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Compressible Flow

”Compressible flow (gas dynamics) is a branch of fluid mechanics that deals

with flows having significant changes in fluid density”

Wikipedia
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Gas Dynamics

”... the study of motion of gases and its effects on physical systems ...”

”... based on the principles of fluid mechanics and thermodynamics ...”

”... gases flowing around or within physical objects at speeds comparable

to the speed of sound ...”

Wikipedia
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Chapter 1 - Introduction
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Learning Outcomes

1 Define the concept of compressibility for flows

2 Explain how to find out if a given flow is subject to significant compressibility

effects

3 Describe typical engineering flow situations in which compressibility effects are

more or less predominant (e.g. Mach number regimes for steady-state flows)

6 Define the special cases of calorically perfect gas, thermally perfect gas and

real gas and explain the implication of each of these special cases

in this lecture we will find out what compressibility means and do a brief review

of thermodynamics
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Applications - Classical

Treatment of calorically perfect gas

Exact solutions of inviscid flow in 1D

Shock-expansion theory for steady-state 2D flow

Approximate closed form solutions to linearized equations in 2D and 3D

Method of Characteristics (MOC) in 2D and axi-symmetric inviscid supersonic

flows

Niklas Andersson - Chalmers 9 / 83



Applications - Modern

Computational Fluid Dynamics (CFD)

Complex geometries (including moving boundaries)

Complex flow features (compression shocks, expansion waves, contact

discontinuities)

Viscous effects

Turbulence modeling

High temperature effects (molecular vibration, dissociation, ionization)

Chemically reacting flow (equilibrium & non-equilibrium reactions)
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Applications - Examples

Turbo-machinery flows:
Gas turbines, steam turbines, compressors
Aero engines (turbojets, turbofans, turboprops)

Aeroacoustics:
Flow induced noise (jets, wakes, moving surfaces)
Sound propagation in high speed flows

External flows:
Aircraft (airplanes, helicopters)
Space launchers (rockets, re-entry vehicles)

Internall flows:
Nozzle flows
Inlet flows, diffusers
Gas pipelines (natural gas, bio gas)

Free-shear flows:
High speed jets

Combustion:
Internal combustion engines (valve flow, in-cylinder flow, exhaust pipe flow, mufflers)
Combustion induced noise (turbulent combustion)
Combustion instabilities
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Applications - Stirling Engine

gas cooler

regenerator

gas heater

compression passage

compression cylinderexpansion cylinder

feed tube

feed tube

manifold

manifold
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Applications - Siemens GT750
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Applications - Rolls-Royce Trent XWB
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Applications - Airbus A380
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Applications - Vulcain Nozzle
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Historical Milestones

1893 C.G.P. de Laval, first steam turbine with supersonic

nozzles (convergent-divergent). At this time, the

significance was not fully understood, but it worked!

1947 Charles Yeager, flew first supersonic aircraft (XS-1),

M 1.06
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Historical Milestones - C.G.P. de Laval (1893)
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Historical Milestones - Charles Yeager (1947)
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Modern Compressible Flow

Screeching rectangular supersonic jet
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Chapter 1.2

Compressibility
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Compressibility

τ = −1

ν

∂ν

∂p
, (ν =

1

ρ
)

Not really precise!

Is T held constant during the compression or not?
dV

V

dp
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Compressibility

Two fundamental cases:

Constant temperature

Heat is cooled off to keep T constant inside the cylinder

Adiabatic process

Thermal insulation prevents heat exchange
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Compressibility

Isothermal process:

τT = −1

ν

(
∂ν

∂p

)
T

Adiabatic reversible (isentropic) process:

τS = −1

ν

(
∂ν

∂p

)
S

Air at normal conditions: τT ≈ 1.0× 10−5 [m2/N]

Water at normal conditions: τT ≈ 5.0× 10−10 [m2/N]
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Compressibility

τ = −1

ν

∂ν

∂p
where ν =

1

ρ
and thus

τ = −ρ
∂

∂p

(
1

ρ

)
= −ρ

(
− 1

ρ2

)
∂ρ

∂p
=

1

ρ

∂ρ

∂p

τT =
1

ρ

(
∂ρ

∂p

)
T

τS =
1

ρ

(
∂ρ

∂p

)
S
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Compressibility

Definition of compressible flow:

If p changes with amount ∆p over a characteristic length scale of the flow, such

that the corresponding change in density, given by ∆ρ ∼ ρτ∆ p, is too large to

be neglected, the flow is compressible (typically ∆ρ/ρ > 0.05)

Note! Bernoulli´s equation is restricted to incompressible flow, i.e. it is not valid for

compressible flow!
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Compressibility - Mach Number

The freestream Mach number is defined as

M∞ =
U∞
a∞

where U∞ is the freestream flow speed and a∞ is the speed of sound at freestream

conditions
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Compressibility

Assume incompressible flow and estimate the maximum pressure difference using

∆p ≈ 1

2
ρ∞U2

∞

For air at normal conditions we have

τT =
1

ρ

(
∂ρ

∂p

)
T

=

{
p = ρRT ⇒

(
∂ρ

∂p

)
T

=
1

RT

}
=

1

ρRT
=

1

p

(ideal gas law for perfect gas p = ρRT )
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Compressibility

Using the relations on previous slide we get

∆ρ

ρ
≈ τT∆p ≈ 1

p∞

1

2
ρ∞U2

∞ =

1

2
ρ∞U2

∞

ρ∞RT∞

for a calorically perfect gas we have a =
√
γRT

which gives us
∆ρ

ρ
≈ γU2

∞
2a2∞

now, using the definition of Mach number we get:

∆ρ

ρ
≈ γ

2
M2

∞
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Chapter 1.3

Flow Regimes
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Flow Regimes

Incompressible

Subsonic

Transonic

Supersonic

Hypersonic

M∞ < 0.1

M∞ < 1 and M < 1 everywhere

case 1: M∞ < 1 and M > 1 locally
case 2: M∞ > 1 and M < 1 locally

M∞ > 1 and M > 1 everywhere

supersonic flow with high-

temperature effects

C
o
m
p
re
s
s
ib
le

Local Mach number M is based on local flow speed, U = |U|, and local speed of sound, a
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Chapter 1.5

Aerodynamic Forces
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Aerodynamic Forces

n

Ω

∂Ω

Ω region occupied by body

∂Ω surface of body

n outward facing unit normal vector
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Aerodynamic Forces

Overall forces on the body du to the flow

F =
{

(−pn + τ · n)dS

where p is static pressure and τ is a stress tensor
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Aerodynamic Forces

Drag is the component of F which is parallel with the freestream direction:

D = Dp + Df

where Dp is drag due to pressure and Df is drag due to friction

Lift is the component of F which is normal to the free stream direction:

L = Lp + Lf

(Lf is usually negligible)
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Aerodynamic Forces

Inviscid flow around slender body (attached flow)

subsonic flow: D = 0
transonic or supersonic flow: D > 0

Explanation: Wave drag

M∞ < 1 M∞ > 1
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Aerodynamic Forces

Wave drag is an inviscid phenomena, connected to the formation of

compression shocks and entropy increase

Viscous effects are present in all Mach regimes

At transonic and supersonic conditions a particular phenomena named
shock/boundary-layer interaction may appear

shocks trigger flow separation

usually leads to unsteady flow
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Chapter 1.4

Review of Thermodynamics
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Thermodynamic Review

Compressible flow:

” strong interaction between flow and thermodynamics ... ”

Niklas Andersson - Chalmers 44 / 83



Perfect Gas

All intermolecular forces negligible

Only elastic collitions between molecules

pν = RT or
p

ρ
= RT

where R is the gas constant [R] = J/kgK

Also, R = Runiv/M where M is the molecular weight of gas molecules (in

kg/kmol) and Runiv = 8314 J/kmol K
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Internal Energy and Enthalpy

Internal energy e ([e] = J/kg)

Enthalpy h ([h] = J/kg)

h = e+ pν = e+
p

ρ
(valid for all gases)

For any gas in thermodynamic equilibrium, e and h are functions of only two

thermodynamic variables (any two variables may be selected) e.g.

e = e(T , ρ) or h = h(T ,p)
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Internal Energy and Enthalpy

Special cases:

Thermally perfect gas:

e = e(T) and h = h(T)

OK assumption for air at near atmospheric conditions and 100K < T < 2500K

Calorically perfect gas:

e = CvT and h = CpT (Cv and Cp are constants)

OK assumption for air at near atmospheric pressure and 100K < T < 1000K
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Specific Heat

For thermally perfect (and calorically perfect) gas

Cp =

(
∂h

∂T

)
p

, Cv =

(
∂e

∂T

)
v

since h = e+ p/ρ = e+ RT we obtain:

Cp = Cv + R

The ratio of specific heats, γ, is defined as:

γ ≡ Cp

Cv
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Specific Heat

Important!

calorically perfect gas:

Cv, Cp, and γ are constants

thermally perfect gas:

Cv, Cp, and γ will depend on temperature
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Specific Heat

Cp − Cv = R Cp − Cv = R
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Specific Heat

Cp − Cv = R

divide by Cv

Cp − Cv = R

divide by Cp
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Specific Heat

Cp − Cv = R

divide by Cv

γ − 1 =
R

Cv

Cp − Cv = R

divide by Cp

1− 1

γ
=

γ − 1

γ
=

R

Cp
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Specific Heat

Cp − Cv = R

divide by Cv

γ − 1 =
R

Cv

Cv =
R

γ − 1

Cp − Cv = R

divide by Cp

1− 1

γ
=

γ − 1

γ
=

R

Cp

Cp =
γR

γ − 1
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Specific Heat

Cp − Cv = R

divide by Cv

γ − 1 =
R

Cv

Cv =
R

γ − 1

Cp − Cv = R

divide by Cp

1− 1

γ
=

γ − 1

γ
=

R

Cp

Cp =
γR

γ − 1

valid for both thermally perfect and calorically perfect gas!
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First Law of Thermodynamics

A fixed mass of gas, separated from its surroundings by an imaginary flexible

boundary, is defined as a system. This system obeys the relation

de = δq− δw

where

de is a change in internal energy of system

δq is heat added to the system

δw is work done by the system (on its surroundings)

Note! de only depends on starting point and end point of the process while δq and

δw depend on the actual process also
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First Law of Thermodynamics

Examples:

Adiabatic process:

δq = 0.

Reversible process:

no dissipative phenomena (no flow losses)

Isentropic process:

a process which is both adiabatic and reversible
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First Law of Thermodynamics

Reversible process:

δw = pdν = pd(1/ρ)

de = δq− pd(1/ρ)

Adiabatic & reversible process:

δq = 0.

de = −pd(1/ρ)
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Entropy

Entropy s is a property of all gases, uniquely defined by any two thermodynamic

variables, e.g.

s = s(p,T) or s = s(ρ,T) or s = s(ρ,p) or s = s(e, h) or ...
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Second Law of Thermodynamics

Concept of entropy s:

ds =
δqrev

T
=

δq

T
+ dsir where dsir > 0. and thus

ds ≥ δq

T
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Second Law of Thermodynamics

Concept of entropy s:

ds =
δqrev

T
=

δq

T
+ dsir where dsir > 0. and thus

ds ≥ δq

T

ρ

T

s

s + ds

(δq)rev

δq
δq 6= (δq)rev
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Second Law of Thermodynamics

In general:

ds ≥ δq

T

For adiabatic processes:

ds ≥ 0.

Niklas Andersson - Chalmers 57 / 83



Second Law of Thermodynamics

”In this house, we obey the laws of thermody-

namics!”
Homer Simpson, after Lisa constructs a perpetual motion machine whose energy increases with time
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Calculation of Entropy

For reversible processes (δw = pd(1/ρ) and δq = Tds):

de = Tds− pd

(
1

ρ

)
⇔ Tds = de+ pd

(
1

ρ

)
from before we have h = e+ p/ρ ⇒

dh = de+ pd

(
1

ρ

)
+

(
1

ρ

)
dp ⇔ de = dh− pd

(
1

ρ

)
−
(
1

ρ

)
dp
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Calculation of Entropy

For thermally perfect gases, p = ρRT and dh = CpdT ⇒ ds = Cp

dT

T
− R

dp

p

Integration from starting point (1) to end point (2) gives:

s2 − s1 =

ˆ 2

1
Cp

dT

T
− R ln

(
p2

p1

)
and for calorically perfect gases

s2 − s1 = Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)
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Calculation of Entropy

If we instead use de = CvdT we get

for thermally perfect gases

s2 − s1 =

ˆ 2

1
Cv

dT

T
− R ln

(
ρ2
ρ1

)
and for calorically perfect gases

s2 − s1 = Cv ln
(
T2

T1

)
− R ln

(
ρ2
ρ1

)

Niklas Andersson - Chalmers 61 / 83



Roadmap - Introduction to Compressible Flow

Introduction to compressible flow

Historical milestones

Applications

Basic concepts

Aerodynamic forces

Flow regimes

Compressibility

Review of thermodynamics

Isentropic relations

First and second law of

thermodynamics

Gas properties

�

�

�

�

�

�

�

�

Niklas Andersson - Chalmers 62 / 83



Isentropic Relations

For calorically perfect gases, we have

s2 − s1 = Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)
For adiabatic reversible processes:

ds = 0. ⇒ s1 = s2 ⇒ Cp ln
(
T2

T1

)
− R ln

(
p2

p1

)
= 0 ⇒

ln
(
p2

p1

)
=

Cp

R
ln

(
T2

T1

)
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Isentropic Relations

with
Cp

R
=

Cp

Cp − Cv

=
γ

γ − 1
⇒

p2

p1
=

(
T2

T1

) γ
γ−1
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Isentropic Relations

Alternatively, using s2 − s1 = 0 = Cv ln
(
T2

T1

)
− R ln

(
ρ2
ρ1

)
⇒

ρ2
ρ1

=

(
T2

T1

) 1
γ−1
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Isentropic Relations - Summary

For an isentropic process and a calorically perfect gas we have

p2

p1
=

(
ρ2
ρ1

)γ

=

(
T2

T1

) γ
γ−1

A.K.A. the isentropic relations

Niklas Andersson - Chalmers 66 / 83



Thermodynamic Relations and Process Diagrams

Many times it’s process diagrams makes it easier to understand physics

Examples of process diagrams: Ts-diagram and pν-diagram

We will use process diagrams in the following chapters to give insights into

physical processes such as shocks, heat addition and friction
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Thermodynamic Relations and Process Diagrams

From before:

ds = Cv

dT

T
+ R

dν

ν
ds = Cp

dT

T
− R

dp

p
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Ts-diagram

ds = Cv

dT

T
+ R

dν

ν

dν =
ν

R
ds− Cv

ν

RT
dT

dν =
ν

R
ds− Cv

p
dT

ds = 0 ⇒ dν < 0 for positive dT

ds = Cp

dT

T
− R

dp

p

dp = −p

R
ds+ Cp

p

RT
dT

dp = −p

R
ds+ CpρdT

ds = 0 ⇒ dp > 0 for positive dT
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Ts-diagram

T

s
s = constant

ρ
a
n
d
p
in
c
re
a
s
e
s
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Ts-diagram - Isochoric process

dν =
ν

R
ds− Cv

p
dT

From before: ν decreases with T and p increases with T and thus

for a given dT , dν will be greater at lower T than at higher T

ν=constant lines will be closely spaced at low T and more sparse at high T

ν=constant ⇒ dν = 0:

0 =
ν

R

(
ds− Cv

dT

T

)
⇒ dT

ds
=

T

Cv

slope is positive and increases with temperature
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Ts-diagram - Isobaric process

ds = Cp

dT

T
− R

dp

p

p=constant ⇒ dp = 0:

0 =
p

R

(
Cp

dT

T
− ds

)
⇒ dT

ds
=

T

Cp

slope is positive and increases with temperature

Cp > Cv ⇒ isobars are less steep than isochors
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Ts-diagrams

s

T

isochor

isobar
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Ts-diagrams

s

T

isochor

isobar
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pν-diagrams

subtract

Cp

[
ds = Cv

dT

T
+ R

dν

ν

]
from

Cv

[
ds = Cp

dT

T
− R

dp

p

]
gives

ds (Cp − Cv)︸ ︷︷ ︸
R

= RCp

dν

ν
+ RCv

dp

p
⇒ ds = Cp

dν

ν
+ Cv

dp

p
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pν-diagrams

ds = Cp

dν

ν
+ Cv

dp

p

dν = 0 (isochoric process) ⇒ ds = Cv

dp

p

entropy increases with increasing pressure

from before: temperature increases with increasing pressure
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pν-diagrams

p

ν
ν = constant

s
a
n
d
T
in
c
re
a
s
e
s

Niklas Andersson - Chalmers 77 / 83



pν-diagrams - isentropic process

ds = Cp

dν

ν
+ Cv

dp

p

s=constant (ds = 0):

Cp

dν

ν
+ Cv

dp

p
= 0 ⇒ dp

dν
= −γ

p

ν

negative slope

slope becomes steeper with increased pressure and decreased ν
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pν-diagrams - isothermal process

ds = Cv

dT

T
+ R

dν

ν
= Cp

dT

T
− R

dp

p

T=constant (dT = 0):

dν

ν
= −dp

p
⇒ dp

dν
= −p

ν

γ > 0 ⇒ isentropes are steeper than isotherms
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pν-diagrams - isothermal process

ν

p

isentrop

isotherm

Niklas Andersson - Chalmers 80 / 83



pν-diagrams - isothermal process

ν

p

isentrop

isotherm
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Roadmap - Introduction to Compressible Flow

Introduction to compressible flow

Historical milestones

Applications

Basic concepts

Aerodynamic forces

Flow regimes

Compressibility

Review of thermodynamics

Isentropic relations

First and second law of

thermodynamics

Gas properties
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