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Learning Outcomes

4 Present at least two different formulations of the governing equations for
compressible flows and explain what basic conservation principles they are
based on

5 Explain how thermodynamic relations enter into the flow equations
7 Explain why entropy is important for flow discontinuities

equations, equations and more equations
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Motivation

We need to formulate the basic form of the governing equations for compressible
flow before we get to the applications
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Integral Forms of the Conservation Equations

Conservation principles:

conservation of mass
conservation of momentum (Newton’s second law)

conservation of energy (first law of thermodynamics)



Integral Forms of the Conservation Equations

The control volume approach

Notation:

Q) fixed control volume

00 boundary of Q2

n outward facing unit normal vector
v fluid velocity (v = |v|)
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Chapter 2.3
Continuity Equation



Continuity Equation

Conservation of mass:

& Af) v+ §f ov -nos = 0
Q o0

rate of change of net mass flow out
total mass in 2 from

Note! notation in the text book n - dS = dS



Conservation of Mass
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Chapter 2.4
Momentum Equation



Momentum Equation

Conservation of momentum:

% Hf pva¥ + f_ﬁ [p(v-m)v+pn|dS = jﬂ pfd ¥
Q o0 o

net momentum flow out from rate of momentum
Q plus surface force on 92 generation due to
due to pressure forces inside €2

rate of change of total
momentum in

Note! friction forces due to viscosity are not included here. To account for these
forces, the term —(7 - n) must be added to the surface integral term.
The body force, f, is force per unit mass.
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Chapter 2.5
Energy Equation



Energy Equation
Conservation of energy:

() peecr + f lpeots ) +pv-mjas = [f[ pf-var
Q 0N Q

net flow of total internal energy
out from € plus work due to
surface pressure on 92

rate of change of total
internal energy in Q

work due to forces
inside 2

where

e et e
= -V -V = —_
PEo = p 9 P B

is the total internal energy



Energy Equation

The surface integral term may be rewritten as follows:

ﬁ {p<e+;v2> (v-n)—i—pv-n] as

90
&

é%ﬁ {p <e+ '(; + ;v2> (v n)} ds
&



Energy Equation

Introducing total enthalpy

1

we get

% {[[ peoc? + {J lohov - njas = [[[ pf-var
Q o0 Q



Energy Equation

Note 1: to include friction work on 052, the energy equation is extended as

i jffpeod“//+@ [phov - n—(7 -n) - v]dS = ffjpf vay

Note 2: to include heat transfer on 052, the energy equation is further extended

%Hfﬂeod“yﬂfﬁ[phov'n—(wn) -v+q-n}d8:fﬂpf.vd«;/
Q Bly) 5

where q is the heat flux vector



Energy Equation

Note 3: the force f inside 2 may be a distributed body force field

Examples:

Gravity

Coriolis and centrifugal acceleration terms in a rotating frame of reference



Energy Equation

Note 4: there may be objects inside {2 which we choose to represent as sources of
momentum and energy.

For example, there may be a solid object inside €2 which acts on the fluid with a force
F and performs work W on the fluid

Momentum equation:

gt [[[ ova? + {J lo(v - m)v + pu]ds = [{[ ptar +F
Q o0 Q

Energy equation:

() peocy + {f lohov -nlas = [[[ pf-var + V¥
Q o0 Q
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Integral Equations - Applications

How can we use control volume formulations of conservation laws?

Let Q — 0: In the limit of vanishing volume the control volume formulations give
the Partial Differential Equations (PDE:s) for mass, momentum and energy
conservation (see Chapter 6)

Apply in a "smart” way = Analysis tool for many practical problems involving
compressible flow (see Chapter 2, Section 2.8)



Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

control volume where the sur-
faces C1 and Co are normal to
the flow and C3 and Cy4 are par-
allel to the stream lines



Integral Equations - Applications

Conservation of mass:

% fffpd“l/nL(ﬁﬁpv'ndS: 0
o) o0

=0 —p1ViA1L + pavaAs

Conservation of energy:

% J]J peod” + gj) [phov -n]dS =0
L 30

=0 —p1hoy V1AL + p2hoyvaA2



Integral Equations - Applications

Conservation of mass:
P1VIAL = paVoAs
Conservation of energy:

p1ho,ViAL = p2ho,VaA2

hol == h02

Total enthalpy hy is conserved along streamlines in steady-state adiabatic inviscid
flow
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