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Chapter 2 - Integral Forms of the Conservation Equa-

tions for Inviscid Flows
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Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

5 Explain how thermodynamic relations enter into the flow equations

7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Roadmap - Integral Relations
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Motivation

We need to formulate the basic form of the governing equations for compressible

flow before we get to the applications
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Integral Forms of the Conservation Equations

Conservation principles:

1. conservation of mass

2. conservation of momentum (Newton’s second law)

3. conservation of energy (first law of thermodynamics)
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Integral Forms of the Conservation Equations

Ω

∂Ω

n
V

n

V · n

The control volume approach

Notation:

Ω fixed control volume

∂Ω boundary of Ω

n outward facing unit normal vector

v fluid velocity (v = |v|)
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Chapter 2.3

Continuity Equation
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Continuity Equation

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+
{

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

rate of change of

total mass in Ω
net mass flow out

from Ω

Note! notation in the text book n · dS = dS
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Conservation of Mass
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Chapter 2.4

Momentum Equation
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Momentum Equation

Conservation of momentum:

d

dt

y

Ω

ρvdV︸ ︷︷ ︸+
{

∂Ω

[ρ(v · n)v + pn]dS︸ ︷︷ ︸ =
y

Ω

ρfdV︸ ︷︷ ︸
rate of change of total

momentum in Ω

net momentum flow out from

Ω plus surface force on ∂Ω
due to pressure

rate of momentum

generation due to

forces inside Ω

Note! friction forces due to viscosity are not included here. To account for these

forces, the term −(τ · n) must be added to the surface integral term.

The body force, f , is force per unit mass.
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Newton
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Chapter 2.5

Energy Equation
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Energy Equation

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+
{

∂Ω

[ρeo(v · n) + pv · n]dS︸ ︷︷ ︸ =
y

Ω

ρf · vdV︸ ︷︷ ︸
rate of change of total

internal energy in Ω

net flow of total internal energy

out from Ω plus work due to

surface pressure on ∂Ω

work due to forces

inside Ω

where

ρeo = ρ

(
e+

1

2
v · v

)
= ρ

(
e+

1

2
v2
)

is the total internal energy
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Energy Equation

The surface integral term may be rewritten as follows:

{

∂Ω

[
ρ

(
e+

1

2
v2
)
(v · n) + pv · n

]
dS

⇔

{

∂Ω

[
ρ

(
e+

p

ρ
+

1

2
v2
)
(v · n)

]
dS

⇔

{

∂Ω

[
ρ

(
h+

1

2
v2
)
(v · n)

]
dS
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Energy Equation

Introducing total enthalpy

ho = h+
1

2
v2

we get

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV
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Energy Equation

Note 1: to include friction work on ∂Ω, the energy equation is extended as

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n−(τ · n) · v]dS =
y

Ω

ρf · vdV

Note 2: to include heat transfer on ∂Ω, the energy equation is further extended

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n−(τ · n) · v+q · n]dS =
y

Ω

ρf · vdV

where q is the heat flux vector
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Energy Equation

Note 3: the force f inside Ω may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference
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Energy Equation

Note 4: there may be objects inside Ω which we choose to represent as sources of

momentum and energy.

For example, there may be a solid object inside Ω which acts on the fluid with a force

F and performs work Ẇ on the fluid

Momentum equation:

d

dt

y

Ω

ρvdV +
{

∂Ω

[ρ(v · n)v + pn]dS =
y

Ω

ρfdV + F

Energy equation:

d

dt

y

Ω

ρeodV +
{

∂Ω

[ρhov · n]dS =
y

Ω

ρf · vdV + Ẇ

Niklas Andersson - Chalmers 25 / 32



Roadmap - Integral Relations

Conservation equations

on integral form

Conservation of energy

Conservation of momentum

Conservation of mass

Control volume example

Control volume
��

�

�

�

Niklas Andersson - Chalmers 26 / 32



Integral Equations - Applications

How can we use control volume formulations of conservation laws?

Let Ω → 0: In the limit of vanishing volume the control volume formulations give

the Partial Differential Equations (PDE:s) for mass, momentum and energy

conservation (see Chapter 6)

Apply in a ”smart” way ⇒ Analysis tool for many practical problems involving

compressible flow (see Chapter 2, Section 2.8)
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Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

C3

C4

C2

C1

control volume where the sur-

faces C1 and C2 are normal to

the flow and C3 and C4 are par-

allel to the stream lines
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Integral Equations - Applications

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+
{

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

= 0 −ρ1v1A1 + ρ2v2A2

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+
{

∂Ω

[ρhov · n]dS︸ ︷︷ ︸ = 0

= 0 −ρ1ho1 v1A1 + ρ2ho2 v2A2
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Integral Equations - Applications

Conservation of mass:

ρ1v1A1 = ρ2v2A2

Conservation of energy:

ρ1ho1v1A1 = ρ2ho2v2A2

⇔

ho1 = ho2

Total enthalpy ho is conserved along streamlines in steady-state adiabatic inviscid

flow
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