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Chapter 4 - Oblique Shocks and Expansion Waves
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae for
classical gas dynamics

b normal shocks*

e oblique shocks in 2D*

f shock reflection at solid walls*

g contact discontinuities

h Prandtl-Meyer expansion fans in 2D

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

why do we get normal shocks in some cases and oblique shocks in other?
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Roadmap - Oblique Shocks and Expansion Waves
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Chapter 4.7

Comments on Flow Through Multiple

Shock Systems
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Flow Through Multiple Shock Systems

Single-shock compression versus multiple-shock compression:

θ1

M1, s1
M2,

s2

θ2

M1, s1
M2,

s2 M3, s3
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Flow Through Multiple Shock Systems

We may find θ1 and θ2 (for same M1) which gives the same final Mach number

In such cases, the flow with multiple shocks has smaller losses

Explanation: entropy generation at a shock is a very non-linear function of shock

strength

Note! the system of multiple shocks might

very well result in a larger total flow deflection

angle than the single-shock case
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Chapter 4.8

Pressure Deflection Diagrams
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Pressure Deflection Diagrams
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Pressure Deflection Diagrams - Shock Reflection

θ2

1
2

3

θ

p

3

1
2

Niklas Andersson - Chalmers 12 / 56



Pressure Deflection Diagrams - Shock Intersection
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A slip line is a contact discontinuity:

discontinuity in ρ, T , s, v, and M

continuous in p and flow angle
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Chapter 4.12

Detached Shock Wave in Front of a

Blunt Body
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Detached Shocks
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side
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Detached Shocks

As we move along the detached shock form the centerline, the shock will

change in nature as

1. right in front of the body we will have a normal shock

2. strong oblique shock

3. weak oblique shock

4. far away from the body it will approach a Mach wave, i.e. an infinitely weak

oblique shock
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Detached Shocks
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Chapter 4.10

Intersection of Shocks of the Same

Family
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Mach Waves (Repetition)

Oblique shock, angle β, flow deflection θ:

M2
n2

=
M2

n1
+ [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

where

Mn1 = M1 sin(β)

and

Mn2 = M2 sin(β − θ)

Now, let Mn1 → 1 and Mn2 → 1 ⇒ infinitely weak shock!

Such very weak shocks are called Mach waves
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Mach Waves (Repetition)

Mn1 = 1 ⇒ M1 sin(β) = 1 ⇒ β = arcsin(1/M1)

M1 M2

µ

Mach wave

M2 ≈ M1

θ ≈ 0

µ = arcsin(1/M1)
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Mach Waves
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Mach Waves

1. Mach wave at A: sin(µ1) = 1/M1

2. Mach wave at C: sin(µ2) = 1/M2

3. Oblique shock at B: Mn1 = M1 sin(β) ⇒ sin(β) = Mn1/M1

Existence of shock requires Mn1 > 1 ⇒ β > µ1

Mach wave intercepts shock!

4. Also, Mn2 = M2 sin(β − θ) ⇒ sin(β − θ) = Mn2/M2

For finite shock strength Mn2 < 1 ⇒ (β − θ) < µ2

Again, Mach wave intercepts shock
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Shock Intersection - Same Family

shock
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Shock Intersection - Same Family

Case 1: Streamline going through regions 1, 2, 3, and 4

(through two oblique (weak) shocks)

Case 2: Streamline going through regions 1 and 5

(through one oblique (weak) shock)

Problem: Find conditions 4 and 5 such that

a. p4 = p5

b. flow angle in 4 equals flow angle in 5

Solution may give either reflected shock or expansion fan, depending on

actual conditions

A slip line usually appears, across which there is a discontinuity in all variables

except p and flow angle
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Chapter 4.14

Prandtl-Meyer Expansion Waves
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Expansion Waves

expansion corner

M > 1

gradual expansion

M > 1
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Prandtl-Meyer Expansion Waves

An expansion fan is a centered simple wave (also called Prandl-Meyer expansion)

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

M2 > M1 (the flow accelerates through the expansion fan)

p2 < p1, ρ2 < ρ1, T2 < T1

Niklas Andersson - Chalmers 30 / 56



Prandtl-Meyer Expansion Waves

Continuous expansion region

Infinite number of weak Mach waves

Streamlines through the expansion wave are smooth curved lines

ds = 0 for each Mach wave ⇒ the expansion process is isentropic!
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Prandtl-Meyer Expansion Waves

upstream of expansion M1 > 1, sin(µ1) = 1/M1

flow accelerates as it curves through the expansion fan

downstream of expansion M2 > M1, sin(µ2) = 1/M2

flow is isentropic ⇒ s, po, To, ρo, ao, ... are constant along streamlines

flow deflection: θ
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Prandtl-Meyer Expansion Waves

It can be shown that dθ =
√
M2 − 1

dv

v
, where v = |v|

(valid for all gases)

Integration gives

ˆ θ2

θ1

dθ =

ˆ M2

M1

√
M2 − 1

dv

v

the term
dv

v
needs to be expressed in terms of Mach number

v = Ma ⇒ ln v = lnM + ln a ⇒

dv

v
=

dM

M
+

da

a
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Prandtl-Meyer Expansion Waves

Calorically perfect gas and adiabatic flow gives

To

T
= 1 +

1

2
(γ − 1)M2

{
a =

√
γRT , ao =

√
γRTo

}
⇒ To

T
=

(ao
a

)2

⇒

(ao
a

)2

= 1 +
1

2
(γ − 1)M2 ⇔ a = ao

[
1 +

1

2
(γ − 1)M2

]−1/2
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Prandtl-Meyer Expansion Waves

Differentiation gives:

da = ao

[
1 +

1

2
(γ − 1)M2

]−3/2(
−1

2

)
(γ − 1)MdM

or

da = a

[
1 +

1

2
(γ − 1)M2

]−1(
−1

2

)
(γ − 1)MdM

which gives

dv

v
=

dM

M
+

da

a
=

dM

M
+

−1
2(γ − 1)MdM

1 + 1
2(γ − 1)M2

=
1

1 + 1
2(γ − 1)M2

dM

M
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Prandtl-Meyer Expansion Waves

Thus,

ˆ θ2

θ1

dθ = θ2 − θ1 =

ˆ M2

M1

√
M2 − 1

1 + 1
2(γ − 1)M2

dM

M
= ν(M2)− ν(M1)

where

ν(M) =

ˆ √
M2 − 1

1 + 1
2(γ − 1)M2

dM

M

is the so-called Prandtl-Meyer function
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Prandtl-Meyer Expansion Waves

Performing the integration gives:

ν(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1

We can now calculate the deflection angle ∆θ as:

∆θ = ν(M2)− ν(M1)
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Prandtl-Meyer Expansion Waves
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Prandtl-Meyer Expansion Waves

Example:

µ1

µ2

θ

M1

M2

expansion fan (Mach waves)

1. θ1 = 0, M1 > 1 is given

2. θ2 is given

3. problem: find M2 such that θ2 = ν(M2)− ν(M1)

4. ν(M) for γ = 1.4 can be found in Table A.5
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Prandtl-Meyer Expansion Waves

Since the flow is isentropic, the usual isentropic relations apply:

(po and To are constant)

Calorically perfect gas:

po

p
=

[
1 +

1

2
(γ − 1)M2

] γ
γ−1

To

T
=

[
1 +

1

2
(γ − 1)M2

]
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Prandtl-Meyer Expansion Waves

since po1 = po2 and To1 = To2

p1

p2
=

po2
po1

p1

p2
=

(
po2
p2

)/(
po1
p1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

] γ
γ−1

T1

T2
=

To2
To1

T1

T2
=

(
To2
T2

)/(
To1
T1

)
=

[
1 + 1

2(γ − 1)M2
2

1 + 1
2(γ − 1)M2

1

]
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Prandtl-Meyer Expansion Waves

Alternative solution:

1. determine M2 from θ2 = ν(M2)− ν(M1)

2. compute po1 and To1 from p1, T1, and M1 (or use Table A.1)

3. set po2 = po1 and To2 = To1

4. compute p2 and T2 from po2 , To2 , and M2 (or use Table A.1)
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Chapter 4.15

Shock Expansion Theory
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Diamond-Wedge Airfoil

L
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ε
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M1 > 1

oblique shock oblique shock

expansion fan

symmetric airfoil

(both in x- and

y-planes
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Diamond-Wedge Airfoil

1-2 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M1

2-3 Prandtl-Meyer expansion for flow deflection angle 2ε and upstream Mach

number M2

3-4 standard oblique shock calculation for flow deflection angle ε and upstream

Mach number M3
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Diamond-Wedge Airfoil

symmetric airfoil

zero incidence flow (freestream aligned with flow axis)

gives:

symmetric flow field

zero lift force on airfoil
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Diamond-Wedge Airfoil

Drag force:

D = −
{

∂Ω

p(n · ex)dS

∂Ω airfoil surface

p surface pressure

n outward facing unit normal vector

ex unit vector in x-direction
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Diamond-Wedge Airfoil

Since conditions 2 and 3 are constant in their respective regions, we obtain:

D = 2 [p2L sin(ε)− p3L sin(ε)] = 2(p2 − p3)
t

2
= (p2 − p3)t

For supersonic free stream (M1 > 1), with shocks and expansion fans according to

figure we will always find that p2 > p3

which implies D > 0

Wave drag (drag due to flow loss at compression shocks)
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Flat-Plate Airfoil
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incidence α

M1 > 1
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Flat-Plate Airfoil

It seems that the angle of the flow downstream of the flat plate would be different

than the angle of the flow upstream of the plate. Can that really be correct?!

For the flow in the vicinity of the plate this is the correct picture. Further out from

the plate, shock and expansion waves will interact and eventually sort the

missmatch of flow angles out
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Flat-Plate Airfoil

1. Flow states 4 and 5 must satisfy:

p4 = p5

flow direction 4 equals flow direction 5 (Φ)

2. Shock between 2 and 4 as well as expansion fan between 3 and 5 will adjust

themselves to comply with the requirements

3. For calculation of lift and drag only states 2 and 3 are needed

4. States 2 and 3 can be obtained using standard oblique shock formulas and

Prandtl-Meyer expansion
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Oblique Shocks and Expansion Waves

compression corner

M > 1

expansion corner

M > 1

M decrease

V decrease

p increase

ρ increase

T increase

M increase

V increase

p decrease

ρ decrease

T decrease
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Oblique Shocks and Expansion Waves
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