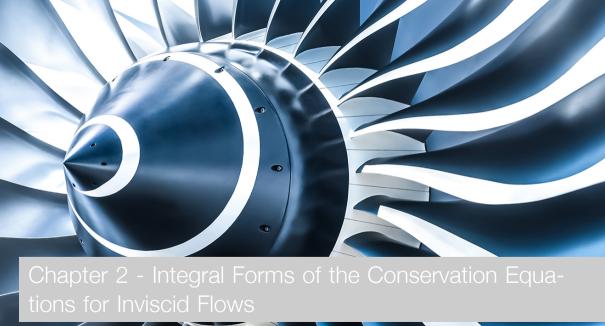


Lecture 2

Niklas Andersson

Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden

niklas.andersson@chalmers.se



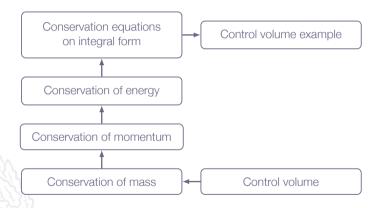
Overview



Learning Outcomes

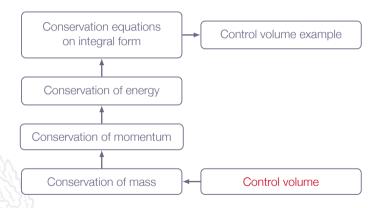
- 4 **Present** at least two different formulations of the governing equations for compressible flows and **explain** what basic conservation principles they are based on
- 5 **Explain** how thermodynamic relations enter into the flow equations
- 7 **Explain** why entropy is important for flow discontinuities

equations, equations and more equations



Motivation

We need to formulate the basic form of the governing equations for compressible flow before we get to the applications



Integral Forms of the Conservation Equations

Conservation principles:

- 1. conservation of mass
- 2. conservation of momentum (Newton's second law)
- 3 conservation of energy (first law of thermodynamics)

Integral Forms of the Conservation Equations

The control volume approach

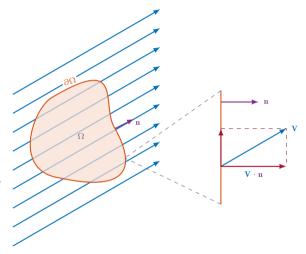
Notation:

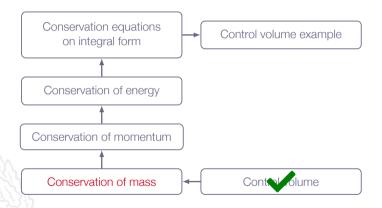
 Ω fixed control volume

 $\partial\Omega$ boundary of Ω

n outward facing unit normal vector

fluid velocity ($v = |\mathbf{v}|$)





Chapter 2.3 Continuity Equation

Continuity Equation

Conservation of mass:

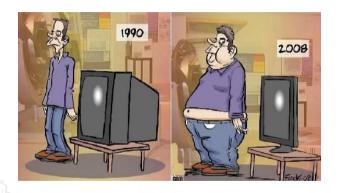
$$\frac{d}{dt} \iiint\limits_{\Omega} \rho d \mathcal{V} + \iint\limits_{\partial \Omega} \rho \mathbf{v} \cdot \mathbf{n} dS = 0$$

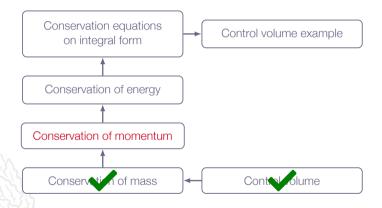
$$\text{rate of change of total mass in } \Omega$$

$$\text{net mass flow out from } \Omega$$

Note! notation in the text book $\mathbf{n} \cdot dS = d\mathbf{S}$

Conservation of Mass





Chapter 2.4 Momentum Equation

Momentum Equation

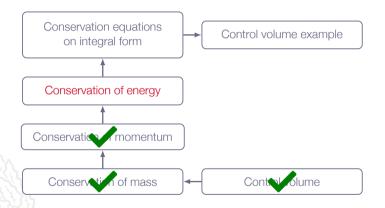
Conservation of momentum:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} + \iiint_{\partial\Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} d\mathcal{V}$$
rate of change of total momentum in Ω plus surface force on $\partial\Omega$ generation due to pressure force on $\partial\Omega$ forces inside Ω

Note! friction forces due to viscosity are not included here. To account for these forces, the term $-(\tau \cdot \mathbf{n})$ must be added to the surface integral term. The body force, f, is force per unit mass.

Newton





Chapter 2.5 Energy Equation

Conservation of energy:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial\Omega} \left[\rho \mathbf{e}_{o}(\mathbf{v} \cdot \mathbf{n}) + \rho \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$
rate of change of total internal energy in Ω
net flow of total internal energy out from Ω plus work due to surface pressure on $\partial\Omega$
work due to forces inside Ω

where

$$\rho \mathbf{e}_0 = \rho \left(\mathbf{e} + \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) = \rho \left(\mathbf{e} + \frac{1}{2} \mathbf{v}^2 \right)$$

is the total internal energy

The surface integral term may be rewritten as follows:

$$\iint\limits_{\partial\Omega}\left[\rho\left(\mathbf{e}+\frac{1}{2}\mathbf{v}^{2}\right)\left(\mathbf{v}\cdot\mathbf{n}\right)+\rho\mathbf{v}\cdot\mathbf{n}\right]d\mathbf{S}$$

 \Leftrightarrow

$$\iint\limits_{\partial\Omega} \left[\rho \left(\mathbf{e} + \frac{p}{\rho} + \frac{1}{2} \mathbf{v}^2 \right) (\mathbf{v} \cdot \mathbf{n}) \right] d\mathbf{S}$$

 \Leftrightarrow

$$\iint\limits_{\partial\Omega} \left[\rho \left(h + \frac{1}{2} v^2 \right) (\mathbf{v} \cdot \mathbf{n}) \right] dS$$

Introducing total enthalpy

$$h_0 = h + \frac{1}{2}v^2$$

we get

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial\Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Note 1: to include friction work on $\partial\Omega$, the energy equation is extended as

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial\Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} - (\tau \cdot \mathbf{n}) \cdot \mathbf{v} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

Note 2: to include heat transfer on $\partial\Omega$, the energy equation is further extended

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial\Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} - (\tau \cdot \mathbf{n}) \cdot \mathbf{v} + \mathbf{q} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V}$$

where q is the heat flux vector

Note 3: the force f inside Ω may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference

Note 4: there may be objects inside Ω which we choose to represent as sources of momentum and energy.

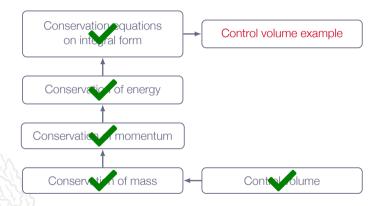
For example, there may be a solid object inside Ω which acts on the fluid with a force \mathbf{F} and performs work \dot{W} on the fluid

Momentum equation:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{v} d\mathcal{V} + \iint_{\partial \Omega} \left[\rho(\mathbf{v} \cdot \mathbf{n}) \mathbf{v} + \rho \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} d\mathcal{V} + \mathbf{F}$$

Energy equation:

$$\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial\Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} \right] dS = \iiint_{\Omega} \rho \mathbf{f} \cdot \mathbf{v} d\mathcal{V} + \dot{\mathbf{W}}$$

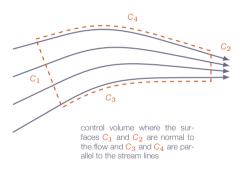


How can we use control volume formulations of conservation laws?

Let $\Omega \to 0$: In the limit of vanishing volume the control volume formulations give the **P**artial **D**ifferential **E**quations (**PDE**:s) for mass, momentum and energy conservation (see Chapter 6)

Apply in a "smart" way ⇒ Analysis tool for many practical problems involving compressible flow (see Chapter 2, Section 2.8)

Example: Steady-state adiabatic inviscid flow



Conservation of mass:

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho d\mathcal{V} + \iint_{\partial \Omega} \rho \mathbf{v} \cdot \mathbf{n} dS}_{= 0} = 0$$

Conservation of energy:

$$\underbrace{\frac{d}{dt} \iiint_{\Omega} \rho \mathbf{e}_{o} d\mathcal{V} + \iint_{\partial \Omega} \left[\rho h_{o} \mathbf{v} \cdot \mathbf{n} \right] dS}_{-\rho_{1} h_{o_{1}} \mathbf{v}_{1} A_{1} + \rho_{2} h_{o_{2}} \mathbf{v}_{2} A_{2}} = 0$$

Conservation of mass:

$$\rho_1 \mathsf{v}_1 \mathsf{A}_1 = \rho_2 \mathsf{v}_2 \mathsf{A}_2$$

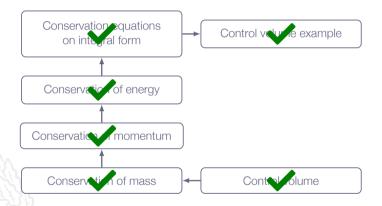
Conservation of energy:

$$\rho_1 h_{o_1} \mathbf{v}_1 A_1 = \rho_2 h_{o_2} \mathbf{v}_2 A_2$$

$$\Leftrightarrow$$

$$h_{O_1} = h_{O_2}$$

Total enthalpy h_0 is conserved along streamlines in steady-state adiabatic inviscid flow



$$E = K_{o}t + \frac{1}{2}\rho v t^{2} \qquad K_{n} = \sum_{i=0}^{\infty} \sum_{m=0}^{\infty} (n-i)(i+e^{m-\infty}) \qquad \frac{\partial}{\partial t} \nabla \cdot \rho = \frac{8}{23} \oiint \rho b dt \cdot \rho \frac{\partial}{\partial \nabla}$$

$$ALL KINEMATICS \qquad ALL NUMBER \qquad ALL FLUID DYNAMICS$$

$$EQUATIONS \qquad THEORY EQUATIONS \qquad EQUATIONS$$

$$|\psi_{i,y}\rangle = A(\psi) A(|x\rangle \otimes |y\rangle) \qquad CH_{4} + OH + HEAT \longrightarrow H_{2}O + CH_{2} + H_{2}EAT$$

$$ALL QUANTUM \qquad ALL CHEMISTRY$$

$$MECHANICS EQUATIONS \qquad EQUATIONS$$

$$S_{ij} = \frac{1}{2\epsilon} i \delta(\hat{\xi}_{0}, \hat{\tau}_{P_{i}}, \rho_{i}^{\text{obc}}, \gamma_{i}) \hat{\tau}_{i}^{P_{i}} \alpha \lambda(\hat{y}) \psi(Q_{i})$$

 $S_{U}(2)U(1)\times SU(U(2)) \qquad S_{g}=\frac{-1}{2\bar{\epsilon}}i\cdot \hat{\delta}\left(\hat{\xi}_{o}+\hat{r}_{P_{i}}\rho_{v}^{\text{obc}}\cdot\gamma_{p}\right)\hat{F}_{a}^{\text{o}}\alpha\lambda(3)\cdot\psi(Q_{a})$ ALL GAUGE THEORY ALL QUANTUM **EQUATIONS** GRAVITY FOUATIONS Ĥ - Y. = O

 $H(t) + \Omega + G \cdot \Lambda \dots \begin{cases} \dots > O & (\text{HUBBLE MODEL}) \\ \dots = O & (\text{FLAT SPHERE MODEL}) \\ \dots < O & (\text{BRIGHT DARK}) \\ \text{MATTER MODEL} \end{cases}$ ALL TRULY DEEP PHYSICS EQUATIONS ALL COSMOLOGY EQUATIONS