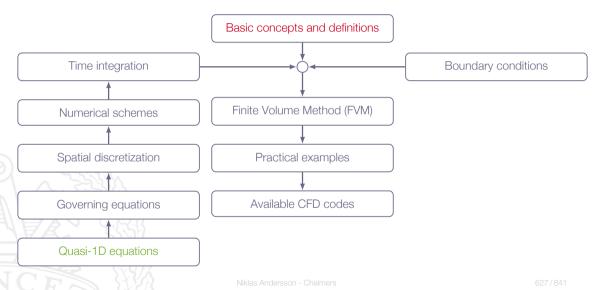
Motivation

Computational Fluid Dynamics (CFD) is the backbone of all practical engineering compressible flow analysis

As an engineer doing numerical compressible flow analyzes it is extremely important to have knowledge about the fundamental numerical principles and their **limitations**

Going through the material covered in this section will not make you understand all the details but you will get a feeling, which is a good start

Roadmap - The Time-Marching Technique



The Time-Marching Technique

The problems that we like to investigate numerically within the field of compressible flows can be categorized as

steady-state compressible flows

unsteady compressible flows

The **Time-marching technique** is a solver framework that addresses both problem categories

The Time-Marching Technique

Steady-state problems:

- 1. define simple initial solution
- 2. apply specified boundary conditions
- 3. march in time until steady-state solution is reached

Unsteady problems:

- apply specified initial solution
- apply specified boundary conditions
- 3. march in time for specified total time to reach a desired unsteady solution

establish fully developed flow before initiating data sampling

The Time-Marching Technique

The time-marching approach is a good alternative for simulating flows where there are both supersonic and subsonic regions

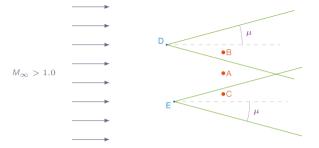
supersonic/hyperbolic:

perturbations propagate in preferred directions zone of influence/zone of dependence PDEs can be transformed into ODEs

subsonic/elliptic:

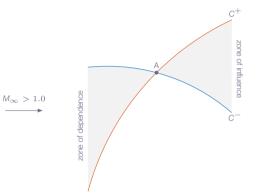
perturbations propagate in all directions

Zone of Influence and Zone of Dependence



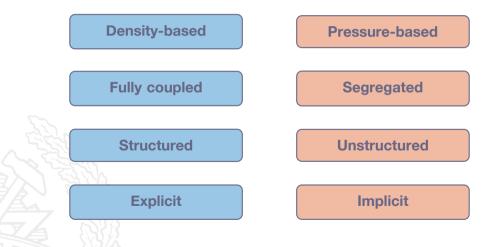
A, B and C at the same axial position in the flow
D and E are located upstream of A, B and C
Mach waves generated at D will affect the flow in B but not in A and C
Mach waves generated at E will affect the flow in C but not in A and B
The flow in A is unaffected by the both D and E

Zone of Influence and Zone of Dependence

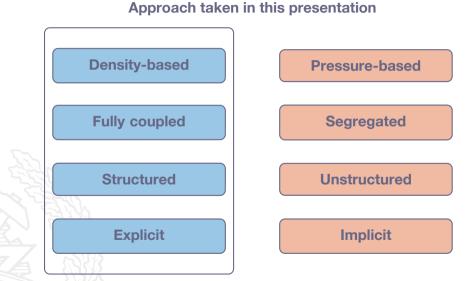


The **zone of dependence** for point A and the **zone of influence** of point A are defined by C^+ and C^- characteristic lines

Characterization of CFD Methods



Characterization of CFD Methods



Characterization of CFD Methods - Equations

Density-based

solve for density in the continuity equation suitable for transonic/supersonic flows

Pressure-based

the continuity and momentum equations are combined to form a pressure correction equation

suitable for subsonic/transonic flows

Niklas Andersson - Chalmers

Characterization of CFD Methods - Solver Approach

Fully coupled

all equations (continuity, momentum, energy, ...) are solved simultaneously suitable for transonic/supersonic flows

Segregated

the governing equations are solved in sequence suitable for subsonic flows

Characterization of CFD Methods - Time Stepping

Explicit

- short time steps
- + very stable

Characterization of CFD Methods - Time Stepping

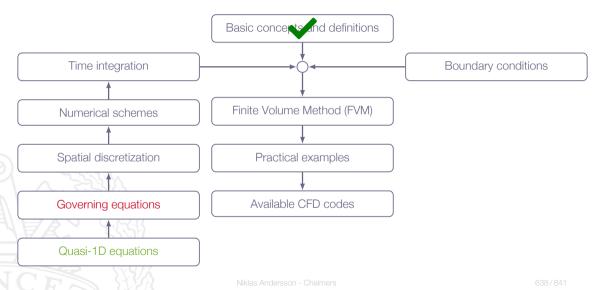
Explicit Time Stepping

Implicit Time Stepping

In general implicit solvers are more efficient than explicit solvers

For high-supersonic flows, explicit solvers may very well outperform implicit solvers

Roadmap - The Time-Marching Technique

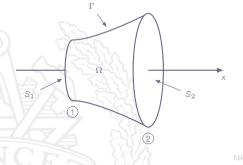


Governing Equations

Quasi-One-Dimensional Flow - Conceptual Idea

Introduce **cross-section-averaged flow quantities** \Rightarrow all quantities depend on *x* only

$$A = A(x), \ \rho = \rho(x), \ u = u(x), \ \rho = \rho(x), \ \dots$$



 Ω control volume

- S_1 left boundary (area A_1)
- S_2 right boundary (area A_2)
- Γ perimeter boundary

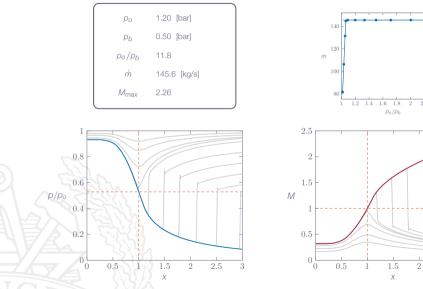
 $\partial \Omega = S_1 \cup \Gamma \cup S_2$

Quasi-One-Dimensional Flow - Governing Equations

Governing equations (general form):

$$\frac{d}{dt} \iiint \rho d\mathcal{V} + \bigoplus_{\partial \Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$
$$\frac{d}{dt} \iiint \rho u d\mathcal{V} + \bigoplus_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) u + \rho(\mathbf{n} \cdot \mathbf{e}_{\mathbf{x}}) \right] dS = 0$$
$$\frac{d}{dt} \iiint \rho \mathbf{e}_{o} d\mathcal{V} + \bigoplus_{\partial \Omega} \rho h_{o}(\mathbf{v} \cdot \mathbf{n}) dS = 0$$

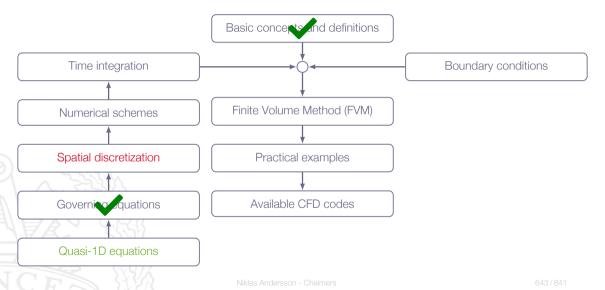
Quasi-One-Dimensional Flow - Example: Nozzle Flow



2.5

3

Roadmap - The Time-Marching Technique



Spatial Discretization

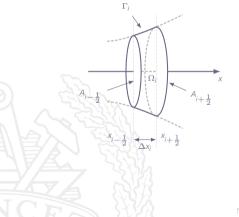
Discretization in space and time:

Method of Lines (a very common approach):

- 1. discretize in space \Rightarrow system of ordinary differential equations (ODEs)
- 2. discretize in time \Rightarrow time-stepping scheme for system of ODEs

Spatial discretization techniques:

FDM Finite-Difference Method FVM Finite-Volume Method FEM Finite-Element Method



Streamtube with area A(x)

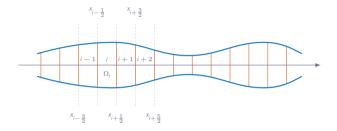
$$A_{i-\frac{1}{2}} = A(x_{i-\frac{1}{2}})$$
$$A_{i+\frac{1}{2}} = A(x_{i+\frac{1}{2}})$$
$$\Delta x_i = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$$

 Ω_i - control volume enclosed by $A_{i-\frac{1}{2}},$ $A_{i+\frac{1}{2}},$ and Γ_i

\Rightarrow spatial discretization

Niklas Andersson - Chalmers

CFLOW

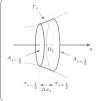


Integer indices: control volumes or cells

Fractional indices: interfaces between control volumes or cell faces

Apply control volume formulations for mass, momentum, energy to control volume Ω_i

cell-averaged quantity face-averaged quantity



Conservation of mass:

$$\underbrace{\frac{d}{dt} \iiint_{Q_{i}} \rho d\mathscr{V} + \iint_{X_{i-\frac{1}{2}}} \rho \mathbf{v} \cdot \mathbf{n} dS + \iint_{X_{i+\frac{1}{2}}} \rho \mathbf{v} \cdot \mathbf{n} dS + \iint_{\Gamma_{i}} \rho \mathbf{v} \cdot \mathbf{n} dS = 0}_{VOL_{i}\frac{d}{dt}\overline{\rho_{i}}}$$
where
$$VOL_{i} = \iiint_{Q_{i}} d\mathscr{V}$$

$$\overline{\rho_{i}} = \frac{1}{VOL_{i}} \iiint_{Q_{i}} \rho d\mathscr{V}$$

$$\overline{(\rho U)}_{i+\frac{1}{2}} = \frac{1}{A_{i-\frac{1}{2}}} \iint_{X_{i+\frac{1}{2}}} \rho u dS$$

$$\overline{(\rho U)}_{i+\frac{1}{2}} = \frac{1}{A_{i+\frac{1}{2}}} \iint_{X_{i+\frac{1}{2}}} \rho u dS$$

cell-averaged quantity face-averaged quantity source term

Conservation of momentum:

$$\underbrace{\frac{d}{dt} \iiint_{\Omega_{i}} \rho u d \mathscr{V} + \iint_{X_{i-\frac{1}{2}}} [\rho(\mathbf{v} \cdot \mathbf{n})u + \rho(\mathbf{n} \cdot \mathbf{e}_{X})] dS}_{VOL_{i}\frac{d}{dt}\overline{(\rho u)_{i}}} \underbrace{-\overline{(\rho u^{2} + \rho)_{i-\frac{1}{2}}A_{i-\frac{1}{2}}}}_{-\overline{(\rho u^{2} + \rho)_{i-\frac{1}{2}}A_{i-\frac{1}{2}}}}$$

$$+ \iint_{\substack{X_{i+\frac{1}{2}} \\ \overline{(\rho U^2 + \rho)_{i+\frac{1}{2}}A_{i+\frac{1}{2}}}} [\rho(\mathbf{v} \cdot \mathbf{n})U + \rho(\mathbf{n} \cdot \mathbf{e}_X)] dS + \underbrace{\iint_{\Gamma_i} [\rho(\mathbf{v} \cdot \mathbf{n})U + \rho(\mathbf{n} \cdot \mathbf{e}_X)] dS}_{-\iint_{\Gamma_i} \rho dA} = 0$$

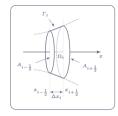
 $\begin{array}{|c|c|c|c|}\hline \Gamma_i & & & \\ \hline & & & \\ \hline & & & \\ A_{i-\frac{1}{2}} & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

CEI OW

cell-averaged quantity face-averaged quantity

Conservation of energy:

$$\underbrace{\frac{d}{dt}\iiint\limits_{\Omega_{i}}\rho e_{o}d\mathcal{V}}_{VOL_{i}\frac{d}{dt}\overline{(\rho e_{o})_{i}}}+\underbrace{\iint\limits_{X_{i-\frac{1}{2}}}\rho h_{o}(\mathbf{v}\cdot\mathbf{n})dS}_{-\overline{(\rho u h_{o})_{i-\frac{1}{2}}A_{i-\frac{1}{2}}}$$

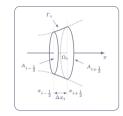


$$+ \underbrace{\iint_{X_{i+\frac{1}{2}}} \rho h_o(\mathbf{v} \cdot \mathbf{n}) dS}_{\overline{(\rho u h_o)_{i+\frac{1}{2}} A_{i+\frac{1}{2}}} + \underbrace{\iint_{T_i} \rho h_o(\mathbf{v} \cdot \mathbf{n}) dS}_{0} = 0$$

CFLOW 650/841

Lower order term due to varying stream tube area:

$$\iint_{\Gamma_{i}} p dA \approx \bar{p}_{i} \left(A_{i+\frac{1}{2}} - A_{i-\frac{1}{2}} \right)$$



where \bar{p}_i is calculated from cell-averaged quantities (DOFs) $\left\{\bar{p}, \overline{(\rho U)}, \overline{(\rho e_o)}\right\}_i$ as

$$\bar{\rho}_i = (\gamma - 1) \left(\overline{(\rho e_o)_i} - \frac{1}{2} \bar{\rho}_i \bar{u}_i^2 \right), \ \bar{u}_i = \frac{\overline{(\rho u)_i}}{\bar{\rho}_i}$$

CFLOW 651/841

cell-averaged quantity face-averaged quantity source term

$$VOL_{i}\frac{d}{dt}\bar{\rho}_{i} - \overline{(\rho u)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = 0$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho u)}_{i} - \overline{(\rho u^{2} + \rho)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u^{2} + \rho)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = \bar{\rho}_{i}\left(A_{i+\frac{1}{2}} - A_{i-\frac{1}{2}}\right)$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho e_{o})}_{i} - \overline{(\rho u h_{o})}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u h_{o})}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = 0$$

Application of these equations to all cells $i \in \{1, 2, ..., N\}$ of the computational domain results in a system of ODEs

Spatial Discretization - Summary

Steps to achieve spatial discretization:

- 1. Choose primary variables (degrees of freedom)
- 2. Approximate all other quantities in terms of the primary variables

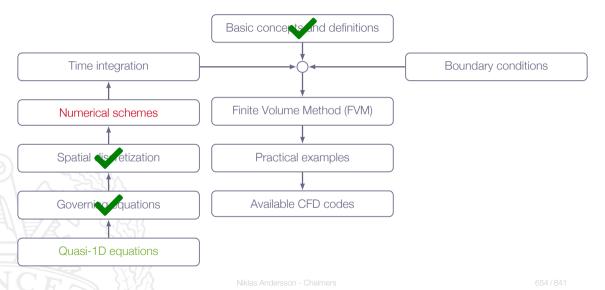
\Rightarrow System of ordinary differential equations (ODEs)

Degrees of freedom:

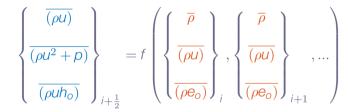
Choose $\{\overline{\rho}, \overline{(\rho u)}, \overline{(\rho e_o)}\}_i$ in all control volumes $\Omega_i, i \in \{1, 2, ..., N\}$ as degrees of freedom, or primary variables Note that these are **cell-averaged quantities**

What about the face values?

Roadmap - The Time-Marching Technique



Numerical Schemes



cell face values

cell-averaged values

Simple example:

 $\overline{(\rho u)}_{i+\frac{1}{2}} \approx \frac{1}{2} \left[\overline{(\rho u)}_{i} + \overline{(\rho u)}_{i+1} \right]$

More complex approximations usually needed

High-order schemes:

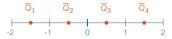
increased accuracy more cell values involved (*wider flux molecule*) boundary conditions more difficult to implement

Optimized numerical dissipation:

upwind type of flux scheme

Shock handling:

non-linear treatment needed (*e.g.* TVD schemes) artificial damping



$$Q(x) = A + Bx + Cx^2 + Dx^3$$

Assume constant area: A(x) = 1.0

$$\overline{\mathsf{Q}}_1 = \frac{1}{VOL_1} \int_{-2}^{-1} \mathsf{Q}(x) dx$$

$$VOL_1 = A_1 \Delta x_1 = \{A_1 = 1.0, \Delta x_1 = 1.0\} = 1.0$$

$$\Rightarrow \overline{\mathbf{Q}}_1 = \int_{-2}^{-1} Q(x) dx$$

$$\overline{\mathbf{Q}}_{1} = \int_{-2}^{-1} Q(x) dx = \left[Ax + \frac{1}{2}Bx^{2} + \frac{1}{3}Cx^{3} + \frac{1}{4}Dx^{4} \right]_{-2}^{-1}$$

$$\overline{\mathbf{Q}}_{2} = \int_{-1}^{0} Q(x) dx = \left[Ax + \frac{1}{2}Bx^{2} + \frac{1}{3}Cx^{3} + \frac{1}{4}Dx^{4} \right]_{-1}^{0}$$

$$\overline{\mathbf{Q}}_{3} = \int_{0}^{1} Q(x) dx = \left[Ax + \frac{1}{2}Bx^{2} + \frac{1}{3}Cx^{3} + \frac{1}{4}Dx^{4} \right]_{0}^{1}$$

$$\overline{\mathbf{Q}}_{4} = \int_{1}^{2} Q(x) dx = \left[Ax + \frac{1}{2} Bx^{2} + \frac{1}{3} Cx^{3} + \frac{1}{4} Dx^{4} \right]_{1}^{2}$$

$$\overline{\mathbf{Q}}_{1} = A - \frac{3}{2}B + \frac{7}{3}C - \frac{15}{4}D$$
$$\overline{\mathbf{Q}}_{2} = A - \frac{1}{2}B + \frac{1}{3}C - \frac{1}{4}D$$
$$\overline{\mathbf{Q}}_{3} = A + \frac{1}{2}B + \frac{1}{3}C + \frac{1}{4}D$$
$$\overline{\mathbf{Q}}_{4} = A + \frac{3}{2}B + \frac{7}{3}C + \frac{15}{4}D$$

$$A = \frac{1}{12} \left[-\overline{Q}_1 + 7\overline{Q}_2 + 7\overline{Q}_3 - \overline{Q}_4 \right]$$
$$B = \frac{1}{12} \left[\overline{Q}_1 - 15\overline{Q}_2 + 15\overline{Q}_3 - \overline{Q}_4 \right]$$
$$C = \frac{1}{4} \left[\overline{Q}_1 - \overline{Q}_2 - \overline{Q}_3 + \overline{Q}_4 \right]$$
$$D = \frac{1}{6} \left[-\overline{Q}_1 + 3\overline{Q}_2 - 3\overline{Q}_3 + \overline{Q}_4 \right]$$

$$\mathbf{Q}_0 = \mathbf{Q}(0) + \delta \mathbf{Q}^{\prime\prime\prime}(0) \Rightarrow \mathbf{Q}_0 = \mathbf{A} + 6\delta \mathbf{D}$$

 $\delta = 0 \Rightarrow$ fourth-order central scheme

 $\delta = 1/12 \Rightarrow$ third-order upwind scheme

 $\delta = 1/96 \Rightarrow$ third-order low-dissipation upwind scheme

$$\begin{aligned} \mathbf{Q}_{0} &= \mathbf{A} + 6\delta \mathbf{D} = \{\delta = 1/12\} = -\frac{1}{6}\overline{\mathbf{Q}}_{1} + \frac{5}{6}\overline{\mathbf{Q}}_{2} + \frac{1}{3}\overline{\mathbf{Q}}_{3} \\ \mathbf{Q}_{0_{left}} &= -\frac{1}{6}\overline{\mathbf{Q}}_{1} + \frac{5}{6}\overline{\mathbf{Q}}_{2} + \frac{1}{3}\overline{\mathbf{Q}}_{3} \\ \mathbf{Q}_{0_{right}} &= -\frac{1}{6}\overline{\mathbf{Q}}_{4} + \frac{5}{6}\overline{\mathbf{Q}}_{3} + \frac{1}{3}\overline{\mathbf{Q}}_{2} \end{aligned}$$

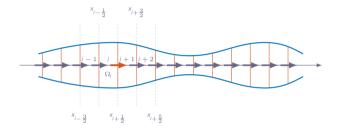
method of characteristics used in order to decide whether left- or right-upwinded flow quantities should be used

High-order numerical schemes:

low numerical dissipation (smearing due to amplitudes errors)

low dispersion errors (wiggles due to phase errors)

Conservative Scheme



mass conservation:

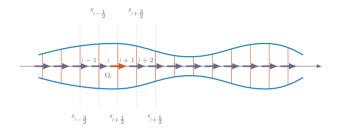
 $\text{cell } (i) \text{:} \qquad \qquad \text{VOL}_i \frac{d}{dt} \, \overline{\rho_i} + \overline{(\rho \upsilon)}_{i+\frac{1}{2}} A_{i+\frac{1}{2}} - \overline{(\rho \upsilon)}_{i-\frac{1}{2}} A_{i-\frac{1}{2}} = 0$

cell
$$(i + 1)$$
:

$$VOL_{i+1}\frac{d}{dt}\overline{\rho}_{i+1} + \overline{(\rho u)}_{i+\frac{3}{2}}A_{i+\frac{3}{2}} - \overline{(\rho u)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = 0$$

(similarly for momentum and energy conservation)

Conservative Scheme





(similarly for momentum and energy conservation)

Conservative scheme

"The flux leaving one control volume equals the flux entering neighbouring control volume"

Conservation of for mass, momentum and energy is crucial for the correct prediction of shocks*

correct prediction of shocks: strength position velocity

Shock Capturing

Jameson shock detector:

$$u_{i+\frac{1}{2}} = \max\{\nu_i, \nu_{i+1}\}$$

where ν_i is a scaled pressure derivative

$$\nu_i = \frac{|\rho_{i+1} - 2\rho_i + \rho_{i-1}|}{\rho_{i+1} + 2\rho_i + \rho_{i-1}}$$

For a smooth pressure field $\nu O(\Delta x^2)$ and near a shock $\nu O(1)$

Artificial damping term (α is a user-defined constant):

$$\alpha \left(|U| + C \right)_{i+\frac{1}{2}} \nu_{i+\frac{1}{2}} A_{i+\frac{1}{2}} \left(Q_{i+1} - Q_i \right)$$

Density Discontinuities

Jameson-type detector:

$$u_{i+\frac{1}{2}} = \max\{\nu_i, \nu_{i+1}\}$$

where ν_i is a scaled density derivative

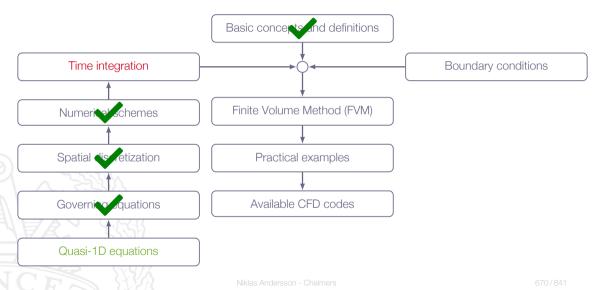
$$\nu_{i} = \frac{|\rho_{i+1} - 2\rho_{i} + \rho_{i-1}|}{\rho_{i+1} + 2\rho_{i} + \rho_{i-1}}$$

For a smooth density field $\nu O(\Delta x^2)$ and near a density discontinuity $\nu O(1)$

Artificial damping term (β is a user-defined constant):

$$\beta |U|_{i+\frac{1}{2}} \nu_{i+\frac{1}{2}} A_{i+\frac{1}{2}} (Q_{i+1} - Q_i)$$

Roadmap - The Time-Marching Technique



Time Stepping

Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity face-averaged quantity source term

$$VOL_{i}\frac{d}{dt}\bar{\rho}_{i} - \overline{(\rho u)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = 0$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho u)}_{i} - \overline{(\rho u^{2} + \rho)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u^{2} + \rho)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = \bar{\rho}_{i}\left(A_{i+\frac{1}{2}} - A_{i-\frac{1}{2}}\right)$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho e_{o})}_{i} - \overline{(\rho u h_{o})}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} + \overline{(\rho u h_{o})}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} = 0$$

Application of these equations to all cells $i \in \{1, 2, ..., N\}$ of the computational domain results in a system of ODEs

Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity face-averaged quantity source term

$$VOL_{i}\frac{d}{dt}\bar{\rho}_{i} = \overline{(\rho u)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}}$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho u)}_{i} = \overline{(\rho u^{2} + \rho)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u^{2} + \rho)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} + \bar{\rho}_{i}\left(A_{i+\frac{1}{2}} - A_{i-\frac{1}{2}}\right)$$
$$VOL_{i}\frac{d}{dt}\overline{(\rho e_{o})}_{i} = \overline{(\rho u h_{o})}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u h_{o})}_{i+\frac{1}{2}}A_{i+\frac{1}{2}}$$

Quasi-One-Dimensional Flow - Spatial Discretization

cell-averaged quantity face-averaged quantity source term

$$\begin{pmatrix}
\frac{d}{dt}\bar{\rho}_{i} = \frac{1}{VOL_{i}}\left[\overline{(\rho u)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}}\right] \\
\frac{d}{dt}\overline{(\rho u)}_{i} = \frac{1}{VOL_{i}}\left[\overline{(\rho u^{2} + \rho)}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u^{2} + \rho)}_{i+\frac{1}{2}}A_{i+\frac{1}{2}} + \bar{\rho}_{i}\left(A_{i+\frac{1}{2}} - A_{i-\frac{1}{2}}\right)\right] \\
\frac{d}{dt}\overline{(\rho e_{0})}_{i} = \frac{1}{VOL_{i}}\left[\overline{(\rho u h_{0})}_{i-\frac{1}{2}}A_{i-\frac{1}{2}} - \overline{(\rho u h_{0})}_{i+\frac{1}{2}}A_{i+\frac{1}{2}}\right] \\
\begin{pmatrix}
\frac{d}{\partial t}\bar{\rho}_{i+\frac{1}{2}} - A_{i-\frac{1}{2}}\right] \\
\frac{d}{\partial t}\bar{\rho}_{i+\frac{1}{2}}\bar{\rho}_{i+$$

 $\frac{\partial}{\partial t}\overline{\mathbf{Q}}_{i} = \mathbf{F}(\overline{\mathbf{Q}}_{i}) \text{ where } \overline{\mathbf{Q}}_{i} = [\overline{\rho}, \ \overline{\rho u}, \ \overline{\rho e_{o}}]_{i}, i \in \{1 : NCells\}$

The system of ODEs obtained from the spatial discretization in vector notation

$$\frac{d}{dt}\mathbf{Q} = \mathbf{F}(\mathbf{Q})$$

 ${\bf Q}$ is a vector containing all DOFs in all cells

 ${\bf F}({\bf Q})$ is the **time derivative** of ${\bf Q}$ resulting from above mentioned **flux approximations** - non-linear vector-valued function

Three-stage Runge-Kutta - one example of many:

Explicit time-marching scheme

Second-order accurate

Time Stepping - Three-stage Runge-Kutta

$$\frac{d}{dt}\mathbf{Q} = \mathbf{F}(\mathbf{Q})$$

Let $\mathbf{Q}^n = \mathbf{Q}(t_n)$ and $\mathbf{Q}^{n+1} = \mathbf{Q}(t_{n+1})$

 t_n is the current time level and t_{n+1} is the next time level $\Delta t = t_{n+1} - t_n$ is the solver time step

Algorithm:

1.
$$\mathbf{Q}^* = \mathbf{Q}^n + \Delta t \mathbf{F}(\mathbf{Q}^n)$$

2. $\mathbf{Q}^{**} = \mathbf{Q}^n + \frac{1}{2}\Delta t \mathbf{F}(\mathbf{Q}^n) + \frac{1}{2}\Delta t \mathbf{F}(\mathbf{Q}^*)$
3. $\mathbf{Q}^{n+1} = \mathbf{Q}^n + \frac{1}{2}\Delta t \mathbf{F}(\mathbf{Q}^n) + \frac{1}{2}\Delta t \mathbf{F}(\mathbf{Q}^{**})$

Time Stepping - Three-stage Runge-Kutta

```
void RungeKutta::fwd(Domain *dom) {
      G3DCopy(dom->cons,cons0);
 3
      /* Runge-Kutta step 1 */
6
      dom->update():
      if (!G3DMode::constdt) {LocalTimeStep(dom);}
      dcons->evaluate(dom):
8
      G3DWAXPY(dom->cons,1.0,dcons,cons0);
9
      G3DAXPBY(cons0,0.5,0.5,dom->cons);
      /* Runge-Kutta step 2 */
14
      dom->update():
      dcons->evaluate(dom):
15
16
      G3DWAXPY(dom->cons.0.5.dcons.cons0):
17
18
      /* Runge-Kutta step 3 */
19
20
      dom->update():
21
      dcons->evaluate(dom):
22
      G3DWAXPY(dom->cons,0.5,dcons,cons0);
```

CFI OW

Properties of explicit time-stepping schemes:

- + Easy to implement in computer codes
- + Efficient execution on most computers
- + Easy to adapt for **parallel execution** on distributed memory systems (*e.g.* Linux clusters)

Time step limitation (CFL number)

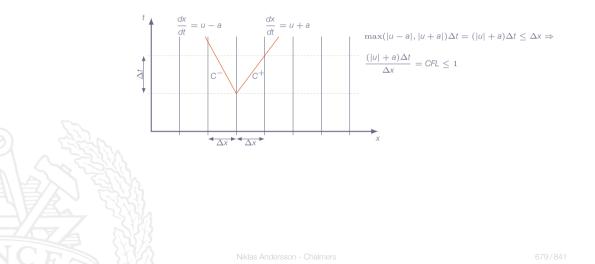
Convergence to steady-state **often slow** (there are, however, some remedies for this)

Courant-Friedrich-Levy (CFL) number - one-dimensional case:

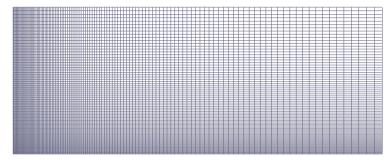
$$CFL_i = rac{\Delta t(|u_i| + a_i)}{\Delta x_i} \le 1$$

Interpretation: The fastest characteristic (C^+ or C^-) must not travel longer than Δx during one time step

Time Stepping - Explicit Schemes



Time Stepping - Explicit Schemes



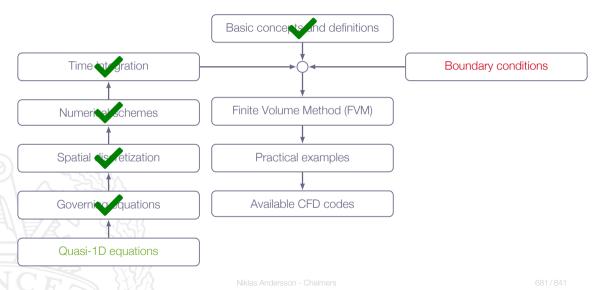
Steady-state problems:

local time stepping each cell has an individual time step Δt_i maximum allowed value based on CFL criteria

Unsteady problems:

time accurate all cells have the same time step $\Delta t_i = \min \left\{ \Delta t_1, ..., \Delta t_N \right\}_{\text{Niklas Anderson}}$

Roadmap - The Time-Marching Technique



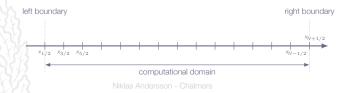
Boundary Conditions

Boundary conditions are very important for numerical simulation of compressible flows

Main reason: both **flow** and **acoustics** involved!

Example 1: Finite-volume CFD code for Quasi-1D compressible flow (Time-marching procedure)

What boundary conditions should be applied at the left and right ends?

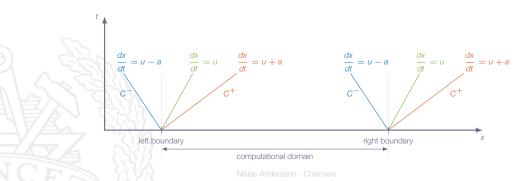


Boundary Conditions

CFLOW

three characteristics:

- 1. C^+
- 2. C⁻
- 3. advection



Boundary Conditions

 C^+ and C^- characteristics describe the transport of **isentropic pressure** waves (often referred to as **acoustics**)

The advection characteristic simply describes the **transport** of certain quantities **with the fluid itself** (for example **entropy**)

In one space dimension and time, these three characteristics, together with the quantities that are known to be constant along them, give a **complete description** of the time evolution of the flow

We can use the characteristics as a guide to tell us what information that should be specifed at the boundaries

Left Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

```
Subsonic inflow: 0 < u < a
```

```
u - a < 0u > 0u + a > 0
```

one outgoing characteristic two ingoing characteristics

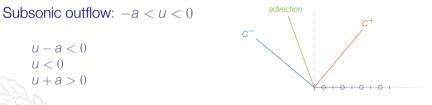
Two variables should be **specified** at the boundary The third variable must be left free

Niklas Andersson - Chalmers

advection

Left Boundary - Subsonic Outflow

we have three PDEs, and are solving for three unknowns



two outgoing characteristics one ingoing characteristic

One variable should be **specified** at the boundary The second and third variables must be left free

Niklas Andersson - Chalmers

Left Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

```
Supersonic inflow: u > a
```

u - a > 0u > 0u + a > 0

no outgoing characteristics three ingoing characteristics

All three variables should be specified at the boundary No variables must be left free

Left Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

three outgoing characteristics no ingoing characteristics

No variables should be **specified** at the boundary All variables must be left free

Right Boundary - Subsonic Inflow

we have three PDEs, and are solving for three unknowns

```
Subsonic inflow: -a < u < 0
```

```
u - a < 0u < 0u + a > 0
```

two ingoing characteristics one outgoing characteristic

Two variables should be **specified** at the boundary The third variables must be left free

EFI OW

Right Boundary - Subsonic Outflow

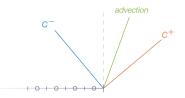
we have three PDEs, and are solving for three unknowns

```
Subsonic outflow: 0 < u < a
```

```
u - a < 0u > 0u + a > 0
```

one ingoing characteristic two outgoing characteristics

One variable should be **specified** at the boundary The second and third variables must be left free



EFI OW

Right Boundary - Supersonic Inflow

we have three PDEs, and are solving for three unknowns

```
Supersonic inflow: u < -a
```

u - a < 0u < 0u + a < 0

three ingoing characteristics no outgoing characteristics

All three variables should be **specified** at the boundary No variables must be left free



Right Boundary - Supersonic Outflow

we have three PDEs, and are solving for three unknowns

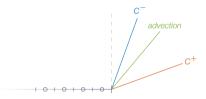
```
Supersonic outflow: u > a
```

u - a > 0u > 0u + a > 0

no ingoing characteristics three outgoing characteristics

No variables should be **specified** at the boundary All three variables must be left free

Niklas Andersson - Chalmers



1D Boundary Conditions (Summary)

CFLOV	V
-------	---

Characteristic		1D subsonic inflow (left)	1D subsonic inflow (right)	
advection	$\mathbf{v} \cdot \mathbf{n}$	$(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$	$(-u, 0, 0) \cdot (1, 0, 0) = -u < 0$	
C^{-}	$\mathbf{v} \cdot \mathbf{n} - a$	-u - a < 0	-u - a < 0	
C^+	$\mathbf{v} \cdot \mathbf{n} + a$	-u + a > 0	-u + a > 0	
Characteristic		1D subsonic outflow (left)	1D subsonic outflow (right)	
advection	$\mathbf{v} \cdot \mathbf{n}$	$(-u, 0, 0) \cdot (-1, 0, 0) = u > 0$	$(u, 0, 0) \cdot (1, 0, 0) = u > 0$	
C^{-}	$\mathbf{v} \cdot \mathbf{n} - a$	u - a < 0	u - a < 0	
C^+	$\mathbf{v} \cdot \mathbf{n} + a$	u + a > 0	u + a > 0	
Charac	teristic	1D supersonic inflow (left)	1D supersonic inflow (right)	
		1D supersonic inflow (left) $(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$		
advection				
advection	$\mathbf{v}\cdot\mathbf{n}$	$(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$	$(-u, 0, 0) \cdot (1, 0, 0) = -u < 0$	
advection C ⁻ C ⁺	$\mathbf{v} \cdot \mathbf{n}$ $\mathbf{v} \cdot \mathbf{n} - a$	$(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$ -u - a < 0	$(-u, 0, 0) \cdot (1, 0, 0) = -u < 0$ -u - a < 0	
advection C C ⁺ Charac	$\mathbf{v} \cdot \mathbf{n}$ $\mathbf{v} \cdot \mathbf{n} - a$ $\mathbf{v} \cdot \mathbf{n} + a$ teristic	$(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$ -u - a < 0 -u + a < 0 1D supersonic outflow (left)	$(-u, 0, 0) \cdot (1, 0, 0) = -u < 0$ -u - a < 0 -u + a < 0	
advection C C ⁺ Charac	$\mathbf{v} \cdot \mathbf{n}$ $\mathbf{v} \cdot \mathbf{n} - a$ $\mathbf{v} \cdot \mathbf{n} + a$ teristic	$(u, 0, 0) \cdot (-1, 0, 0) = -u < 0$ -u - a < 0 -u + a < 0 1D supersonic outflow (left)	$(-u, 0, 0) \cdot (1, 0, 0) = -u < 0$ -u - a < 0 -u + a < 0 1D supersonic outflow (right)	

Niklas Andersson - Chalmers

Subsonic Inflow (Left Boundary) - Example

Subsonic inflow: we should specify two variables

ŀ	۹lt		specified variable 2	well-posed	non-reflective
	1	p_o	T_o	Х	
	2	ρυ	T_o	Х	
	3	S	J^+	Х	×

well posed:

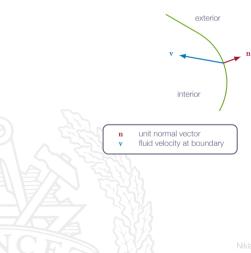
- 1. the problem has a solution
- 2. the solution is unique
- 3. the solution's behaviour changes continuously with initial conditions

Subsonic Outflow (Left Boundary) - Example

Subsonic outflow: we should specify one variable

Alt	specified variable	well-posed	non-reflective
1	р	Х	
2	ρυ	Х	
3	J^+	Х	Х

Subsonic Inflow 2D/3D



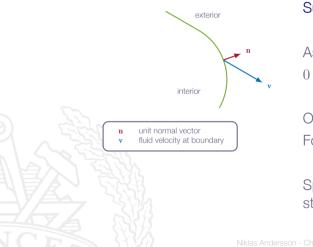
Subsonic inflow

Assumption: $-a < \mathbf{v} \cdot \mathbf{n} < 0$

Four ingoing characteristics One outgoing characteristic

Specify four variables at the boundary: p_o , T_o , and flow direction (two angles)

Subsonic Outflow 2D/3D



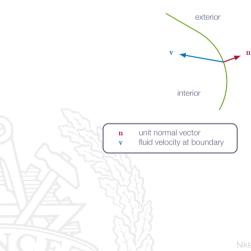
Subsonic outflow

Assumption: $0 < \mathbf{v} \cdot \mathbf{n} < a$

One ingoing characteristics Four outgoing characteristic

Specify one variables at the boundary: static pressure

Supersonic Inflow 2D/3D



Supersonic inflow

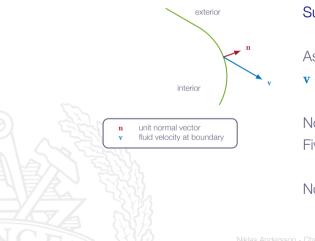
Assumption:

 $\mathbf{v} \cdot \mathbf{n} < -a$

Five ingoing characteristics No outgoing characteristics

Specify five variables at the boundary: solver variables

Supersonic Outflow 2D/3D



Supersonic outflow

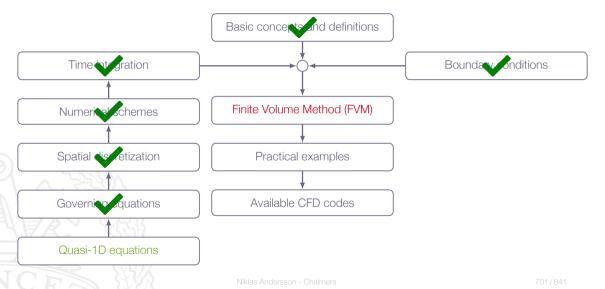
Assumption:

 $\mathbf{v} \cdot \mathbf{n} > a$

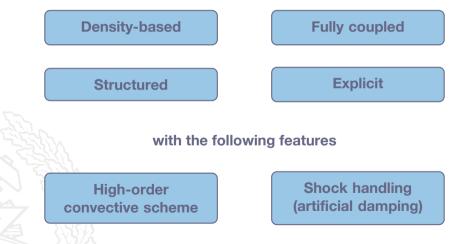
No ingoing characteristics Five outgoing characteristics

No variables specified at the boundary

Roadmap - The Time-Marching Technique



Explicit Finite-Volume Method - Summary



Niklas Andersson - Chalmers

Explicit Finite-Volume Method - Summary

Spatial discretization:

Control volume formulations of conservation equations are applied to the cells of the discretized domain

Cell-averaged flow quantities $(\overline{\rho}, \overline{\rho u}, \overline{\rho e_o})$ are chosen as degrees of freedom

Flux terms are **approximated** in terms of the chosen degrees of freedom high-order, upwind type of flux approximation is used for optimum results

A fully conservative scheme is obtained

the flux leaving one cell is identical to the flux entering the neighboring cell

The result of the spatial discretization is a system of ODEs

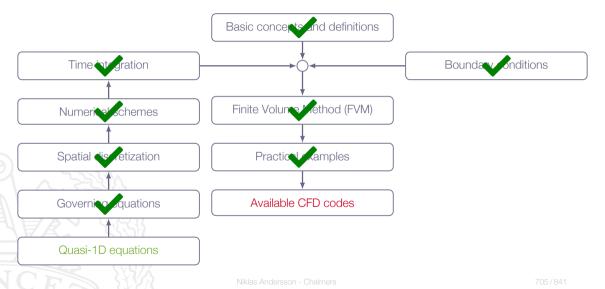
Time marching:

Three-stage, second-order accurate Runge-Kutta scheme

Explicit time-stepping

Time step length limited by the CFL condition (CFL ≤ 1)

Roadmap - The Time-Marching Technique



Available CFD Codes

Niklas Andersson - Chalmers

CFD Codes

List of free and commercial CFD codes:

http://www.cfd-online.com/Wiki/Codes

Free codes are in general unsupported and poorly documented

Commercial codes are often claimed to be suitable for all types of flows **The reality is that the user must make sure of this!**

CFD Codes - General Guidlines

Simulation of high-speed and/or unsteady compressible flows:

Use correct solver options

otherwise you may obtain completely wrong solution!

- 1. coupled solver
- 2. equation of state
- 3. energy equation included

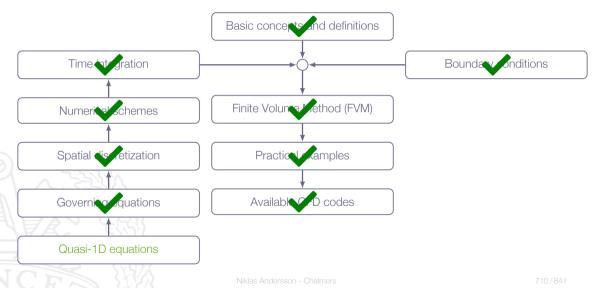
Use a high-quality grid

a poor grid will either not give you any solution at all (no convergence) or at best a very inaccurate solution!

ANSYS-FLUENT[®]/STAR-CCM+[®] - Typical Experiences

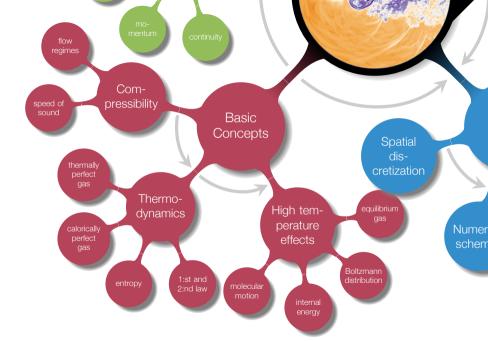
- 1. Very robust solvers will almost always give you a solution
- 2. Accuracy of solution depends a lot on grid quality
- 3. Shocks are generally smeared more than in specialized codes
- 4. Solver is generally very efficient for steady-state problems
- 5. Solver is less efficient for truly unsteady problems, where both flow and acoustics must be resolved accurately

Roadmap - The Time-Marching Technique



Chapter 16 **Properties of High-Temperature** Gases

Overview

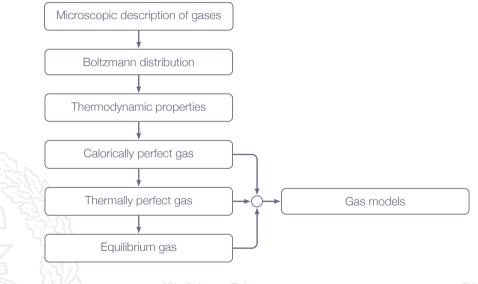


Learning Outcomes

6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases

A deep dive into the theory behind the definitions of calorically perfect gas, thermally perfect gas, and other models

Roadmap - High-Temperature Gases



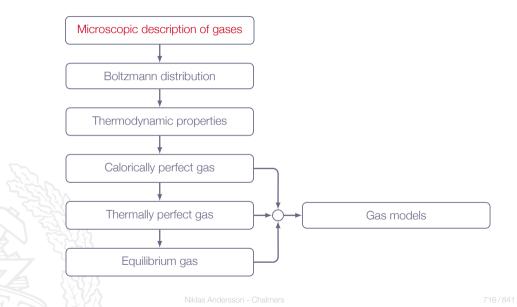
Motivation

Explosions and combustion are two examples of cases where high-temperature effects must be taken into account

The temperature does not have to be extremely high in order for temperature effects to appear, 600 K is enough

In this section you will learn what happens in a gas on a molecular level when the temperature increases and what implications that has on applicability of physical models

Roadmap - High-Temperature Gases



Chapter 16.2 Microscopic Description of Gases

Niklas Andersson - Chalmers

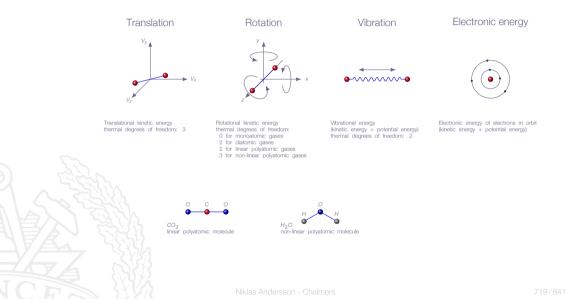
Microscopic Description of Gases

Hard to make measurements

Accurate, reliable theoretical models needed

Available models do work quite well

Molecular Energy



The energy for one molecule can be described by

$$\varepsilon' = \varepsilon'_{trans} + \varepsilon'_{rot} + \varepsilon'_{vib} + \varepsilon'_{el}$$

Results of quantum mechanics have shown that **energy is quantized** *i.e.* energy can **exist only at specific discrete values**

Energy is not continuous! Might seem unintuitive

Molecular Energy

The lowest quantum numbers defines the **zero-point energy** for each mode

 $\varepsilon'_{O_{rot}} = 0$

 $\varepsilon_{\scriptscriptstyle O_{\rm trans}}' > 0$ (very small but finite)

At **absolute zero**, molecules still moves but not much. The rotational energy is, however, exactly zero.

$$\begin{aligned} \varepsilon_{j_{trans}} &= \varepsilon'_{j_{trans}} - \varepsilon'_{O_{trans}} \\ \varepsilon_{l_{vib}} &= \varepsilon'_{l_{vib}} - \varepsilon'_{O_{vib}} \\ \varepsilon_{k_{rot}} &= \varepsilon'_{k_{rot}} \\ \end{aligned}$$

Thus the total energy of a specific molecule may be expressed as

$$\varepsilon'_{i} = \varepsilon_{j_{trans}} + \varepsilon_{k_{rot}} + \varepsilon_{l_{vib}} + \varepsilon_{m_{el}} + \varepsilon'_{o}$$

Note! since ε'_i is the sum of individually quantized energy levels, ε'_i itself is also quantized

Energy States - Example

three cases with the same rotational energy

different direction of angular momentum

quantum mechanics \Rightarrow different **distinguishable states**

a finite number of possible **degenerate states** g_i at each energy level j

Macrostate:

molecules collide and exchange energy \Rightarrow the number of molecules at each energy level *j* (the macrostate or the N_j distribution) will change over time

some macrostates are more probable than other

most probable macrostates (energy distributions) \Rightarrow **thermodynamic equilibrium**

Microstate:

different microstates constitute the same number of molecules in each energy level (same macrostate) but molecules are in **different degenerate states**

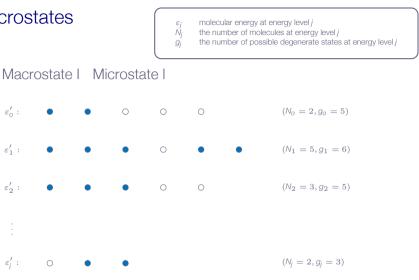
the **most probable macrostate** is the one with the **most possible microstates** \Rightarrow possible to find the most probable macrostate by counting microstates

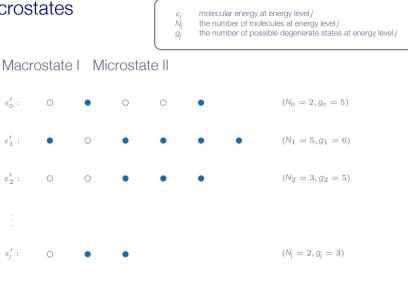
 ε'_{o} :

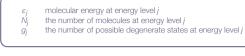
 ε'_1 :

 ε'_2 :

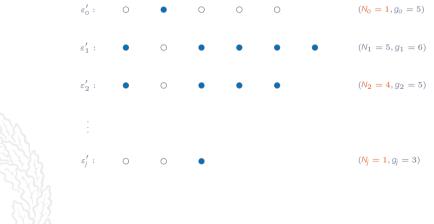
 ε'_i :







Macrostate II Microstate I



Niklas Andersson - Chalmers

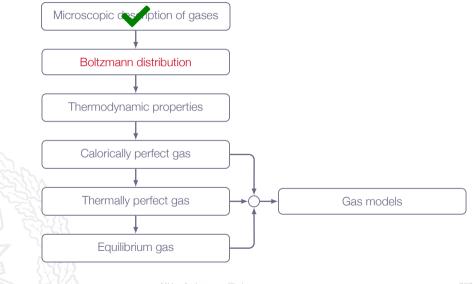
$$N = \sum_{j} N_{j}$$

N is the total number of molecules and N_i is the number of molecules at energy level j

$$E=\sum_{j}\varepsilon_{j}^{\prime}N_{j}$$

E is the total energy and ε'_i is the energy per molecule at energy level j

Roadmap - High-Temperature Gases



Chapter 16.5 The Limiting Case: Boltzmann Distribution

Boltzmann Distribution

The Boltzmann distribution:

$$N_j^* = N \frac{g_j \mathrm{e}^{-arepsilon_j/kT}}{Q}$$

where Q = f(T, V) is the state sum defined as

$$Q \equiv \sum_{j} g_{j} \mathrm{e}^{-\varepsilon_{j}/kT}$$

 g_j is the number of **degenerate states**, ε_j is the **energy above zero-level** $(\varepsilon_j = \varepsilon'_i - \varepsilon_o)$, and k is the Boltzmann constant

Boltzmann Distribution

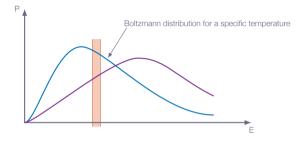
The Boltzmann distribution:

$$N_j^* = N rac{g_j \mathrm{e}^{-arepsilon_j/kT}}{Q}$$

For molecules or atoms of a given species, quantum mechanics says that a set of well-defined energy levels ε_j exists, over which the molecules or atoms can be distributed at any given instant, and that each energy level has a certain number of energy states, g_j .

For a system of N molecules or atoms at a given T and V, N_j^* are the number of molecules or atoms in each energy level ε_j when the system is in thermodynamic equilibrium.

Boltzmann Distribution

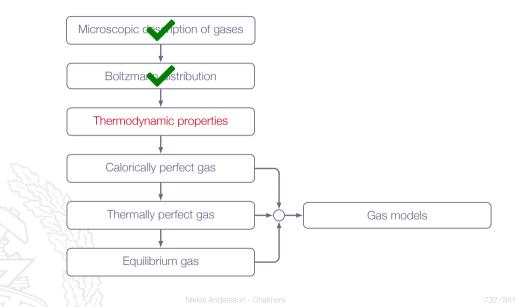


Boltzmann distribution: describes the **probability** (P) of population of an **energy level** with the energy (E)

At temperatures above ~ 5K, molecules are distributed over many energy levels, and therefore the states are generally **sparsely populated** ($N_i \ll g_i$)

Higher energy levels become more populated as temperature increases

Roadmap - High-Temperature Gases



Chapter 16.6 - 16.8 Evaluation of Gas Thermodynamic Properties

Internal Energy

The internal energy is calculated as

$$E = NkT^2 \left(\frac{\partial \ln Q}{\partial T}\right)_V$$

The internal energy per unit mass is obtained as

$$e = \frac{E}{M} = \frac{NkT^2}{Nm} \left(\frac{\partial \ln \mathbf{Q}}{\partial T}\right)_V = \left\{\frac{k}{m} = R\right\} = RT^2 \left(\frac{\partial \ln \mathbf{Q}}{\partial T}\right)_V$$

k is the Boltzmann constant, m is the molecular weight, R is the gas constant, and Q is the state sum

Internal Energy

$$e = \mathbf{R}T^2 \left(\frac{\partial \ln \mathbf{Q}}{\partial T}\right)_V$$

$$\mathsf{Q} \equiv \sum_{j} g_{j} \mathrm{e}^{-\varepsilon_{j}/kT}$$

In order to be able to calculate the internal energy of a gas at a given temperature, we need an estimate of the state sum ${\sf Q}$

Internal Energy - Translation

$$\varepsilon'_{trans} = \frac{h^2}{8m} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} + \frac{n_3^2}{a_3^2} \right)$$

		1
$n_1 - n_3$	quantum numbers (1,2,3,)	
$a_1 - a_3$	linear dimensions that describes the size of the system	
ĥ	Planck's constant	
m	mass of the individual molecule	

$$\Rightarrow \dots \Rightarrow$$

$$Q_{trans} = \left(\frac{2\pi m kT}{h^2}\right)^{3/2} V$$

Niklas Andersson - Chalmers

Internal Energy - Translation

$$Q_{trans} = \left(\frac{2\pi m kT}{h^2}\right)^{3/2} V$$

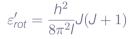
$$\ln Q_{trans} = \frac{3}{2} \ln T + \frac{3}{2} \ln \frac{2\pi m k}{h^2} + \ln V \Rightarrow$$

$$\left(\frac{\partial \ln Q_{trans}}{\partial T}\right)_{V} = \frac{3}{2}\frac{1}{T} \Rightarrow$$

$$e_{trans} = RT^2 \left(\frac{\partial \ln Q_{trans}}{\partial T} \right)_V = RT^2 \frac{3}{2T} = \frac{3}{2}RT$$

Niklas Andersson - Chalmers

Internal Energy - Rotation

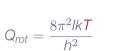


- *I* moment of inertia (tabulated for common molecules)
- h Planck's constant

 $\Rightarrow \cdots \Rightarrow$

$$Q_{rot} = \frac{8\pi^2 l k7}{h^2}$$

Internal Energy - Rotation



$$\ln Q_{rot} = \ln T + \ln \frac{8\pi^2 lk}{L^2} \Rightarrow$$

$$\ln Q_{rot} = \ln T + \ln \frac{8\pi^2 lk}{h^2} =$$

$$\left(\frac{\partial \ln Q_{rot}}{\partial T}\right)_V = \frac{1}{T} \Rightarrow$$

$$\mathbf{e}_{rot} = RT^2 \left(\frac{\partial \ln Q_{rot}}{\partial T}\right)_V = RT^2 \frac{1}{T} = RT$$

Internal Energy - Vibration

$$\varepsilon_{\rm vib}' = h\nu\left(n + \frac{1}{2}\right)$$

- *n* vibrational quantum number (0,1,2,...)
- ν fundamental vibrational frequency (tabulated for common molecules)
- h Planck's constant

$$Q_{\rm vib} = \frac{1}{1 - e^{-h\nu/kT}}$$

 \rightarrow . . . \rightarrow

Internal Energy - Vibration

$$Q_{\nu ib} = \frac{1}{1 - e^{-h\nu/kT}}$$

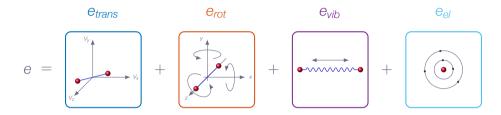
$$\ln Q_{\nu ib} = -\ln(1 - e^{-h\nu/kT}) \Rightarrow$$

$$\left(\frac{\partial \ln Q_{\nu ib}}{\partial T}\right)_{V} = \frac{h\nu/kT^{2}}{e^{h\nu/kT} - 1} \Rightarrow$$

$$\theta_{\nu ib} = RT^{2} \left(\frac{\partial \ln Q_{\nu ib}}{\partial T}\right)_{V} = RT^{2} \frac{h\nu/kT^{2}}{e^{h\nu/kT} - 1} = \frac{h\nu/kT}{e^{h\nu/kT} - 1}RT$$

$$\lim_{T \to \infty} \frac{h\nu/kT}{e^{h\nu/kT} - 1} = 1 \Rightarrow \theta_{\nu ib} \leq RT$$
Nikas Andersson - Chalmers

Specific Heat



$$e = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_e$$

From before, we know that the specific heat is defined as follows:

$$C_{\rm V} \equiv \left(\frac{\partial e}{\partial T}\right)_{\rm V}$$

Niklas Andersson - Chalmers

Specific Heat

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

For molecules with only translational and rotational energy

$$e = \frac{3}{2}RT + RT = \frac{5}{2}RT \Rightarrow C_{v} \equiv \left(\frac{\partial e}{\partial T}\right)_{v} = \frac{5}{2}R$$
$$C_{\rho} = C_{v} + R = \frac{7}{2}R$$
$$\gamma = \frac{C_{\rho}}{C_{v}} = \frac{7}{5} = 1.4$$

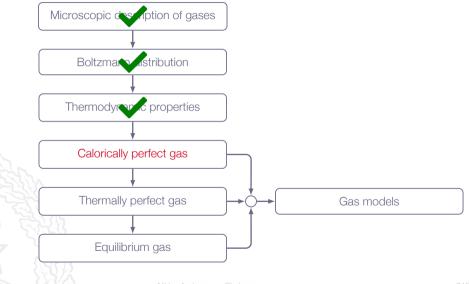
Specific Heat

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

For mono-atomic gases with only translational and (rotational) energy

$$\Theta = \frac{3}{2}RT + \mathbf{0} \Rightarrow C_{\nu} \equiv \left(\frac{\partial e}{\partial T}\right)_{\nu} = \frac{3}{2}F$$
$$C_{\rho} = C_{\nu} + R = \frac{5}{2}R$$
$$\gamma = \frac{C_{\rho}}{C_{\nu}} = \frac{5}{3} = 1\frac{2}{3} \simeq 1.67$$

Roadmap - High-Temperature Gases



Calorically Perfect Gas

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

In general, only translational and rotational modes of molecular excitation

Translational and rotational energy levels are sparsely populated, according to Boltzmann distribution (the Boltzmann limit)

Vibrational energy levels are practically unpopulated (except for the zero level)

Calorically Perfect Gas

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

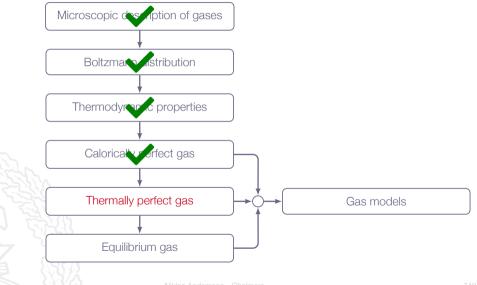
Characteristic values of γ for each type of molecule, e.g. mono-atomic gas, di-atomic gas, tri-atomic gas, etc

He, Ar, Ne, ... - mono-atomic gases ($\gamma = 5/3$)

 $H_2, O_2, N_2, ... - di-atomic gases (\gamma = 7/5)$

 H_2O (gaseous), CO_2 , ... - tri-atomic gases ($\gamma < 7/5$)

Roadmap - High-Temperature Gases



Thermally Perfect Gas

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

In general, only translational, rotational and vibrational modes of molecular excitation

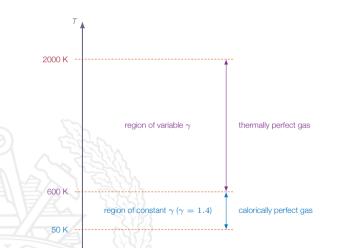
Translational and rotational energy levels are sparsely populated, according to Boltzmann distribution (the **Boltzmann limit**)

The population of the vibrational energy levels **approaches the Boltzmann limit** as temperature increases

Temperature dependent values of γ for all types of molecules except mono-atomic (no vibrational modes possible)

High-Temperature Effects

Example: properties of air



Thermally perfect gas: e and h are non-linear functions of T

the temperature range represents standard atmospheric pressure (lower pressure gives lower temperatures)

High-Temperature Effects

$$e = e_{trans} + e_{rot} + e_{vib} + e_{el} = \frac{3}{2}RT + RT + \frac{h\nu/kT}{e^{h\nu/kT-1}}RT + e_{el}$$

For cases where the vibrational energy is not negligible (at high temperatures)

$$\lim_{T\to\infty} e_{\textit{vib}} = RT \Rightarrow C_{\textit{v}} = \frac{7}{2}R$$

However, chemical reactions and ionization will take place long before that ...

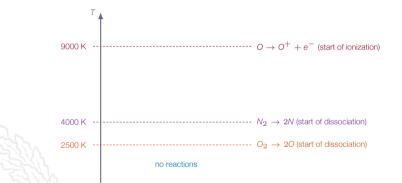
Translational and rotational energy fully excited above ~5 K Vibrational energy is non-negligible above 600 K Chemical reactions begin to occur above ~2000 K

As temperature increase further vibrational energy becomes less important

Why is that so?

High-Temperature Effects

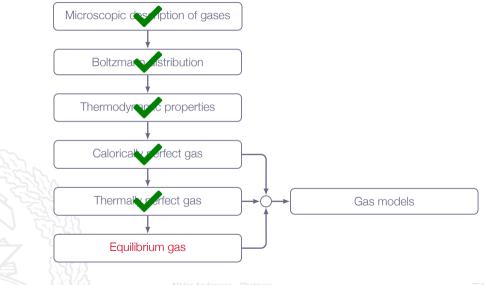
Example: properties of air (continued)



With increasing temperature, the gas becomes more and more mono-atomic which means that vibrational modes becomes less important

Niklas Andersson - Chalmers

Roadmap - High-Temperature Gases



Equilibrium Gas

For temperatures T > 2500 K

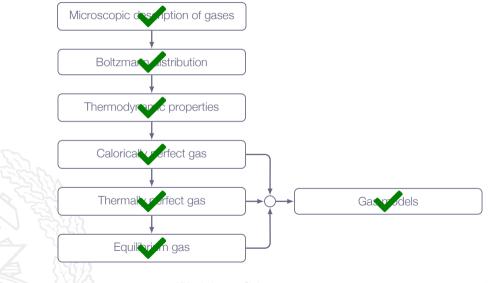
Air may be described as being in **thermodynamic** and **chemical equilibrium** (Equilibrium Gas)

reaction rates (time scales) low compared to flow time scales

reactions in both directions (example: $O_2 \rightleftharpoons 2O$)

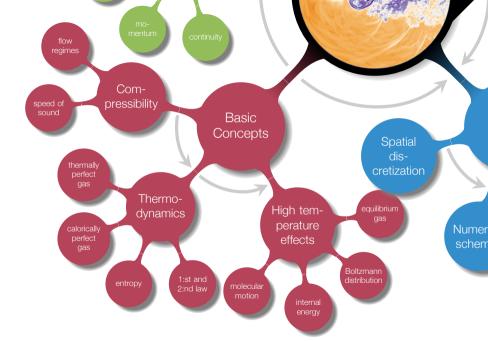
Tables must be used (Equilibrium Air Data) or special functions which have been made to fit the tabulated data

Roadmap - High-Temperature Gases



Chapter 17 High-Temperature Flows: Basic Examples

Overview

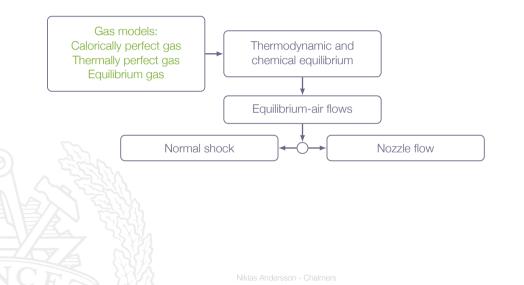


Learning Outcomes

- 6 **Define** the special cases of calorically perfect gas, thermally perfect gas and real gas and **explain** the implication of each of these special cases
- 8 **Derive** (marked) and **apply** (all) of the presented mathematical formulae for classical gas dynamics
 - b normal shocks*
 - i detached blunt body shocks, nozzle flows

How does increased temperature affect a compressible flow?

Roadmap - High Temperature Effects



High-temperature effects can be rather dramatic

We will examine a couple of flow situations where the temperature is high enough to effect the flow properties significantly in order to get e feeling for high-temperature flows

Applications:

Rocket nozzle flows

Reentry vehicles

Shock tubes / Shock tunnels

Internal combustion engines

Gasturbines

Example: Reentry vehicle

Mach number: 32.5

Gas: air

Temperature: $T_{\infty} = 283$

Example: Reentry vehicle

Assume calorically perfect gas

Normal shock relations gives $T/T_{\infty} = 206$

 $T_{\infty} = 283 \Rightarrow T = 58\ 300\ K$

Example: Reentry vehicle

Assume calorically perfect gas

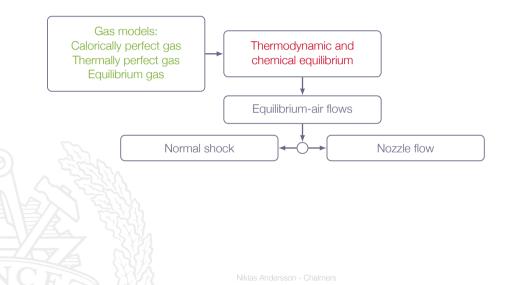
Normal shock relations gives $T/T_{\infty} = 206$

 $T_{\infty} = 283 \Rightarrow T = 58\ 300\ K$

A more correct value is T = 11600 K

Something is fishy here!

Roadmap - High Temperature Effects



Chapter 17.1 Thermodynamic and Chemical Equilibrium

Molecules are distributed among their possible energy states according to the **Boltzmann distribution** (which is a **statistical equilibrium**) for the given temperature of the gas

extremely fast process (time and length scales of the molecular processes)

much faster than flow time scales in general (not true inside shocks)

Thermodynamic Equilibrium

Global thermodynamic equilibrium:

"true thermodynamic equilibrium"

there are no gradients of ρ , T, ρ (or flow velocity, species concentrations, ...)

Local thermodynamic equilibrium:

gradients can be neglected locally

this requirement is fulfilled in most cases (hard not to get)

Composition of gas (species concentrations) is fixed in time

forward and backward rates of all chemical reactions are equal

zero net reaction rates

chemical reactions may be either slow or fast in comparison to flow time scale depending on the case studied

Chemical Equilibrium

Global chemical equilibrium:

there are no gradients of species concentrations

together with global thermodynamic equilibrium \Rightarrow all gradients are zero

Local chemical equilibrium

gradients of species concentrations can be neglected locally

not always true - depends on reaction rates and flow time scales

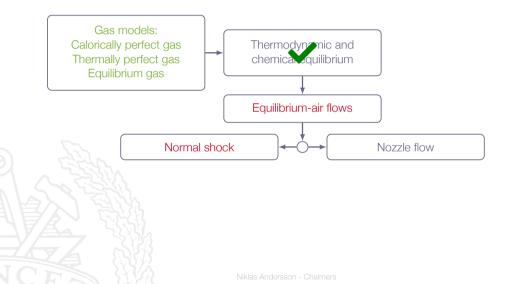
Thermodynamic and Chemical Equilibrium

Most common cases:

	Thermodynamic Equilibrium	Chemical Equilibrium	Gas Model
1	local thermodynamic equilibrium	local chemical equilibrium	equilibrium gas
2	local thermodynamic equilibrium	chemical non-equilibrium	finite rate chemistry
3	local thermodynamic equilibrium	frozen composition	frozen flow
4	thermodynamic non-equilibrium	frozen composition	vibrationally frozen flow
4	thermodynamic non-equilibrium	frozen composition	vibrationally frozer

length and time scales of flow decreases from 1 to 4

Roadmap - High Temperature Effects



Chapter 17.2 Equilibrium Normal Shock Wave Flows

Question:

Is the equilibrium gas assumption OK for normal shocks?

Answer:

for **hypersonic** flows with very **little ionization** in the shock region, it is a fair approximation

not perfect, since the assumption of **local thermodynamic** and **chemical equilibrium** is not really true around the shock

however, it gives a significant improvement compared to the calorically perfect gas assumption

Basic relations (for all gases), stationary normal shock:

$$\begin{pmatrix}
\rho_1 u_1 = \rho_2 u_2 \\
\rho_1 u_1^2 + \rho_1 = \rho_2 u_2^2 + \rho_2 \\
h_1 + \frac{1}{2} u_1^2 = h_2 + \frac{1}{2} u_2^2
\end{pmatrix}$$

For equilibrium gas we have:

$$\begin{cases} \rho = \rho(\rho, h) \\ T = T(\rho, h) \end{cases}$$

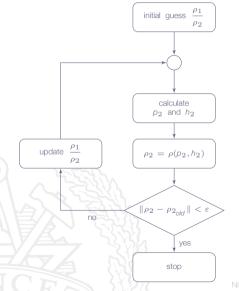
(we are free to choose any two states as independent variables)

Niklas Andersson - Chalmers

Assume that ρ_1 , u_1 , p_1 , T_1 , and h_1 are known

$$u_{2} = \frac{\rho_{1}u_{1}}{\rho_{2}} \Rightarrow \rho_{1}u_{1}^{2} + \rho_{1} = \rho_{2}\left(\frac{\rho_{1}}{\rho_{2}}u_{1}\right)^{2} + \rho_{2} \Rightarrow$$
$$p_{2} = \rho_{1} + \rho_{1}u_{1}^{2}\left(1 - \frac{\rho_{1}}{\rho_{2}}\right)$$

$$h_{1} + \frac{1}{2}u_{1}^{2} = h_{2} + \frac{1}{2}\left(\frac{\rho_{1}}{\rho_{2}}u_{1}\right)^{2} \Rightarrow$$
$$h_{2} = h_{1} + \frac{1}{2}u_{1}^{2}\left(1 - \left(\frac{\rho_{1}}{\rho_{2}}\right)^{2}\right)$$



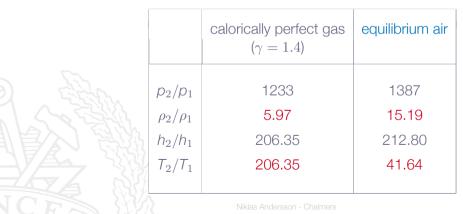
when converged:

$$\left.\begin{array}{l}\rho_2 = \rho(\rho_2, h_2)\\ T_2 = T(\rho_2, h_2)\end{array}\right\} \Rightarrow$$

 $\rho_2, u_2, p_2, T_2, h_2$ known

Tables of thermodynamic properties for different conditions are available

For a very strong shock case ($M_1 = 32$), the table below shows results for equilibrium air



Analysis:

Pressure ratio is comparable

Density ratio differs by factor of 2.5

Temperature ratio differs by factor of 5

Explanation:

Using equilibrium gas means that vibration, dissociation and chemical reactions are accounted for

The chemical reactions taking place in the shock region lead to an **absorption** of **energy** into chemical energy

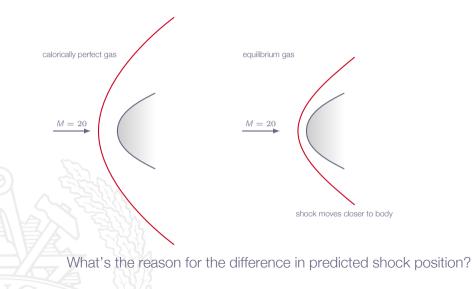
drastically reducing the temperature downstream of the shock

this also explains the difference in density after the shock

Additional notes:

- 1. For a normal shock in an **equilibrium gas**, the pressure ratio, density ratio, enthalpy ratio, temperature ratio, etc all depend on **three upstream variables**, *e.g.* u_1 , p_1 , T_1
- 2. For a normal shock in a **thermally perfect gas**, the pressure ratio, density ratio, enthalpy ratio, temperature ratio, etc all depend on **two upstream variables**, *e.g.* M_1 , T_1
- 3. For a normal shock in a **calorically perfect gas**, the pressure ratio, density ratio, enthalpy ratio, temperature ratio, etc all depend on **one upstream variable**, *e.g. M*₁

Equilibrium Gas - Detached Shock



Niklas Andersson - Chalmers

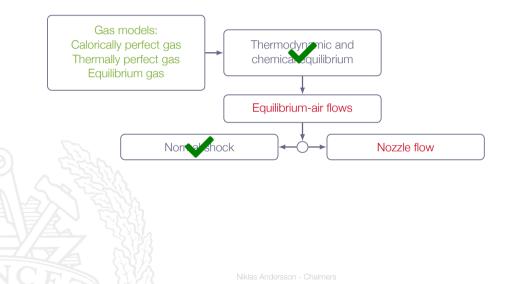
Calorically perfect gas:

all energy ends up in translation and rotation \Rightarrow increased temperature

Equilibrium gas:

energy is **absorbed by reactions** \Rightarrow does not contribute to the increase of gas temperature

Roadmap - High Temperature Effects



Chapter 17.3 Equilibrium Quasi-One-Dimensional Nozzle Flows

For a chemically reacting gas at high temperature:

- 1. Assuming inviscid and adiabatic flow, is the flow isentropic?
- 2. Can we use the area-velocity relation?
- 3. Is the area-Mach-number relation valid?

Equilibrium Quasi-1D Nozzle Flows - Isentropic Flow

First question:

Is a flow of a chemically reacting gas isentropic (*assuming inviscid and adiabatic flow*)?

entropy equation: $Tds = dh - \nu dp$

momentum equation: $dp = -\rho u du$

energy equation: dh + udu = 0

Note! The momentum and energy equations are the inviscid adiabatic quasi-1D equations on differential form (*valid for all gases*).

Equilibrium Quasi-1D Nozzle Flows - Isentropic Flow

momentum equation:
$$dp = -\rho u du \Rightarrow u du = -\frac{dp}{\rho} = -\nu dp$$

energy equation: $dh + udu = 0 \Rightarrow dh = -udu$

entropy equation: $Tds = dh - \nu dp = -udu + udu = 0 \Rightarrow ds = 0$

Isentropic flow!

Equilibrium Quasi-1D Nozzle Flows - Area-Velocity Relation

Second question:

Can we use the area-velocity relation for a chemically reacting gas?

The area-velocity relation was derived from the quasi-1D formulation of the governing equations assuming isentropic flow

continuity equation: $d(\rho uA) = 0$

momentum equation: $dp = -\rho u du$

energy equation:

dh + udu = 0

No assumption about the gas is made in the derivation, which means that we can use the area-velocity relation for a flow a of chemically reacting gas

$$\frac{dA}{A} = (M^2 - 1)\frac{du}{u}$$

M = 1 at nozzle throat still holds

Equilibrium Quasi-1D Nozzle Flows - The Area-Mach Relation

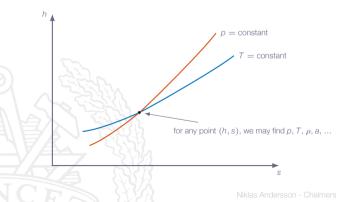
Third question:

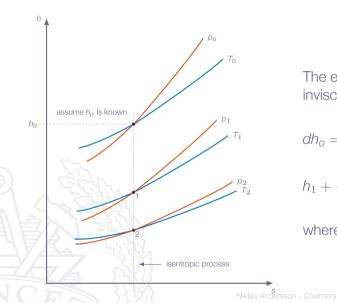
Is the area-Mach number relation valid for a chemically reacting gas?

In the derivation of the **area-Mach number relation**, calorically perfect gas is assumed and thus the relation is **not valid for a chemically reacting gas**

For general gas mixture in thermodynamic and chemical equilibrium, we may find tables or graphs describing relations between state variables.

Example: Mollier diagram



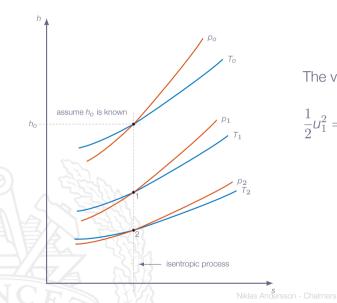


The energy equation for steady-state inviscid adiabatic nozzle flow:

$$dh_o = 0 \Rightarrow$$

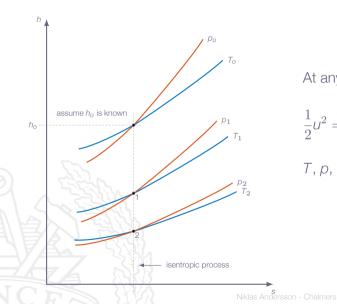
$$h_1 + \frac{1}{2}u_1^2 = h_2 + \frac{1}{2}u_2^2 = h_0$$

where h_0 is the reservoir enthalpy.



The velocity at point 1 can be obtained as:

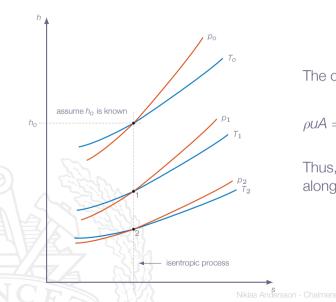
$$\frac{1}{2}u_1^2 = h_0 - h_1 \Rightarrow u_1 = \sqrt{2(h_0 - h_1)}$$



At any point along the isentropic line

$$\frac{1}{2}u^2 = h_0 - h \Rightarrow u = \sqrt{2(h_0 - h)}$$

T, p, ρ , a are given by the diagram

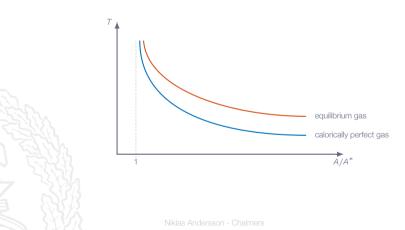


The continuity equation gives $\rho uA = const$

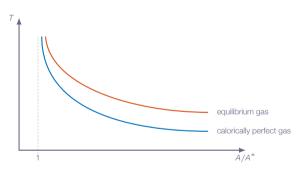
$$\rho U A = \rho^* a^* A^* \Rightarrow \frac{A}{A^*} = \frac{\rho^* a^*}{\rho U}$$

Thus, A/A^* may be computed for any point along isentropic line

Equilibrium gas gives higher *T* and more thrust than calorically perfect gas During the expansion chemical **energy is released** due to shifts in the equilibrium composition



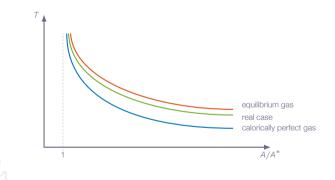
Equilibrium gas gives higher *T* and more thrust than calorically perfect gas During the expansion chemical **energy is released** due to shifts in the equilibrium composition



Chemical and vibrational energy transferred to **translation** and **rotation** \Rightarrow increased temperature

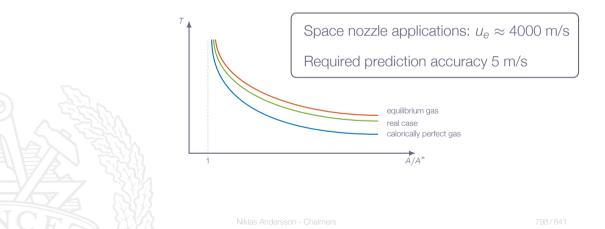
Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:



Equilibrium Quasi-1D Nozzle Flows - Reacting Mixture

Real nozzle flow with reacting gas mixture:



High T_o , high p_o , high reactivity

very fast chemical reactions

local thermodynamic and chemical equilibrium

Large Nozzles

Real case is close to equilibrium gas results

Example: Ariane 5 launcher, main engine (Vulcain 2)

Chemical reactions: $H_2 + O_2 \rightarrow H_2O$ (in principle), but many different radicals and reactions involved (at least 10 species and 20 reactions)

Nozzle inlet conditions: $T_o \sim 3600 K$ $p_o \sim 120 bar$

Length scale \sim a few meters

Gas mixture is quite close to equilibrium conditions all the way through the expansion

Niklas Andersson - Chalmers

Low T_o , low p_o , lower reactivity

Real case is close to frozen flow results

Example:

Small rockets on satellites (for maneuvering, orbital adjustments, etc)

Small Nozzle With High-Speed Flow

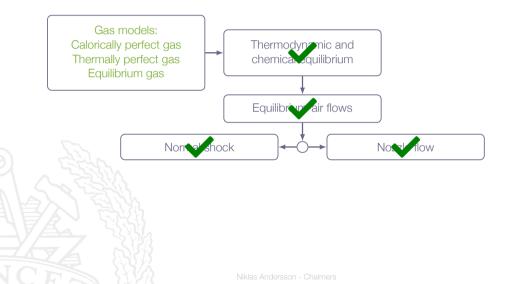
High-speed flows (short flow time scales) \Rightarrow **thermodynamic non-equilibrium**

Very slow (or no) chemical reactions \Rightarrow **frozen composition**

The residence time is to short for the vibrational energy of the molecules to change \Rightarrow **Vibrationally frozen flow**

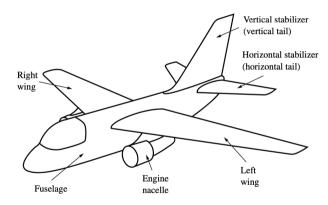
Only translational and rotational energy \Rightarrow **Calorically perfect gas!**

Roadmap - High Temperature Effects



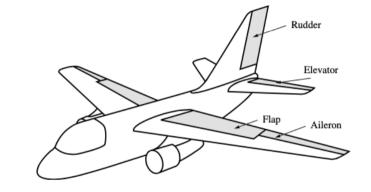
Aircraft Aerodynamics

Control Surfaces



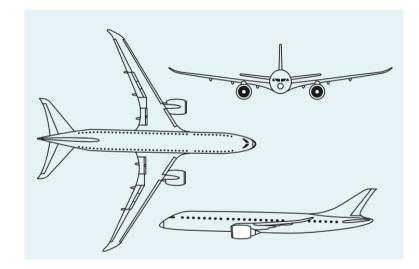
Niklas Andersson - Chalmers

Control Surfaces



Niklas Andersson - Chalmers

Control Surfaces



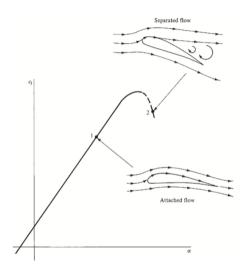
Lift and Drag

$$C_L = \frac{F_L}{\frac{1}{2}\rho U_\infty^2 A_\rho}$$

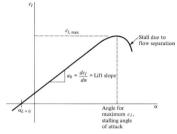
$$\mathcal{C}_{D} = \frac{F_{D}}{\frac{1}{2}\rho U_{\infty}^{2} A_{\rho}}$$

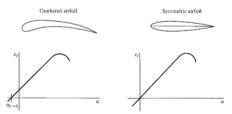
 \sim

where A_p is the planform area

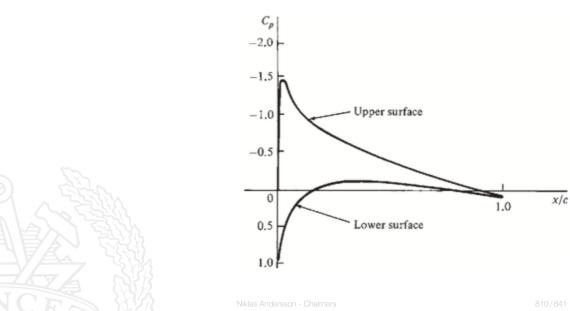


Lift and Drag

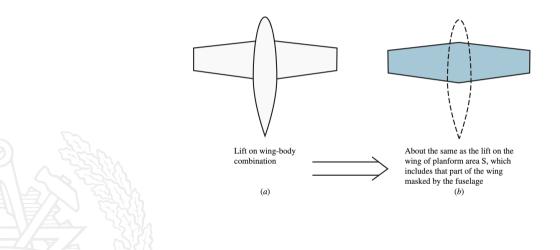




Lift and Drag - Pressure Coefficient



Lift and Drag - Fuselage Lift



Lift and Drag

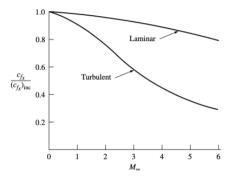
$D = D_{pressure} + D_{friction} + D_{wave}$

Niklas Andersson - Chalmers

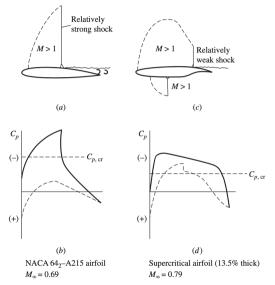
Friction Drag

laminar flow:
$$C_f = \frac{f_1(M_\infty)}{\sqrt{Re_x}}$$

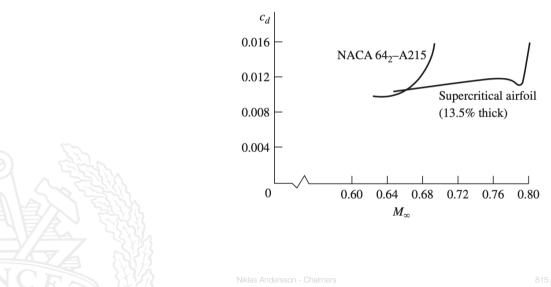
turbulent flow: $C_f = \frac{f_2(M_\infty)}{Re_x^{0.2}}$



Wave Drag - The Supercritical Airfoil

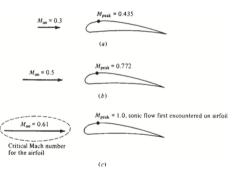


Wave Drag - The Supercritical Airfoil

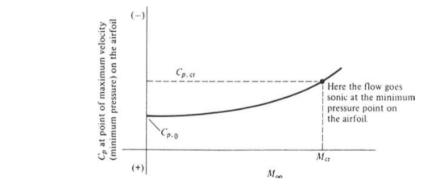


Critical Mach Number

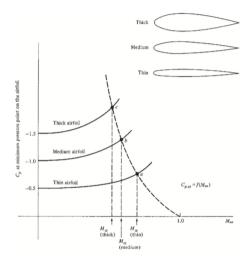
The critical Mach number is the lowest freestream Mach number for which the flow will accelerate to sonic conditions over the wing



Critical Pressure Coefficient

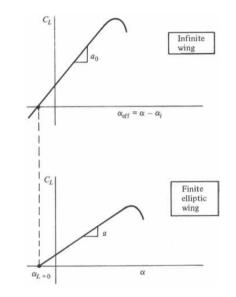


Critical Pressure Coefficient



Niklas Andersson - Chalmers

Finite Wing Span

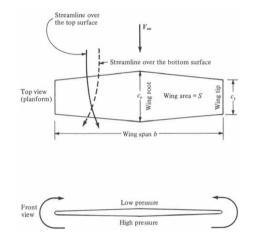


Induced Drag

The higher pressure on the lower side of the wing leads to a flow leakage over the wing tip

The flow below the wing has a velocity component towards the wing tip

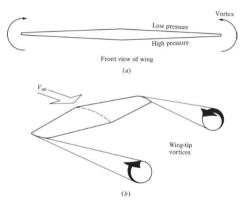
The flow over the wing has a velocity component towards the fuselage



Induced Drag

The flow from high pressure regions to low pressure regions forms a vortex at the wing tip

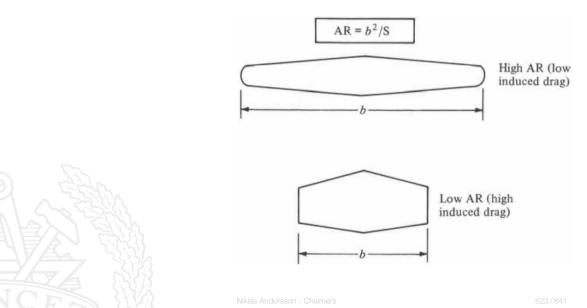
A net downwash flow is induced leading to a reduction of lift



Induced Drag - Downwash

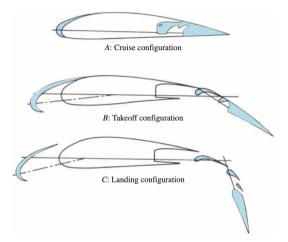
Niklas Andersson - Chalmers

Induced Drag



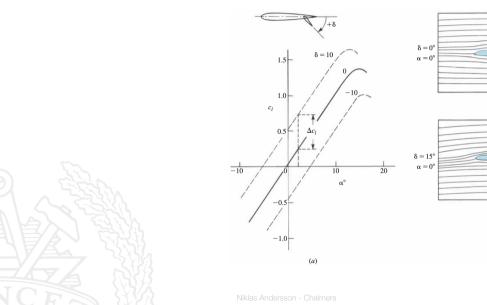
Induced Drag - Winglets

High-Lift Devices



Niklas Andersson - Chalmers

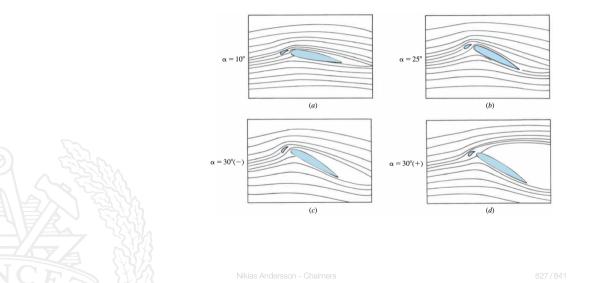
High-Lift Devices - Flaps



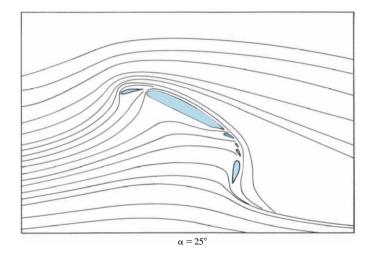
(*b*)

(c)

High-Lift Devices - Slats

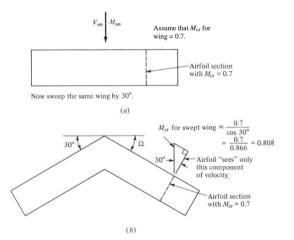


High-Lift Devices



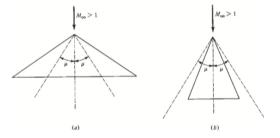
Swept Wings - Subsonic Aircraft

- The wing profile "sees" a flow with the Mach number normal to the leading edge
- Increases the critical freestream Mach number
- Possible to operate at higher Mach number with lower drag
 - Comes with the price of lower lift



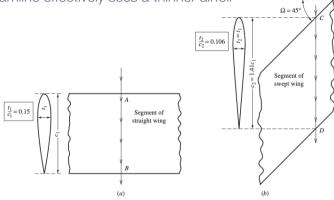
Swept Wings - Supersonic Aircraft

 If the wing is within the Mach angle cone, the trailing-edge-normal flow is subsonic



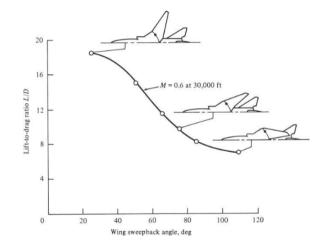
Swept Wings

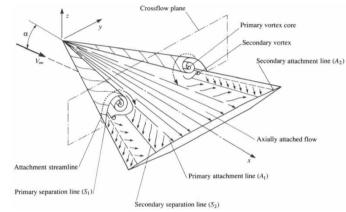
- A swept wing leads to a longer coord in the flow direction
- ▶ With a swept wing, a streamline effectively sees a thinner airfoil



Swept Wings

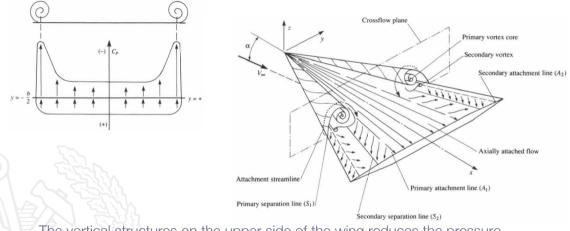
Wing sweep reduces drag but there is also a significant reduction of lift



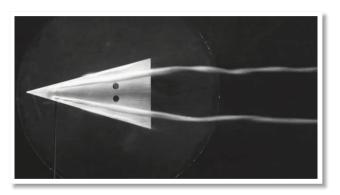


leakage of flow from high-pressure regions to low-pressure regions leads to the formation of vortices on the upper side of the wing

Niklas Andersson - Chalmers

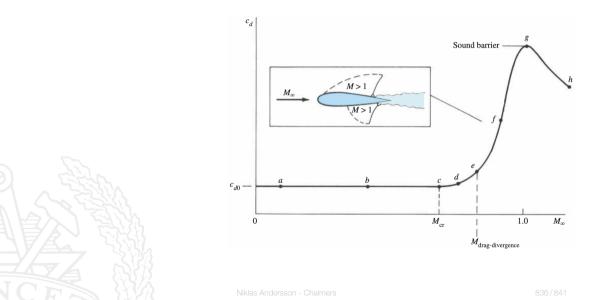


The vortical structures on the upper side of the wing reduces the pressure and increases lift

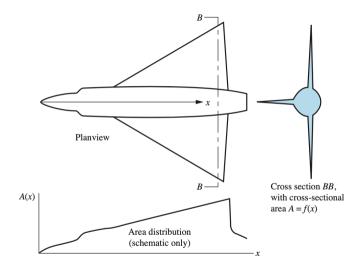


Visualization of vortex structures over a delta wing in a water tunnel experiment

The Sound Barrier

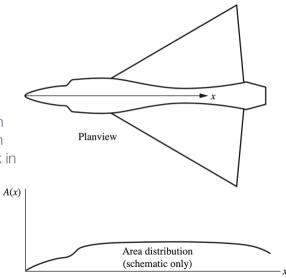


Area Rule

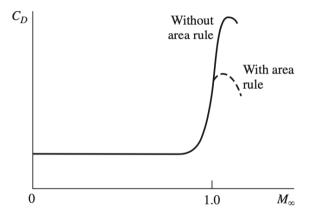


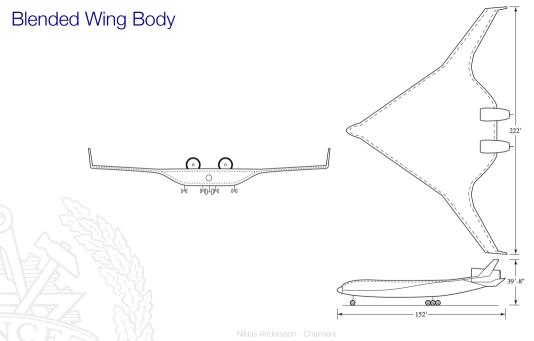
Area Rule

Designing the whole aircraft such that the variation in cross-section area is smooth reduces the peak in drag near Mach 1



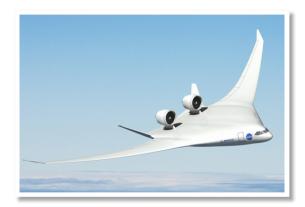
Area Rule





840/841

Blended Wing Body



Niklas Andersson - Chalmers